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Drought stress prediction and
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The paper introduces two novel algorithms for predicting and propagating drought

stress in plants using image sequences captured by cameras in two modalities, i.e.,

visible light and hyperspectral. The first algorithm, VisStressPredict, computes a time

series of holistic phenotypes, e.g., height, biomass, and size, by analyzing image

sequences captured by a visible light camera at discrete time intervals and then adapts

dynamic time warping (DTW), a technique for measuring similarity between temporal

sequences for dynamic phenotypic analysis, to predict the onset of drought stress. The

second algorithm, HyperStressPropagateNet, leverages a deep neural network for

temporal stress propagation using hyperspectral imagery. It uses a convolutional

neural network to classify the reflectance spectra at individual pixels as either

stressed or unstressed to determine the temporal propagation of stress in the plant.

A very high correlation between the soil water content, and the percentage of the

plant under stress as computed by HyperStressPropagateNet on a given day

demonstrates its efficacy. Although VisStressPredict and HyperStressPropagateNet

fundamentally differ in their goals and hence in the input image sequences and

underlying approaches, the onset of stress as predicted by stress factor curves

computed by VisStressPredict correlates extremely well with the day of appearance

of stress pixels in the plants as computed by HyperStressPropagateNet. The two

algorithms are evaluated on a dataset of image sequences of cotton plants captured in

a high throughput plant phenotyping platform. The algorithms may be generalized to

any plant species to study the effect of abiotic stresses on sustainable

agriculture practices.

KEYWORDS

stress prediction, image sequence analysis, time series modeling, dynamic time
warping, temporal stress propagation, spectral band difference segmentation, deep
neural networks
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1 Introduction

Increasing demands for food, fuel, fiber, and feed to meet the

needs of the growing population, under climate change, and

dwindling natural resources constitute a major challenge

confronting sustainable agriculture in the 21st century. In addition,

climate change has affected the intensity and frequency of drought

and extreme weather events in many regions, increasing food

insecurity and affecting the livelihoods of many communities

(Sheffield et al., 2012; Ort et al., 2015). In fact, it is estimated that

about two thirds of crop losses in the last half century were caused by

drought (Comas et al., 2013). Thus, an improved understanding of the

plant’s response to increased water stress as a function of time is an

important step in shepherding breeding efforts, developing smart

agricultural practices, and enhancing the decision making process to

mitigate and adapt to climate change.

A time series is an ordered sequence of values of a variable

measured at successive points in time, often at regular time intervals,

e.g., weather forecasts, stock prices, biometrics, and exchange rates in

finance. Based on the variable, a time series can be classified as either

continuous or discrete. In the case of a continuous time series,

observations are measured continuously over time, e.g., temperature

readings, and the flow of a river. On the other hand, a discrete time

series is characterized by recordings at typically equally spaced time

intervals, e.g., daily, weekly, or yearly. High throughput plant

phenotyping (HTPP) refers to the imaging of plants captured at

regular intervals for a significant time period to extract the salient

information about a plant’s development and metabolism that are

manifested at different wavelengths of the electromagnetic spectrum.

Visible light image sequences are used to extract morphological

characteristics of the plants or their organs (Dyrmann, 2015; Das

Choudhury et al., 2018). In contrast, infrared images can serve as a

proxy for a plant’s temperature, which in turn can be used to detect

differences in stomatal conductance, a measure of a plant’s response

to water status and transpiration rate for abiotic stress adaptation (Li

et al., 2014). Hyperspectral cameras typically capture a scene in

hundreds of bands covering a broad range of wavelengths at very

narrow intervals. Since hyperspectral imaging has the highest

coverage of the electromagnetic spectrum, it has the potential for a

wide variety of applications, including the detection of abiotic and

biotic stresses in plants and the measurements of chlorophyll content,

canopy senescence, and water content (Gampa and Quinones, 2020).

In this paper, we used time-series image sequences captured by two

types of cameras, i.e., visible light and hyperspectral, for stress

prediction and temporal stress propagation.

The images in an HTPP platform are captured at regular

intervals with timestamps to compute phenotypes, i.e., the

observable traits of plants as a result of the complex interaction

between genotype and environment. Imaging at regular intervals

facilitates the extraction of smart phenotypic traits, e.g., predicting

the onset of stress and its temporal propagation patterns in a plant.

Since the process of phenotypic trait extraction based on image

analysis is nondestructive in nature, the traits may be extracted at

multiple timestamps in a plant’s life cycle. The phenotypes

computed by analyzing the images captured in an HTPP may be

modeled as a discrete time series. These abstractions and
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s u b s e q u e n t c omp u t a t i o n s a r e n o t p o s s i b l e f r om

manual measurements.

The phenotypic time series can be classified into the following

four categories (Das Choudhury, 2020b):
a. Nonlinear: A phenotypic time series that tends to increase,

decrease or stagnate over time is referred to as a nonlinear

time series. The total leaf area of a plant increases over time

under normal growth conditions, however, it often starts to

decrease as some leaves experience curling or shedding due to

exposure to stress, e.g., drought, thermal, and salinity. Note

that for many cereal crops, e.g., maize and sorghum, the plant

height increases monotonically with time and then remains

stagnant upon completion of the vegetative stage.

b. Recovery: The normal growth of a plant is significantly

affected under stress. However, if the stress condition is

reverted, i.e., re-watering of a drought-stressed plant or

adjusting the temperature of a plant under thermal stress,

normal growth may resume under certain circumstances.

c. Seasonal: Plants undergo internal physiological seasonal

changes leading to changing leaf colors, shedding,

blooming, and generating new leaves. A time series

representing the total number of leaves over a growing

season can demonstrate this effect.

d. Catastrophic: A catastrophic phenotypic time series reflects

any significant impact on a plant’s development due to

unprecedented events, e.g., floods, storms, and earthquakes,

and hence does not follow any specific pattern.
This paper presents two algorithms to understand the dynamics

of stress in plants from image sequences. It first describes a predictive

model to determine if a plant is under stress, using the time series of

holistic phenotypes or traits computed by analyzing visible light

image sequences using dynamic time warping (DTW) - a statistical

method extensively used to analyze temporal sequences, including

applications in speech recognition and biometric verification (Das

Choudhury and Tjahjadi, 2013). The paper introduces a novel

dynamically growing subsequence based DTW matching algorithm

for stress prediction using the phenotypic time series.

Deep neural networks have been successfully employed in high

throughput temporal plant phenotyping for a variety of applications

(Bashyam et al., 2021; Zheng et al., 2021; Das Choudhury et al., 2022).

The method in (Das Choudhury et al., 2022) performs automated

flower detection from multi-view image sequences to determine a set

of novel phenotypes, e.g., the emergence time of the first flower, the

total number of flowers present in the plant at a given time, flower

growth trajectory, and blooming trajectory. A graph theoretic

approach has been used by (Bashyam et al., 2021) to detect and

track individual leaves of a maize plant for automated growth stage

monitoring. The method by (Azimi et al., 2021) uses Convolutional

Neural Network - Long Short Term Memory (CNN-LSTM) for water

stress classification in chickpea plants, whereas the method by (Taha

et al., 2022) uses deep convolutional neural networks (DCNNs) to

diagnose the nutrient status of lettuce grown in aquaponics. In this

paper, we present a novel algorithm based on convolutional neural

networks to determine the qualitative and quantitative propagation of
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drought stress in cotton plants by classifying reflectance spectra

generated from hyperspectral image sequences.

The efficacy of the two algorithms is demonstrated using a set of

cotton (Gossypium spp.) plants. Cotton, a C3 crop known for its

valued fiber (cotton lint), supplies about 79% of the global natural

fiber used in the textile industry (Dabbert and Gore, 2014; Townsend

and Sette, 2016), while its seeds provide nutrition to both humans and

animals (Bertrand et al., 2005). Drought stress has been identified as a

major impediment to cotton production. In cotton, drought stress

causes a reduction in both quantity and quality of lint (Pettigrew,

2004; Wang et al., 2016) with a severe negative impact on a farmer’s

income and supply of raw material for the textile industry. Although

the algorithms introduced in this paper are evaluated on a cotton

dataset, they are generic and, thus, are applicable to any plant species

subjected to any kind of stress, i.e., drought, salinity, and thermal, to

quantitatively determine the impact of stress as a function of time.
2 Materials and methods

In this section, we first describe the dataset used to develop

and evaluate the two algorithms, i.e., VisStressPredict and

HyperStressPropagateNet, followed by the detailed descriptions of

these algorithms.
1 https://www.alliedvision.com/en/support/technical-documentation/

prosilica-gt-documentation

2 https://www.manualslib.com/products/Headwall-Hyperspec-Inspector-

10421605.html
2.1 Dataset

The image sequences used for algorithm development and

evaluation were obtained at the Innovation Campus greenhouse of

the University of Nebraska-Lincoln (Lincoln, Nebraska, U.S.) using

High Throughput Plant Phenotyping Core Facilities (HTPP,

Scanalyzer 3D, LemnaTec Gmbh, Aachen, Germany). Chemically-

delinted black cotton seeds (variety PHY 499 WRF) were planted in

5.7 L pots (22 cm diameter and 20 cm height) filled with 25% sand

and 75% standard greenhouse mix, at approximately 24°C, and RH

58%. The daytime Photosynthetic Active Radiation (PAR) was

supplemented with LED red/blue light, with an intensity of 200

mmol m-2s-1. The photoperiod in the greenhouse was set at 17

hours throughout the study to standardize the light conditions.

After germination, plants were maintained on the bench where

nutrients and water were applied following a standard greenhouse

management regime. After two weeks, plants were randomly divided

into two groups of 10 corresponding to the two experimental groups

(i.e., Experiments 1 and 2). Each experimental group was further split

into two groups of 5 plants and assigned to treatment groups (control

and drought stress). The onset of the dry-down and the duration of

the experiment varied across the two experiments. In Experiment 1,

dry-down was initiated 12 days after the onset of plant imaging and

lasted for 8 days. A week later, a similar dry-down was initiated for the

second experimental group and lasted for 9 days.

Each plant was placed in a metallic carrier (dimension: 236 mm ×

236 mm × 142 mm) on an automated conveyor belt that moves the

plants from the greenhouse to the four imaging chambers successively

for capturing images in different modalities. It has three watering

stations with a balance that can add water to a target weight or specific

volume and records the specific quantity of water added daily. The
Frontiers in Plant Science 03
images of the greenhouse with plants placed on the automated

conveyor belt, the watering station, and plants entering into the

imaging cabinets are available in (Das Choudhury et al., 2018; Das

Choudhury et al., 2022). The cameras installed in the four imaging

chambers are (a) visible light - side view and top view (Prosilica

GT6600 29 megapixel camera with a Gigabit Ethernet interface 1), (b)

infrared - side view and top view (Pearleye p-030 LWIR), (c)

fluorescent - side view and top view (Basler Scout scA1400-17gm/

gc), and (d) hyperspectral - side view (Headwall Hyperspec Inspector

x-vnir 2) and near-infrared - top view (Goldeye p-008 SWIR),

respectively. Each imaging chamber has a rotating lifter for up to

360 side view images. In this study, we used visible light images

(captured from five side-views, i.e., 0°, 72°, 144°, 216°, 288°) for

VisStressPredict algorithm and hyperspectral images for

HyperStressPropagateNet algorithm. The average time interval

between a plant entering into and exiting from each of the first

three imaging chambers for capturing five side view images is

approximately 1 minute and 10 seconds. Since a hyperspectral

camera typically captures a scene in hundreds of bands at a narrow

interval over a broad range of the spectrum, its image capturing time

is significantly higher than that of the other imaging modalities. In

our HTPP facility, the time to capture a single side view image of a

plant using a hyperspectral camera (total number of bands: 243;

spectrum range: 546 nm to 1700 nm) is approximately 2 minutes and

15 seconds. All images are exported as PNG file types. Pots were

automatically weighed upon exiting the hyperspectral chamber, and

water was applied daily to designated levels to reach a predetermined

percentage of field capacity (50%). Table 1 provides detailed

information on the specifications of the cameras of our HTPP system.
2.2 VisStressPredict: DTW based stress
prediction using visible light imagery

2.2.1 Image-based phenotypic time
series computation

In this section, we describe the steps to compute phenotypic time

series based on analyzing image sequences. Visible light images are

used to compute structural phenotypes that characterize a plant's

morphology. Image-based structural phenotypes can either be

computed by considering the whole plant as a single object (holistic

phenotypes) or by considering individual components of the plants,

e.g., stem, leaves, fruits, and flowers (component phenotypes).

Figure 1 shows the intermediate images in the computation of three

holistic structural phenotypes, i.e., the height of the plant, the area of

the convex hull enclosing the plant, and the total number of plant

pixels, all of which contribute to the measurement of plant growth

and development. First, the original plant image sequences are

cropped to a fixed size to remove the frames of the imaging cabinet

and the pot. Figure 1A shows a sample original image, and Figure 1B

shows the corresponding cropped image that retains the plant. The
frontiersin.org
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cropped image is then binarized in the LAB color space using color

thresholding (Figure 1C). Finally, the binary image thus obtained is

enclosed by primitive geometric shapes, e.g., bounding rectangle and

convex hull (Figure 1D), to compute holistic phenotypes.

Figures 2A, B show the image sequences of cotton plants enclosed

by bounding rectangle and convex hull under normal condition and

drought stress, respectively. Figures 3A, B show the nonlinear

phenotypic time series of the plant height for a set of controlled

and drought-stressed plants, respectively. Similarly, Figures 3C, D

show the nonlinear phenotypic time series for plant biomass

(measured by the total number of plant pixels as the function of

time) for a set of controlled and drought-stressed plants, respectively.

Figures 3E, F show the nonlinear phenotypic time series for plant size

(measured by the area of the convex hull enclosing the plant) for a set

of controlled and drought-stressed plants, respectively.

To validate the phenotypic traits measured noninvasively based

on analyzing images captured in the HTPP system against the

destructive handheld (low-throughput) techniques, we correlated

the projected leaf area (pixels) and plant height (pixels), derived

from the RGB camera of the HTPP, against values derived from low-

throughput destructive methods (Figure 4). Image-derived projected

plant biomass and plant height were highly and significantly

correlated with the measured leaf area (R2 = 0.92, p< 0.01) and

plant height (R2 = 0.94, p< 0.01) respectively, confirming the

hypothesis for the HTPP methods' ability to accurately estimate

morphological traits.
2.2.2 Time series smoothening
The noise introduced during the binarization process and the

natural change of orientation of plants’ leaves results in unevenness in

the phenotypic time series, which poses significant challenges to

subspace matching based on dynamic time warping. We use a
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moving average (MA) filter to smooth the time series to address

this. The MA filter is the most common filter in digital signal

processing to smooth functions. It is effective for time-domain

encoded signals due to its simplicity. The high frequencies to be

removed can be controlled by the length of the window of the

MA filter.

Given a phenotypic time series x of lengthm and a window sizeN,

the filtered time series y is given by Equation 1 as follows:

y i½ � = 1
N o

N−1

j=0
x i + j − 1½ �, 1 ≤ i ≤ m − N + 1 (1)

In this paper, a window size of N=3 is used for the MA filter. The

smoothened time series are used as input to the DTW-based drought

stress prediction algorithm. Figure 5 shows the smoothened time

series of the phenotypes (plant height, plant biomass and plant size)

for control and stressed plants of Experiment 2.

2.2.3 Stress prediction using DTW
The goal of time series modeling is to study past observations to

develop an appropriate model that describes its underlying structure

for making predictions. Dynamic time warping (DTW) (Sakoe and

Chiba, 1978) is widely used to find the optimal alignment between

two given time series. It has been successfully used in automatic

speech recognition, gait recognition, and data mining to compare

time series with different speeds and deformations. DTW uses

dynamic programming to compute a warping function that

optimally aligns two time series of variable lengths and measures

their similarity. Given two plant phenotypic time series, i.e., P=(P1,P2,

…,PM) and Q=(Q1,Q2,…,QN) of respective lengths M∈N and N∈N,
and Pi and Qj are the respective phenotypic value on the ith and jth

days, DTW constructs an M×N warping path which is a sequence of

length p of L index pairs ((i1,j1),(i2,j2),…,(iL,jL)) and A(P,Q) is a set of
A B DC

FIGURE 1

Illustration of holistic phenotype computation based on image analysis: (A) original image; (B) cropped image; (C) binary image; (D) plant enclosed by
bounding rectangle and convex hull.
TABLE 1 Camera specifications of the HTPP system at the UNL, USA.

Image type Camera sensor Spectral range (nm) Spatial resolution Bit depth Frame rate

Visible light AVT Prosilica GT6600 400-700 6576 × 4384 14 (mono) - 12 (color) 4

Fluorescent Basler Scout scA1400-17GC 620-900 1390 × 1038 12 17

Near infrared Goldeye P-008 SWIR 900-1700 320 × 256 12 118

Infrared Pearleye P-030 LWIR 800-1400 640 × 480 14 24

Hyperspectral Headwall Hyperspec Inspector X-VNIR 546-1700 320 × 561 8 –
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all admissible paths. For a path to be admissible, it should satisfy the

following conditions: (a) boundary: p1=(1,1) and pL=(M,N); (b)

monotonicity and all indices should appear at least once: il-1≤il≤il-1
+1 and jl-1≤jl≤jl-1+1. DTW minimizes the cost of warping P and Q

together, i.e.,
Frontiers in Plant Science 05
DTW P,Qð Þ = min
p∈A P,Qð Þ o

i,jð Þ∈p

dist Pi,Qj

� � !1=2
0
@

1
A (2)

Dynamic programming provides an exact solution to the

optimization problem at hand. DTW constructs the M×N matrix of
A B

D

E F

C

FIGURE 3

Illustration of nonlinear phenotypic time series using plants from Experiment 2: (A, B)- phenotypic time series for the height of plants under the
controlled environment and subjected to drought stress, respectively; (C, D)- phenotypic time series for plant biomass (measured by pixel count) under
the controlled environment and subjected to drought stress, respectively; and (E, F)- phenotypic time series for plant size (measured by the area of
convex hull) under the controlled environment and subjected to drought stress, respectively.
A

B

FIGURE 2

(A) An image sequence of a sample plant for side view angle of 0° (Experiment 1) enclosed by their bounding rectangles and convex hulls under
controlled condition; and (B) An image sequence of a sample plant for side view angle of 0° (Experiment 1) enclosed by their bounding rectangles and
convex hulls subjected to drought stress.
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Euclidean distances of corresponding phenotypes where DTWi,j is

the distance between P[1:i]=(P1, P2,…,Pi) and Q[1:j]=(Q1, Q2,…,Qi)

with the best alignment given by the recurrence function given in

Equation 3, i.e.,

DTWi,j = dist Pi,Qj

� �
+minimum DTWi−1,j,DTWi,j−1,DTWi−1,j−1

� �
(3)

where dist(Pi,Qj)=( Pi,Qj)
2.

Differences in environmental conditions, even in controlled

environments, including water content and induced stress, result in

variations in the phenotypic sequences for different plants of the same

species. However, the plants undergoing stress will have

fundamentally different phenotypic trajectories than those growing

in normal conditions. Thus, dynamic time warping (DTW) distance

is an ideal fit to compare the phenotypic trajectories of plants. The

DTW distance between the phenotypic sequences of plants under

similar conditions will be significantly different from those of plants

under other conditions and can therefore form the basis to

differentiate a normal growth sequence from a (drought) stress

sequence. Note that all plant image sequences used in this study are

of the same length, i.e., M = N. However, mechanical breakdown or

the time-shared based imaging policy in an HTTP often results in the

generation of image sequences of unequal lengths. Since DTW

effectively compares time series of varying lengths, our proposed

VisStressPredict algorithm will be suitable to deal with unforeseeable

situations of generating unequal phenotypic time series in any

phenotypic measurement environment. This also proves the

generalizability of the algorithm.

In this paper, we propose a DTW-based approach to differentiate

between control and stressed plants based on their phenotypic time

series. Given a sequence S = (S1,S2,…,Sn) of length n and its

subsequence Ssub=(S1,S2,…,Si) of length i where 1 ≤ i ≤ n, we

classify the subsequence Ssub as either control or stressed. Two

representative sequences Rc and Rs are calculated by element-wise

averaging of a set of control and stressed sequences, respectively.

Figures 6A, B show the representative phenotypic sequences of the

height of a plant for control and stressed plants, respectively.

Figures 6C, D show the representative phenotypic sequences of
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plant biomass (measured by total plant pixels) for control and

stressed plants, respectively. Figures 6E, F show the representative

phenotypic sequences of plant size (measured by convex-hull area)

for control and stressed plants, respectively. The DTW distances Dc

and Ds are calculated between Ssub and Rc and between Ssub and Rs,

respectively. Dc and Ds are referred to as control DTW distance and

stress DTW distance, respectively. The distance is normalized to

obtain Dnorm, which is then smoothened using a MA filter of window

size N=6 (Equation 1) to obtain a stress factor, i.e., SF.

Dnorm is given by:

Dnorm ið Þ = Ds ið Þ − Dc ið Þj j
Ds ið Þ

(4)

where Ds(i) and Dc(i) are given by

Ds(i) = DTW(Ssub,Rs) and Dc(i) = DTW(Ssub,Rc).

Finally, the stress factor, SF, for the subsequence is computed by:

SF ið Þ = Average Dnorm, i,Nð Þ, (5)

where Average gives the average of the normalized distances in the

window i−N+1 to i or 0. If the stress factor is above a predefined

threshold, t*, we label that subsequence as stressed. The threshold

value t* is defined as:

t* = Median MaxSFð Þ (6)

where MaxSF is the set of maximas of the SF’s of control plants.

The stress factor threshold t* is taken as the median of the

maximas of SF’s rather than the mean or maximum is to avoid any

outliers in the control set from drastically affecting the threshold t*.
Equation 7 gives the conditions for the predicted class.

Predicted  Class ið Þ =
Stressed if SF ið Þ ≥ t*

Control otherwise

(
(7)

Finally, onset of the stress can be determined by identifying the

first time stamp in the sequence to have the predicted class to be

labeled “Stressed.”

nset Sð Þ = Q : ∀   1 ≤ i < Q   PC ið Þ = Control ∧ PC Qð Þ = Stressed (8)

The proposed method is summarized in Algorithm 1.
A B

FIGURE 4

Illustration of correlation between phenotypic traits measured destructively and based on visible light image analysis: projected leaf area (cm2) measured
destructively and plant biomass (total plant pixels) derived from image analysis (cm2) (A); plant height (cm) measured destructively and plant height
(pixels) derived from image analysis (B) for control and dry-down groups.
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Fron
Require: S:array[1…n], Ssub: S[1:i] 1 ≤ i≤ n,listOfControlSeqs, listOfStressedSeqs

function CALCREPRESENTATIVESEQ(listOfSeqs)

SumOfSeqs array[1…n]

for each s in listOfSeqs do
for i:= 1 to n do

SumOfSeqs [i] SumOfSeqs [i] + s[i]

end for

end for
Rt SumOfSeqs/length(listOfSeqs)

return Rt
end function

function VISSTRESSPREDICT(S, Ssub, listOfControlSeqs, listOfStressedSeqs)

Rc  CALCREPRESENTATIVESEQ(listOfControlSeqs) Representative sequence for control

Rs CALCREPRESENTATIVESEQ(listOfStressedSeqs) Representative sequence for stress

Dnorm array[1…n]

DnormMA array[1…n]

flag 0

day 0

for i = 1 to length(S) do

Ssub S[1:i]

Dc DTWDistance(Rc,Ssub)

Ds DTWDistance(Rs,Ssub)

Dnorm[i] |Ds - Dc |/Ds
DnormMA[i] Average(Dnorm, i, N)

if DNormMA[i]>t* then
predictedClass “Stressed”

if flag == 0 then
firstStressDay i

flag 1

end if

else
predictedClass “Control”

end if
end for

return predictedClass, firstStressDay

end function
ALGORITHM 1
Classify control and stressed sequences and predict onset of stress
tiers in Plant Science frontiersin.org07

https://doi.org/10.3389/fpls.2023.1003150
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Das Choudhury et al. 10.3389/fpls.2023.1003150
2.3 HyperStressPropagateNet: Deep neural
network based temporal stress propagation
using hyperspectral imagery

A hyperspectral image can be represented by a three-dimensional

array of intensities, H(x,y,l), where (x,y) represents the location of a

pixel and l denotes the wavelength. Thus, it is often referred to as a

hyperspectral cube. Intensities at a given wavelength can be

represented as a two-dimensional image, and intensity information

at a specific location for all wavelengths can be represented by a

spectral reflectance curve.

2.3.1 Segmentation
We use a spectral band difference-based segmentation approach

to create the mask of the plant for subsequent analysis. This

segmentation method is useful and efficient for plant phenotyping

analysis using hyperspectral or multispectral imagery, since the goal is

to analyze only the plant ignoring the background. The segmentation

process is illustrated in Figure 7. In this approach, two bands of

specific wavelengths that have significant contrast in intensity are first

identified (Figures 7A, B), then enhanced by multiplying a constant

factor (Figures 7C, D), and finally subtracted from each other to

isolate the plant pixels, i.e., the foreground (Figure 7E). Based on

empirical analysis, the two wavelengths that are effective are 770 nm

and 680 nm, and the constant factor is 2. Thus, the enhanced
Frontiers in Plant Science 08
foreground image, (If), is given by:

If = 2*I770 − 2*I680, (9)

where I770 and I680 are the images at 770 nm and 680 nm

wavelengths, respectively. The enhanced foreground image is then

binarized using Otsu's automatic thresholding technique (Otsu, 1979)

to generate a binary mask for the plant (Figure 7F), which is then used

to segment the plant in all bands of a hyperspectral cube for

subsequent analysis. Otsu’s method chooses a global threshold so as

to maximize the separability of the resultant classes in gray levels. This

threshold is then used to convert a grayscale image to a binary image.

In this paper, we used graythresh() function of Matlab to generate the

global threshold followed by imbinarize() to create the binary mask.

2.3.2 Hyper-pixel generation
A hyper-pixel (HP) is defined as HP = {P410,… P800}, where Pi

denotes a plant pixel at the wavelength i. A reflectance spectrum is

generated at each hyper-pixel by plotting the grayscale value of the

hyper-pixel over the wavelength range. Figures 8A, B show the

reflectance spectra generated at randomly selected pixels from a

controlled and a stressed plant, respectively. Stomatal response,

reactive oxygen species scavenging, metabolic rate, water

absorption, and photosynthetic capability are all affected when

plants are subjected to drought stress. These collective responses

lead to an adjustment in the growth rate of plants as an adaptive
A B

D

E F

C

FIGURE 5

Illustration of smoothened time series using plants from Experiment 2. (A, B) plant height for control and stressed plants, respectively; (C, D) plant
biomass (measured by pixel count) for control and stressed plants, respectively; and (E, F) plant size (measured by the area of convex hull enclosing the
plant) for control and stressed plants, respectively.
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response for survival (Osakabe et al., 2014). This phenomenon creates

differences in the reflectance spectra at different wavelength ranges

generated from hyperspectral imagery of the stressed and controlled

plants. It is seen from Figure 8A that the reflectance spectra from the

controlled plant are very similar. The comparatively dispersed nature

of the reflectance spectra of the stressed plant (Figure 8B) can be

attributed to the varying stress at different parts of the plant. We

observe a relatively sharp dip in the reflectance spectra of the stressed

plant compared to the controlled plant approximately in the

wavelength range of 1200−1300 nm. The difference in the

reflectance spectra between the controlled and the stressed plant

forms the basis of this algorithm. Note that a sharp decrease in

reflectance between 1400−1600 nm wavelength range is guided by the

physiological characteristics of the plants. This wavelength range is

known for atmospheric water absorption, and is sensitive to vapor

reflectance. In this range, light absorption by the plants is significantly

high resulting in low gray-scale values in their hyperspectral imagery.
2.3.3 Training and classification
Convolutional neural network (CNN) models have been effective

in various computer vision applications, including segmentation,

classification, object recognition, biometrics, and medical imaging

(LeCun and Bengio, 1995; Kolhar and Jagtap, 2021). Recently, 1-

dimensional (1D) CNNs have been used in natural language

processing, speech recognition, and biomedical signal processing

where they can perform feature extraction and classification tasks
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in a single end-to-end model (Jang et al., 2020). In this paper, we use a

1D CNN to classify the reflectance spectra into two classes, i.e.,

stressed and unstressed. These convolutional layers learn from the

representation learning component. Each convolutional layer consists

of multiple (N) filters. Each filter of the convolutional layer learns a

different feature. The goal of representation learning is to learn the

different features in the convolution layers and then use them in the

subsequent dense layers for the final classification. The architecture of

the proposed network is shown in Figure 9. The proposed network

consists of two components: representation learning and

classification. The details of the network architecture are given below.

The representation learning component consists of four 1D

convolutional layers. The size of the input vector is (m, 243), where

m is the number of training examples, each consisting of 243

reflectance values corresponding to a reflectance spectrum. The

dimension of this input vector is increased to (m, 243, 1) to feed it

into a 1D convolutional layer. The 1D CNN layer is followed by a

rectified linear unit (ReLU) activation function. There are four such

successive 1D CNN layers with ReLU activation. They each have a

kernel size of 5 and a stride of 1. The first two convolutional layers

have 64 filters, and the ‘same’ padding is used while the last two

convolutional layers have 128 filters with the ‘valid’ padding.

The feature vectors obtained after the convolutions are fed to the

classification component, which consists of two dense layers. First, the

output of the convolutional step, which is a vector of size (m × 235 ×

128), is ‘flattened’ to a vector of size (m, 30080). The flattened vector is

then fed to a dense layer in the classification component, which has 32
A B

D

E F

C

FIGURE 6

Illustration of representative phenotypic time series with mean and standard deviation using plants from Experiment 2. (A, B) plant height for control and stressed
plants respectively; (C, D) plant biomass for control and stressed plants respectively; and (E, F) plant size for control and stressed plants respectively.
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filters with ReLU activation. The (m, 32) vector thus obtained from

the dense layer is passed to another dense layer with a sigmoid

activation for binary classification between stressed and unstressed

classes. The groundtruth for training is developed based on visual

inspection of the RGB images of the plants. Drooping can be seen in

plants in dry down stage for the last three days of the experiment. The

hyperpixels for these last three days are labeled as stressed. The

hyperpixels of the plants for all days under the controlled

environment are marked as unstressed for the purpose of

groundtruth generation. The labeled dataset is split into training,

validation, and test sets in the ratio of 0.64, 0.16, and 0.20.
2.3.4 Evaluation metrics
HyperStressPropagateNet has been evaluated using a confusion

matrix, precision-recall curve, and F1-score. These metrics are defined

as follows:
Fron
• Confusion matrix is a specific tabular representation that

allows the visualization of the performance of an algorithm,

and is extensively used in the case of statistical classification

problems. For a confusion matrix C, Ci,j is equal to the

number of observations known to be in class i but predicted

to be in class j. Thus, C0,0 is the true negatives (TN), C1,0 is the

false negatives (FN), C0,1 is the false positives (FP), and C1,1 is

the true positives (TP).

• F1-Score is the harmonic mean of precision and recall. The

range for F1-Score is [0, 1], with 0 being the worst and 1 being

the best prediction. It is defined as:
tiers in Plant Science 10
F1 − Score =
2� TP

2� TP + FP + FN
(10)

Precision (P) is defined as TP/(TP+FP) and recall (R) is defined as

TP/(TP+FN). F1-score is a better measure than accuracy for

unbalanced datasets.
3 Experimental results

3.1 VisStressPredict: DTW based stress
prediction using visible light imagery

The stress factor (SF) for each plant is calculated using Equation 5.

If the stress factor (SF) for a particular plant on a certain day crosses

the threshold t*, it is predicted to be stressed from that day. The

predicted class and onset of stress are given by Equations 7 and 8,

respectively. Figures 10A, B show the stress factor as a function of

time (called as a stress factor curve) for a set of normal and stressed

plants, respectively. The figures show that the plants demonstrate

similar group behavior. The stress factor curves for normal plants

gradually increase, peak around the threshold t*, and then gradually

decrease. The stress factor curves for the stressed plants, on the other

hand, generally keep increasing for the duration of the study.

It is seen from Figure 10B that the stress factor curves for stressed

plants with plant IDs 613-182-02, 613-185-05, 613-190-10, and 613-

195-15 cross the threshold t* on Day 24, Day 23, Day 23, and Day 22,

respectively, whereas stress factor curves for the control plants remain

below the threshold during the course of the study (Figure 10A). The
A

B D

E FC

FIGURE 7

Illustration of spectral band difference based segmentation: (A, B) - hyperspectral images of a cotton plant at wavelengths 770 nm and 680 nm,
respectively; (C, D) - corresponding enhanced images; (E) image obtained after subtracting (C) from (D); and (F) binary image.
A B

FIGURE 8

(A) Reflectance spectra generated at random pixels of a controlled plant; and (B) Reflectance spectra generated at random pixels of a stressed plant.
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FIGURE 9

Deep learning architecture for classification of stressed and unstressed pixels.
A B

FIGURE 10

Illustration of difference in behavioral characteristics between control and stressed plants in terms of stress factor curves: (A) stress factor curves for
control plants; and (B) stress factor curves for stressed plants.
A B

FIGURE 11

(A) Training and validation loss vs number of epochs; and (B) training and validation accuracy vs number of epochs.
A B

FIGURE 12

Performance metrics for HyperStressPropagateNet: (A) confusion matrix; and (B) precision-recall curve.
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only exception is a stressed plant (ID 613-189-09) in Figure 10B

whose stress factor curve keeps decreasing after it reaches a peak. This

is likely an outlier and may be caused due to imaging artifacts or an

anomaly in the computation of the convex-hull area due to plant

rotation. These defects may occur in plant images and can be fixed

with a more rigorous image processing and correction pipeline.
3.2 HyperStressPropagateNet: Deep neural
network based temporal stress propagation
using hyperspectral imagery

Figure 11A shows the training and validation loss versus the

number of epochs, and Figure 11B shows the training and validation

accuracy versus the number of epochs. The total number of epochs

used during training is 30. From the two sets of graphs, it is evident

that the validation loss and accuracy closely follow the training loss

and accuracy, respectively. Also, the model converges, and validation

accuracy reaches above 95% within 10 epochs.

Figure 12A shows the confusion matrix, demonstrating the

accuracy of classifying hyperpixels into stressed and unstressed

classes. The confusion matrix in Figure 12A shows that at a

threshold probability of 0.5, the false positives and false negatives
Frontiers in Plant Science 12
are extremely low. Precision and recall for our proposed classifier are

0.99 and 0.98, respectively. F1-score is 0.98. The very high values for

precision, recall, and F1-score show that the model can accurately

distinguish between stressed and unstressed spectra.

Figure 12B shows the precision-recall curve for different

thresholds for the predicted probabilities. The model outputs the

probabilities of pixels being stressed from which the predictions are

obtained using a threshold. This threshold is generally kept as 0.5. As

the threshold is increased from 0 to 1.0, the predictions obtained from

the probabilities vary, and so do the precision and recall values. The

model with the highest area under the precision-recall curve is

generally deemed optional. Figure 12B shows that the precision and

recall values are very high for the entire range of threshold for the

proposed model, thus giving a very high area under the precision-

recall curve close to 1.0. The average precision for the model is also

very high, i.e., 0.9998. The various performance metrics demonstrate

the efficacy of the proposed algorithm.

Figures 13A, B show the temporal propagation of stress using

hyperspectral image sequences of cotton plants from Experiment 1

(Plant ID: 613-200-20) and Experiment 2 (Plant ID: 613-195-15),

respectively. In this figure, the hyperpixels classified as stressed and

unstressed are shown in red and green, respectively, for qualitative

visualization of temporal stress propagation. The percentage of the
A

B

FIGURE 13

Illustration of qualitative and quantitative temporal propagation of stress using (A) a plant from DD1 group and (B) a plant from DD2 group. The
percentage of stress pixels are shown at the top-left corner of each image.
A B

FIGURE 14

(A) SWC (%) for the control and the two dry-down groups (DD1, Plant ID: 613-200-20 and DD2, Plant ID: 613-195-15); and (B) stress pixel (%) over days
since DD1 for the same plants.
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stressed pixels to the total plant pixels is shown at the top left of

each image.

For the plant in Figure 13A, drought stress was introduced on Day

13. The figure shows a gradual increase in the stress symptoms that

started on Day 16, when 6.8% of the plant is labeled as stressed

(marked in red). The percentage of stress pixels increased to 24.9% on

Day 17 and 57.3% on Day 18. There is almost no green pixel present

in the plant on the last two days, i.e. on Day 20 and Day 21, which

implies that the whole plant is stressed. For the plant in Figure 13B,

drought stress was introduced on Day 20. The figure shows that stress

symptoms did not appear in the plant until Day 25 when, 30.9% of the

plant are labeled as stressed (marked in red). The figure shows that the

plant is considerably stressed on Days 26 and 27, with very few

unstressed pixels (shown in green). There is almost no green pixel

present in the plant on Day 28, which implies that the whole plant

is stressed.

The limited water availability in the soil is confirmed by changes

in the soil water content (SWC), as shown in Figure 14A. Soil water

content was measured using a HH2 type Moisture Meter (Eijkelkamp,

NL) connected to a ML3 ThetaProbe Soil Moisture Sensor (Delta-T

Devices, UK). Dry-down treatment resulted in a decline of SWC from

initial conditions (field capacity ∼ 16% SWC) to 15.6% of field

capacity (∼ 2.5% SWC) and 6.3% of field capacity (∼ 1.0% SWC)

for DD1 and DD2, respectively, at the end of each dry-down period.

Figure 14A also indicates the immediate effect in the SWC that

follows the cessation of watering. Figure 14B shows the temporal

progression of percentage of stress pixels for a plant from Experiment

1 (Plant ID: 613-200-20) and a plant from Experiment 2 (Plant ID:

613-195-15). The quantitative visualization of temporal stress

propagation of these two plants are shown in Figures 13A, B,

respectively. The excellent correlation between the SWC and the

corresponding temporal progression of the percentage of stress pixels

computed by HyperStressPropagateNet for both experiments

demonstrates the efficacy of the proposed method.
4 Discussion

The paper introduces two novel algorithms to understand the

impact of stress on plants. First, an approach to predict the onset of

stress in drought-affected plants is presented. The algorithm, named

as VisStressPredict, uses an extension of dynamic time warping based

on the time-series analysis of plant phenotypes derived from visible

light image sequences. The paper also introduces a novel method, i.e.,

HyperStressPropagateNet, to examine the propagation of stress in

plants over time. The deep learning based algorithm uses a

convolutional neural network to classify hyperpixels into stressed

and unstressed categories. Although both methods have been

evaluated using cotton plant image sequences, they can be

generalized to any plant species to study the temporal effect of any

kind of stress, e.g., thermal and salinity. Thus, the methods have the

potential to help differentiate between stress-tolerant and stress-

susceptible genotypes for sustainable agriculture. Note that

VisStressPredict and HyperStressPropagateNet fundamentally differ

in their goals and hence in the input image sequences, underlying

approaches, and final outcomes. VisStressPredict identifies the onset

of stress on the plant as a whole, but HyperStressPropagateNet maps
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the stress in a plant at a finer resolution. However, the onset of stress

as predicted by VisStressPredict (Figure 10) correlates extremely well

with the day of appearance of stress pixels in the plants as computed

by HyperStressPropagateNet (Figure 13). This establishes the dove-

tailed relationship between the two proposed algorithms.

The efficacy of the proposed algorithms depends on the reliability

of the phenotypes. The accuracy of the computed phenotypic time

series depends on many factors, including accuracy in image

segmentation, the effectiveness of denoising, and the stability of the

plant structure derived from images. The phenotypes such as plant

height, plant area, and convex-hull area are derived from the RGB

images through a series of image processing steps (See Section 2.2.1).

Segmentation of the plant is the basis for image-based phenotypic

computation, and inaccuracies in segmentation will result in

imprecise computation of plant phenotypes, including its height

and convex-hull area (Das Choudhury, 2020a). In addition,

inherent challenges introduced while imaging the plant, such as

those due to plant rotation, also impact the accuracy of some

phenotypes, including plant area and convex-hull area (Bashyam

et al., 2021). The plant rotation may cause shrinking of the convex-

hull area computed from the imagery from the previous day, although

the plant has grown bigger (Maddonni et al., 2002; Das Choudhury

et al., 2016). All these factors result in unevenness in the phenotypic

time series (Figure 3). This unevenness affects the performance of the

subsequence-based DTW matching, which explains the outlier stress

factor curve (plant ID 613-189-09) in Figure 10B. The impact of the

error may be ameliorated to some extent by smoothening, as

explained in Section 2.2.2.

Finally, it is worth noting that even with a very limited number of

stress days in the dataset, the proposed VisStressPredict algorithm

shows excellent performance as expressed by the empirically

determined stress factor. The mean stress factor curve in

Figure 10A remains below the threshold during the course of the

study for the control plants, whereas, it crosses the threshold on Day

23 and keeps on increasing during the rest of the days for the stressed

plants (Figure 10B). The method’s potential to predict stress, even in

its early stages, demonstrates its efficacy. However, in future work, we

will explore the generality of the method by examining the

performance of the algorithms on a large dataset with different

plant species where plants are subjected to stress for a longer duration.

The dataset used in the study consists of images of cotton plants

that are visibly drooped (but not visibly dried as seen by a change of

color) under stress. Thus, it is not possible to quantify the stress at the

fine pixel scale based on analyzing color features using visible light

images. The hyperspectral image analysis for temporal stress

propagation achieves the novel objective of identifying the stress

location in the plant before the visible stress symptoms appear in the

plant. Our study shows an excellent correlation between the soil water

content and the percentage of stress pixels in the plants (Figure 14).

The figure shows that as the soil water content decreases, the stress in

plants increases. The Pearson correlation coefficients calculated for

SWC and stress pixel percentage for the said plants from the two dry-

down groups (DD1, Plant ID: 613-200-20 and DD2, Plant ID: 613-

195-15) are -0.972 and -0.735, respectively. The early detection of

stress susceptibility acts as an alarm to the deteriorating plant health,

and appropriate intervention, e.g., adequate watering of the plant,

may help recover the plant’s health. Future work will consider the
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identification of wavelengths that carry the most salient information

on drought stress prior to the classification for improved

computational complexity.
5 Conclusion

The paper introduces two novel algorithms, i.e., VisStressPredict

and HyperStressPropagateNet, to study stress response in plants in

greater spatial and temporal resolution by analyzing visible light and

hyperspectral imagery. While RGB cameras capture the visible part of

the light spectrum in only three broad bands (red, green, and blue),

hyperspectral cameras typically capture a broad range of wavelengths

at very narrow intervals of a few nanometers. The VisStressPredict

algorithm predicts the onset of stress in plants using an enhanced

dynamic time warping approach from the phenotypic time series

derived from visible light images. The HyperStressPropagateNet

algorithm, in contrast, identifies the location of stress in the plants

using a deep learning approach from the hyperspectral imagery. The

algorithm has been used to illustrate the temporal propagation of

stress both qualitatively and quantitatively. The efficacy of the two

algorithms is demonstrated using a set of control and drought-

stressed cotton plants imaged in an HTTP system. Both the

algorithms have the potential to examine the response to other

kinds of biotic and abiotic stresses in plants, and can be applied to

any kind of plant species.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

SD conceived the idea, developed and implemented the

algorithm, conducted experimental analysis, led the manuscript

writing and supervised the research. SS developed and implemented
Frontiers in Plant Science 14
the algorithm, conducted experimental analysis and contributed to

the manuscript writing. AM led the dataset design, performed

validation experiments and contributed to the manuscript writing.

AS and TA critically reviewed the manuscript and provided

constructive feedback throughout the process. All authors

contributed to the article and approved the submitted version.
Funding

This research is partially supported by the Nebraska Agricultural

Experiment Station with funding from the Hatch Act capacity

program (Accession Number 1011130) from the USDA National

Institute of Food and Agriculture.
Acknowledgments

Authors are thankful to Dr. Vincent Stoerger, the Plant

Phenomics Operations Manager at the University of Nebraska-

Lincoln, USA, for his support in setting up experiments to create

the dataset used in this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Azimi, S., Wadhawan, R., and Gandhi, T. K. (2021). Intelligent monitoring of stress
induced by water deficiency in plants using deep learning. IEEE Trans. Instrument. Meas
70, 1–13. doi: 10.1109/TIM.2021.3111994

Bashyam, S., Choudhury, S. D., Samal, A., and Awada, T. (2021). Visual growth
tracking for automated leaf stage monitoring based on image sequence analysis. Remote
Sens. 13. doi: 10.3390/rs13050961

Bertrand, J., Sudduth, T., Condon, A., Jenkins, T., and Calhoun, M. (2005). Nutrient content
of whole cottonseed. J. Dairy Sci. 88, 1470–1477. doi: 10.3168/jds.S0022-0302(05)72815-0

Comas, L., Becker, S., Cruz, V. M., Byrne, P. F., and Dierig, D. A. (2013). Root traits
contributing to plant productivity under drought. Front. Plant Sci. 4, 442. doi: 10.3389/
fpls.2013.00442

Dabbert, T., and Gore, M. (2014). Challenges and perspectives on improving heat and
drought stress resilience in cotton. J. Cotton Sci. 18, 393–409.

Das Choudhury, S. (2020a). “Segmentation techniques and challenges in plant
phenotyping,” in Intelligent image analysis for plant phenotyping. Eds. A. Samal and S.
Das Choudhury (Boca Raton, Florida: CRC Press, Taylor & Francis Group), 69–91.
Das Choudhury, S. (2020b). “Time series modeling for phenotypic prediction and
phenotype-genotype mapping using neural networks,” in European Conference on
computer vision workshop. Ed. N. L. (Computer Science (Springer), 228–243.

Das Choudhury, S., Bashyam, S., Qiu, Y., Samal, A., and Awada, T. (2018). Holistic and
component plant phenotyping using temporal image sequence. Plant Methods 14. doi:
10.1186/s13007-018-0303-x

Das Choudhury, S., Guha, S., Das, A., Das, A. K., Samal, A., and Awada, T. (2022).
Flowerphenonet: Automated flower detection from multi-view image sequences using
deep neural networks for temporal plant phenotyping analysis. Remote Sens. 14.
doi: 10.3390/rs14246252

Das Choudhury, S., and Tjahjadi, T. (2013). Gait recognition based on shape and
motion analysis of silhouette contours. Comput. Vision Image Und. 117, 1770–1785.
doi: 10.1016/j.cviu.2013.08.003

Das Choudhury, S., Vincent, S., Samal, A., Schnable, J., Liang, Z., and Yu, J.-G. (2016).
“Automated vegetative stage phenotyping analysis of maize plants using visible light images,” in
KDD workshop on data science for food, energy and water(San Francisco, California, USA).
frontiersin.org

https://doi.org/10.1109/TIM.2021.3111994
https://doi.org/10.3390/rs13050961
https://doi.org/10.3168/jds.S0022-0302(05)72815-0
https://doi.org/10.3389/fpls.2013.00442
https://doi.org/10.3389/fpls.2013.00442
https://doi.org/10.1186/s13007-018-0303-x
https://doi.org/10.3390/rs14246252
https://doi.org/10.1016/j.cviu.2013.08.003
https://doi.org/10.3389/fpls.2023.1003150
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Das Choudhury et al. 10.3389/fpls.2023.1003150
Dyrmann, M. (2015). “Fuzzy c-means based plant segmentation with distance
dependent threshold,” in Proceedings of the computer vision problems in plant
phenotyping (CVPPP), vol. 5. (BMVA Press), 1–5.11. doi: 10.5244/C.29.CVPPP.5

Gampa, S., and Quinones, R. (2020). “Data-driven techniques for plant phenotyping
using hyperspectral imagery,” in Intelligent image analysis for plant phenotyping. Eds. A.
Samal and S.D. Choudhury (Boca Raton, Florida: CRC Press, Taylor & Francis Group),
175–193.

Jang, B., Kim, M., Harerimana, G., Kang, S.-u., and Kim, J. W. (2020). Bi-lstm model to
increase accuracy in text classification: Combining word2vec cnn and attention
mechanism. Appl. Sci. 10, 5841. doi: 10.3390/app10175841

Kolhar, S., and Jagtap, J. (2021). Convolutional neural network based encoder-decoder
architectures for semantic segmentation of plants. Ecol. Inf. 64, 101373. doi: 10.1016/
j.ecoinf.2021.101373

LeCun, Y., and Bengio, Y. (1995). “Convolutional networks for images, speech, and
time series,” in The handbook of brain theory and neural networks, (Cambridge, MA,
USA:MIT Press) vol. 3361.

Li, L., Zhang, Q., and Huang, D. (2014). A review of imaging techniques for plant
phenotyping. Sensors 14, 20078–20111. doi: 10.3390/s141120078

Maddonni, G. A., Otegui, M. E., Andrieu, B., Chelle, M., and Casal, J. J. (2002). Maize
leaves turn away from neighbors. Plant Physiol. 130, 1181–1189. doi: 10.1104/pp.009738

Ort, D. R., Merchant, S. S., Alric, J., Barkan, A., Blankenship, R. E., Bock, R., et al.
(2015). Redesigning photosynthesis to sustainably meet global food and bioenergy
demand. Proc. Natl. Acad. Sci. 112, 8529–8536. doi: 10.1073/pnas.1424031112
Frontiers in Plant Science 15
Osakabe, Y., Osakabe, K., Shinozaki, K., and Tran, L. P. (2014). Response of plants to
water stress. Front. Plant Sci. 5, 86. doi: 10.3389/fpls.2014.00086

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybernet. 9, 62–66. doi: 10.1109/TSMC.1979.4310076

Pettigrew, W. T. (2004). Physiological consequences of moisture deficit stress in cotton.
Crop Sci. 44, 1265–1272. doi: 10.2135/cropsci2004.1265

Sakoe, H., and Chiba, S. (1978). Dynamic programming algorithm optimization for
spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26, 43–49.
doi: 10.1109/TASSP.1978.1163055

Sheffield, J., Wood, E. F., and Roderick, M. L. (2012). Little change in global drought
over the past 60 years. Nature 491, 435–438. doi: 10.1038/nature11575

Taha,M. F., Abdalla, A., ElMasry, G., Gouda,M., Zhou, L., Zhao, N., et al. (2022). Using deep
convolutional neural network for image-based diagnosis of nutrient deficiencies in plants grown
in aquaponics. Chemosensors 10. doi: 10.3390/chemosensors10020045

Townsend, T., and Sette, J. (2016). “Natural fibres and the world economy,” inNatural fibres:
Advances in science and technology towards industrial applications (Springer), 381–390.

Wang, M., Ellsworth, P. Z., Zhou, J., Cousins, A. B., and Sankaran, S. (2016). Evaluation
of water-use efficiency in foxtail millet (setaria italica) using visible-near infrared and
thermal spectral sensing techniques. Talanta 152, 531–539. doi: 10.1016/
j.talanta.2016.01.062

Zheng, C., Abd-Elrahman, A., and Whitaker, V. (2021). Remote sensing and machine
learning in crop phenotyping and management, with an emphasis on applications in
strawberry farming. Remote Sens. 13, 531. doi: 10.3390/rs13030531
frontiersin.org

https://doi.org/10.5244/C.29.CVPPP.5
https://doi.org/10.3390/app10175841
https://doi.org/10.1016/j.ecoinf.2021.101373
https://doi.org/10.1016/j.ecoinf.2021.101373
https://doi.org/10.3390/s141120078
https://doi.org/10.1104/pp.009738
https://doi.org/10.1073/pnas.1424031112
https://doi.org/10.3389/fpls.2014.00086
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.2135/cropsci2004.1265
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1038/nature11575
https://doi.org/10.3390/chemosensors10020045
https://doi.org/10.1016/j.talanta.2016.01.062
https://doi.org/10.1016/j.talanta.2016.01.062
https://doi.org/10.3390/rs13030531
https://doi.org/10.3389/fpls.2023.1003150
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Drought stress prediction and propagation using time series modeling on multimodal plant image sequences
	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.2 VisStressPredict: DTW based stress prediction using visible light imagery
	2.2.1 Image-based phenotypic time series computation
	2.2.2 Time series smoothening
	2.2.3 Stress prediction using DTW

	2.3 HyperStressPropagateNet: Deep neural network based temporal stress propagation using hyperspectral imagery
	2.3.1 Segmentation
	2.3.2 Hyper-pixel generation
	2.3.3 Training and classification
	2.3.4 Evaluation metrics


	3 Experimental results
	3.1 VisStressPredict: DTW based stress prediction using visible light imagery
	3.2 HyperStressPropagateNet: Deep neural network based temporal stress propagation using hyperspectral imagery

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


