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The complex environments and weak infrastructure constructions of hilly

mountainous areas complicate the effective path planning for plant protection

operations. Therefore, with the aim of improving the current status of

complicated tea plant protections in hills and slopes, an unmanned aerial

vehicle (UAV) multi-tea field plant protection route planning algorithm is

developed in this paper and integrated with a full-coverage spraying route

method for a single region. By optimizing the crossover and mutation

operators of the genetic algorithm (GA), the crossover and mutation

probabilities are automatically adjusted with the individual fitness and a

dynamic genetic algorithm (DGA) is proposed. The iteration period and

reinforcement concepts are then introduced in the pheromone update rule of

the ant colony optimization (ACO) to improve the convergence accuracy and

global optimization capability, and an ant colony binary iteration optimization

(ACBIO) is proposed. Serial fusion is subsequently employed on the two

algorithms to optimize the route planning for multi-regional operations.

Simulation tests reveal that the dynamic genetic algorithm with ant colony

binary iterative optimization (DGA-ACBIO) proposed in this study shortens the

optimal flight range by 715.8 m, 428.3 m, 589 m, and 287.6 m compared to the

dynamic genetic algorithm, ant colony binary iterative algorithm, artificial fish

swarm algorithm (AFSA) and particle swarm optimization (PSO), respectively,

for multiple tea field scheduling route planning. Moreover, the search time

is reduced by more than half compared to other bionic algorithms. The

proposed algorithm maintains advantages in performance and stability when

solving standard traveling salesman problems with more complex objectives,
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as well as the planning accuracy and search speed. In this paper, the

research on the planning algorithm of plant protection route for multi-tea

field scheduling helps to shorten the inter-regional scheduling range and thus

reduces the cost of plant protection.

KEYWORDS

multi-tea field plant protection, unmanned aerial vehicle, hilly mountainous area,
bionic algorithm, scheduling route planning

Introduction

Longjing tea is known for its unique fragrance and high
quality, is grown exclusively in many tea areas, including the
West Lake mountainous area of Hangzhou City, Zhejiang
Province, the Lion Peak Mountain. This region is known for
producing top Longjing varieties of tea Lion Peak Longjing,
which contains more amino acids, catechins, chlorophyll,
vitamin C and other components compared to other tea
varieties, and has important nutritional and economic value.
Effective fertilization and irrigation applications can guarantee
the yield and quality of tea in daily tea garden management (Xia
et al., 2019; Chen, 2021). However, tea gardens are generally
planted in mountainous and hilly terrain, and thus the tea field
is small and scattered, making it difficult for plant protection
machinery to enter the area. Furthermore, the nutrient loss
during the manual protection of plants is serious, and the yield
and quality of the tea are difficult to guarantee. Unmanned
aerial vehicle (UAV) plant protection procedures are simple
to operate, have a high work efficiency, and are unaffected by
terrain and crop growth. Such techniques are widely adopted in
agricultural surveying and mapping, plant protection (Ali et al.,
2017; Zhang et al., 2019; Li F. et al., 2020; Asadzadeh et al.,
2022). For plant protection applications, the UAVs typically
take-off and land vertically in the tea garden. The high-speed
downward swirling airflow, and water and fertilizer spraying
devices are able to turn the tea leaves, allowing for the even
spraying of the front and back of the leaves (Lan et al., 2010;
Kose and Oktay, 2020; Qin et al., 2021; Wang et al., 2021; Zhan
et al., 2021; Zhu et al., 2021; Şahin et al., 2022). UAV multi-tea
field scheduling route planning is an important component of
the precision planting and protection of tea fields. However, it
can prove to be technically complicated for UAV planting and
protection applications and restricts the development of aerial
precision operations in hilly mountainous areas (Lan and Chen,
2018; Hu et al., 2021).

The development of intelligent algorithms has resulted
in further advancements in the route planning problem.
Jiang et al. (2021) designed a UAV route planning algorithm
based on the segmented fitness strategy by adding constraints
to the fitness function of the algorithm, thus avoiding the

premature convergence defect and adapting to the route
planning of more complex environments. Wu et al. (2019)
proposed a path planning method based on the beetle
search algorithm, overcoming the trade-off between high
computational complexity and the UAV requirement for real-
time trajectory planning. The offline UAV path planning
method based on the improved particle swarm algorithm
proposed by Huang (2021) can realize the planning of 3D
routes. This algorithm greatly reduces the computational effort
and improves the route planning efficiency. Qu et al. (2020)
proposed a UAV path planning method with a hybrid gray
wolf optimization algorithm, which combines the gray wolf
optimization algorithm and the symbiotic biological search
method to smooth the generated routes and make the routes
more suitable for UAVs. However, these aforementioned studies
are limited to planning of UAV remote sensing and obstacle
avoidance routes (Wu et al., 2019; Qu et al., 2020; Huang,
2021; Jiang et al., 2021), which is different from the scheduling
problem and cannot be applied to the UAV multi-tea field
scheduling route planning scenario. Pang et al. (2021) proposed
an adaptive route planning approach based on an artificial
potential field method. Moreover, Shao et al. (2019) developed
a multi-helicopter search and rescue route planning strategy
based on the optimization strategy algorithm, while a helicopter
scheduling route planning algorithm based on the operational
area entry point mechanism was also proposed by the group
Fang et al. (2021). These algorithms can be applied for the
planning of helicopter scheduling routes and shorten the
scheduling operation distance between regions. However, those
presented in above are restricted to the route planning of
manned aircrafts (Shao et al., 2019; Fang et al., 2021; Pang
et al., 2021), and are thus unable to meet the operating accuracy
of UAVs. There is currently a lack of research on the optimal
scheduling route planning for UAV spraying in multi-tea fields.

Scholars across the globe have conducted some research on
the UAV route planning problem, resulting in various route
planning algorithms. For example, Li K. et al. (2020) proposed
an improved fruit fly optimization algorithm based on the
optimal reference point to study the problem of UAV task
assignment with task priority and changeable tasks. The method
is able to achieve the optimal initial trajectory for multiple
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UAVs. Yan et al. (2021) developed a multi-UAV task allocation
algorithm based on an improved particle swarm optimization
algorithm, this algorithm improves the traditional particle
swarm algorithm by introducing partial matching crossover and
secondary transposition mutation to effectively improve the
efficiency of UAV task assignments in marine environment and
can optimize the navigation path. Tang et al. (2021) proposed a
joint global and local path planning optimization for UAV task
scheduling towards crowd air monitoring, which achieves the
effective utilization of UAV airborne resources by improving the
mutation mechanism and adaptive inertia weights of the particle
swarm algorithm. Liu et al. (2021) proposed an optimization
method based on the divide and conquer framework for the
integrated scheduling of multiple UAVs, which divides the task
scheduling problem of multiple UAVs into a task allocation
phase and a single UAV scheduling phase, and is able to
achieve task allocation among multiple UAVs. Wang et al. (2020)
proposed a XGBoost-enhanced fast constructive algorithm, and
an embedded insertion-based heuristic algorithms with different
sequencing rules, then, through experiments on the Meituan
delivery platform dataset, it is verified that the method can
obtain shorter UAV delivery paths and save some computation
time. Shafiq et al. (2021) designed a UAV path planning scheme
that combines a Maximum-Minimum ant colony optimization
with a vicsek based multi-agent system, which overcomes the
shortcomings of traditional path planning algorithms in terms
of controlling and synchronizing information globally. Xu et al.
(2015) designed a UAV planning algorithm with minimal energy
consumption by dividing the plant protection area through the
grid method and reasonably allocating the spraying volume
and return points of each sortie, which minimizes the total
energy consumption of the UAV’s work, reduces the invalid
consumption of energy by the UAV in non-operating situations,
and improves the UAV’s operating efficiency. Although all of
the aforementioned algorithms can achieve the shortest flight
range for their related problems (Xu et al., 2015; Li K. et al.,
2020; Wang et al., 2020; Liu et al., 2021; Shafiq et al., 2021; Tang
et al., 2021; Yan et al., 2021), they differ from the multi-tea field
planting route scheduling planning problem in the following
three aspects: (i) the types of problems solved by each study
are different, such as the vehicle routing problem, the quadratic
assignment problem, the traveling salesman problem, etc.; (ii)
the applied UAV sorties and models are different, in particular,
this paper focuses on the scheduling route planning problem
for the single sortie of plant protection UAVs; and (iii) the
environment and work content of the application are different to
those of the current literature. At present, there are few studies
on the planning of plant protection routes for UAVs in hilly and
mountainous areas. Therefore, this paper proposes a method
that can realize single-sortie multi-tea field plant protection
scheduling route planning.

The structure of this paper is shown as below. Section
2 describes in detail the specific method of full-coverage
spraying routes in the region and the specifics of improving

DGA-ACBIO, including dynamic crossover strategy, dynamic
variation strategy, the concept of iterative cycles, and binary
iterative pheromone update strategy; Section 3 conducts
comparison experiments on the multiple tea fields problem and
standard traveling salesman problems, and shows the results
of the significant level difference between the algorithm in this
paper and other algorithm; Section 4 provides a detailed analysis
of the comparative experimental results of each algorithm;
Finally, Section 5 concludes with an integrated summary and
prospect of this paper.

In order to achieve the fast and efficient planning of
multi-tea field plant protection routes and to shorten the
scheduling range between fields, this study proposes a serial
fusion scheduling route planning algorithm that combines the
adaptive dynamic genetic algorithm with the ant colony binary
iterative algorithm by designing the underlying logic of the
fusion algorithm. The algorithm can effectively improve the
search accuracy, convergence speed and stability, and achieve
the purpose of quickly planning the optimal scheduling route
for UAV multi-tea field plant protection. The algorithm can
streamline the route, improve the planting efficiency, improve
the planting effect, and thus improve the yield and quality of tea.
The results can provide basic theoretical support for the research
of aerial precision operation technology for multi-tea fields in
hilly mountainous areas.

Details of optimization techniques

Environmental modeling of tea fields

The correct flight heading must be maintained during UAV
operations, and thus the terrain should be perfectly reproduced
on the aerial map during the environmental modeling. The
map projection "Mercator projection" ensures that there is
no angular distortion following the projection (Wada, 2019),
and is thus selected for the aerial map to minimize the flight
offset. In order to facilitate the analysis, the operation area is
projected into the first quadrant of the coordinate system in
this study (Figure 1). It is assumed that the application area is
an arbitrary n-sided polygon denoted as P1P2......Pn, and the
point with the lowest latitude and longitude in the operation
area is set as the coordinate origin of the projection plane.
Environmental coordinate system Z is established by setting
the due east direction, due north direction and altitude as the
positive direction of the x-axis, the positive direction of the
y-axis, and the positive direction of the z-axis, respectively
(Figure 1).

By taking the efficiency of DJI plant protection UAV T20 (12
hm2/h) as a reference (DJI-Innovations, 2019), we modeled a
tea field near Lion Peak Mountain in the Xihu Mountains of
Hangzhou, Zhejiang Province, China. A total of 20 tea fields with
a mean value of 0.45 hm2 were selected. The length and width
of the tea field were set as [0,650] and [0,550], respectively, in
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FIGURE 1

Projection coordinates of a single tea field.

order to ensure that the plant protection UAV could complete
the plant protection operation in at least 1 h. Ovital 3D (V9.1.6
X64) was employed to establish the tea field model. The latitude
and longitude coordinates of each tea field vertex are shown in
Supplementary Table 1.

The single tea field modeling method was used to model the
tea gardens of the 20 tea fields. Figure 2 depicts the model, where
the blue solid line and green area denote the boundary and area
of each tea field, respectively.

Single tea area full coverage spraying
route planning

UAV plant protection routes are divided into regional full
coverage and inter-regional scheduling routes. Full coverage
route planning denotes the planning of the shortest route
covering all areas within a pre-defined space according to the
width of the spray pattern.

A UAV using variable application technology can adjust
spray volume based on the height and flight speed and ensure
a consistent canopy application across tea trees. This technology
simplifies the application process from multiple low-slope tea
areas into a single plane application. On this basis, to ensure
full coverage when spraying, the spraying route needs to
extend beyond the boundaries of the operating area. Therefore,
spraying outside the designated area is minimized, and the
spraying range is more precise if the length of the spraying route
outside the boundary is reduced. At a given spray width, when
the number of turnarounds is low, the individual routes are
longer. Such routes are more suitable for UAVs. The method
employed to determine the suitable spraying route for a single
tea field is described below.

Establish a coordinate system for the operating area of the
tea area. It is assumed that the operation area is a polygon with
n sides and is located in the eastern longitude and northern

latitude region. For the convenience of analysis, the polygonal
application operation area was located in the first quadrant
of the coordinate system. Furthermore, the smallest latitude
and longitude values in the operation area are selected as the
coordinate origin. The positive direction of the x-axis is due east
and the positive direction of the y-axis is due north to establish
the environmental coordinate system (Figure 3A).

(1) Calculate the slope of each tea field boundary as follows.

 kj =
|yj+1−yj|
|xj+1−xj|

, 1 ≤ j < n, j ∈ Z

kj =
|y1−yj|
|x1−xj|

, j = n, j ∈ Z
(1)

where kj is the slope of the jth edge; (xj,yj) is the coordinate of
the jth vertex; Z is an integer.

(2) Calculate the total spray range outside the application
operation area. Since most aerial applications use parallel flight
paths, the x-axis is selected as the starting edge and the number
of paths is calculated using Equation (2) to achieve full coverage.

Mj =
|yj+1−yj|

Wa
, 1 ≤ jn, j ∈ Z

Mj =
|y1−yj|
Wa

, j = n, j ∈ Z
(2)

M =

1
2

n∑
j=1

Mj

 (3)

where Mj is the number of application paths required for the
jth edge. M is the total number of application paths.Wa is
the spray width.

Then, the spray range outside the application area is then
calculated. Since the spray routes are parallel and the spacing is
the spray range, the quadrilateral ABCD shown in Figure 3B is
a parallelogram. Therefore, it is obtained that.

rAB =
Wa

2k
(4)

where rAB is the range of each spray route outside the
operating area, andk is the slope of the boundary line of the
operating operation area.

Since the total out-of-area spray range on each boundary is
equal to the sum of each out-of-area range from that boundary
line, combining Equations (2) and (4) gives the out-of-area spray
range on each boundary.

rj =
MjWa

2kj
(5)

where rj is the out-of-area spray range at the jth
boundary. Equations (1) and (5) are combined to obtain
Equation (6) as follows.

{
rj =
|xj+1−xj|

2 , 1 ≤ j < n, j ∈ Z

rj =
|x1−xj|

2 , j = n, j ∈ Z
(6)
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FIGURE 2

Multi-tea field model.
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FIGURE 3

A diagram of the spraying area and the spraying route in the border area of the single tea field. (A) Spray area; (B) the route to the border of the
tea field.

The total spray range outside the area of application is equal
to the sum of all spray ranges, i.e.

R =
|x1 − xn|

2
+

n−1∑
j=2

∣∣xj+1 − xj
∣∣

2
, j ∈ Z (7)

where R is the total spray range outside the application area.
As shown in Equation (7), when the spray route is parallel to

the x-axis, and the x-axis of the established coordinate system
is parallel to the boundary of the application operation area,
the shortest total spray range outside the area can be obtained.
That is, the spray range when the spray route is parallel to the
boundary line of the area is shorter than the spray range when it
is not parallel to the boundary.

Determine the coordinate system of the shortest spraying
range. This is done by taking each boundary of the application
area as the x-axis and establishing the coordinate systems Z1,
Z2 and Zn with the starting endpoint of each boundary as

the coordinate origin, then calculated and compared using
Equation (7), resulting in the shortest total spray range Ri
outside the operating area for n coordinate systems, at which
point the coordinate system Zi is the shortest spray range
coordinate system.

When the total spray range outside the application operation
area is 0 in all coordinate systems i.e., the application operation
area is a rectangular area it is necessary to further compare the
size of the spray areas Sb and Sa outside the area. If Sb ( Sa)
is smaller, the coordinate system established with the width
(length) of the rectangle as the x-axis is the shortest spray range
coordinate system.

Sb =
⌈

ra
Wa

⌉
Warb − S0 (8)

Sa =
⌈

rb
Wa

⌉
Wara − S0 (9)
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where Sb is the spraying area outside the area when the
spraying route is parallel to the width of the rectangle; Sa is
the spraying area outside the area when the spraying route is
parallel to the length of the rectangle; ra is the length of the
rectangle; ra is the width of the rectangle; S0 is the area of the
application operation area.

(4) The full-coverage route of a single tea field is planned
by the full-coverage planning method proposed in this paper.
That is, under the coordinate system Zi, the full-coverage route
planned by making the spray route parallel to the x-axis is the
route with the shortest spraying range and the smallest excess
coverage, as shown in Figure 4. Then, previous research of
our group on a regional full-coverage route planning algorithm
demonstrated that in each operation area, there is only one
optimal full coverage route planned (Liu et al., 2020), that is,
there is only one start and end point for the route. We select
midpoint N3, starting point N2 and ending point N1 of the
target area as the characteristic points representing the area.
This transforms the multi-regional scheduling route planning
problem into a traveling salesman problem (Figure 4).

Design of route planning algorithm for
multi tea field scheduling

Permission to reuse and copyright
Prior to the running of the genetic algorithm, we employ

binary coding to encode X work areas, with each segment
corresponding to a work area node (Roberge et al., 2013),
where integer X∗∈ 0,1...,7. This indicates that there are eight
work areas, with the arrangement of randomly generated
chromosome codes set as 010| 110| 100| 101| 111| 011| 001| 000|.

Y

X0

N 1

N 3
N 2

Spray route
Boundary

Turning route
Entry/Exit

FIGURE 4

acquisition of vertices in tea field.

The fitness function indicates the individual’s ability to adapt
to the environment; the larger the fitness function value, the
stronger the individual’s adaptability, that is, the better the route.
We set | k1| k2| . . . | ki| . . . | kn| as the coded chromosome, with
a fitness function described as in Equation (10):

fn =
1∑n

i1 Dkikj
(10)

where Dkikj is the distance from operating area i to operating
areaj; and f n is the fitness, defined as the reciprocal of
the distance required to return to the starting node after
traversing all nodes.

(1) Crossover operator optimization;
In order to enable the algorithm to maintain a high search

efficiency at all stages of the population evolution, we account
for the crossover probability and set the value between [0.6,1.0]
(Wang and Han, 2021). Here, we propose a method for
dynamic crossover probability P′c, based on the adaptive genetic
algorithm as follows:

P
′

c =

{
0.3

fmin−fmax
f
′

−
0.3

fmin−fmax
fmax + 0.6, f

′

≥ favg
k1, f

′

< favg
(11)

where f
′

is the average fitness of individuals to be crossed; fmin
is the minimum fitness; fmax is the maximum fitness; favg is the
average fitness; and k1 is a constant.

The adaptation of each route in the pre-search period
varies greatly, and thus we adopt the crossover operation for
poorly fitted populations to improve the search efficiency at this
stage. In the later stage, the overall fitness of several groups is
close to the optimal value. At this point, P

′

cwill be adaptively
resized with the fmin −fmax gap (positive correlation) and the
crossover probability is adaptively adjusted by Equation (11)
to search for an optimal solution according to the adaptation
dominance degree. This aims to improve the search speed,
such that individuals with a poor (high) fitness are more likely
to be eliminated (retained), increasing the diversity of high-
performance individuals.

(2) Optimization of mutation operator;
The search mode of the entire algorithm is determined by

mutation probability Pm, which prevents the algorithm from
degenerating into a random search due to very large values.
We set Pm between [0.001,0.1] and its values are determined as
follows:

Pm =


k2(fmax−f )
fmax−fmin

,

k3

f ≤ favg

f < favg

(12)

wheref is the fitness of mutating individuals; fmin is the
minimum fitness; fmax is the maximum fitness; k2 and k3 are
constants, with k2 in [0,0.001] and k3 0.2.
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The adaptive mutation probability Pm is altered as the
algorithm progresses. The average adaptation in the early stage
of the algorithm is small, the value of fmax and f avg are distinct,
and the initial adaptation of the mutation probability is relatively
low. The average fitness increases with the overall population
fitness as the iterations progress. Moreover, a decline in the
difference betweenfmax and f avg increases adaptive mutation
probabilityPm, and the fixed mutation probability takes the
larger fixed value of Pmk3 to effectively increase population
diversity. At the later stage of the algorithm, an increase in the
fitness of individuals in the population reduces the difference
between fmax andf , and in order to ensure that the optimal
solution is not affected, the adaptive mutation probability Pm is
reduced accordingly.

Ant colony algorithm optimization
The ant colony algorithm (ACO) is a random search

algorithm framework based on the probability distribution
model parameterized by the solution space inspired by the
foraging behavior of natural ant colonies (Chen et al., 2017). The
ACO employs the following probability formula:

Pk
ij (t) =


[τij(t)]α[ηij(t)]β∑

s∈allowedk [τij(t)]α[ηij(t)]β , j ∈ allowedk

0,j /∈ allowedk

(13)

where τij is a pheromone on boundary (i,j) at moment t; ηij
is the heuristic transition factor from areai to areaj;tabuk is a
taboo table used to record the work area that the ants have
traveled thus far in order to prevent the ants from choosing a
previously visited work area; allowedk

{
c−tabuk

}
is a collection

of work areas allowed to be accessed by ant k in the next step;α
is the information heuristic factor, representing the relative
importance of the route in the algorithm, namely, the influence
of the amount of information on the ant route choice - the larger
the value ofα, the stronger the collaboration between the ants;
and β is the expected heuristic factor, indicating the relative
importance of visibility (Zhou et al., 2014).

The pheromone update formula released by the ants on their
route is given as:

τij = (1− ρ) τij +
m∑
k1

1τkij (14)

1τkij =

{
1
dij
, (i, j) ∈ Tk

0, otherwise
(15)

where,ρ ∈ (0, 1) is the pheromone volatilization coefficient;
and1τkij is the pheromone released by the kth ant on the current
route; dij is the distance between work area i and work area j ;

To prevent the algorithm from prematurely converging
to the local optimal solution, we limit the pheromone
concentration of each route to a pre-defined range (Equation

16). This can effectively prevent the amount of information on a
specific route from being much larger than that of the rest of the
route, thus avoiding the "endless loop" phenomenon.

τij


τij, τmin < τij < τmax

τmin, τij ≤ τmin

τmax, τmax ≤ τij

(16)

whereτmax andτmin are the maximum and minimum
pheromone settings, respectively.

The proposed algorithm is based on the pheromone update
rule of the ant colony algorithm. We first introduce the concept
of iterative cycles to optimize the pheromone update rule, and
subsequently optimize the pheromone update rule using the
binary method. More specifically, the ants are ranked according
to the time it takes for them to traverse all regions after each
iteration. Only the pheromone released by the fastest 50% of ants
is retained. For the optimization, the additional pheromone is
used to strengthen the route, that is,

τij(t + 1) = (1− ρ) τij(t)+
km

2∑
k1

(w−1∑
k1

(
w− k

)
1τkij(t)

)

+e1τbsij (t) (17)

1τbsij (t) =

{
1
Lbs , f (i, j)εTbs

0, otherwise
(18)

where e is the size of the weight given to path Tbs ;1τbsij (t) is the
increased pheromone at time t of the shortest route; Tbs is the
shortest route; and Lbs is the length of Tbs.

By adjusting the pheromone update method of the ant
colony algorithm, the application of the global optimal solution
increases. The algorithm aims to obtain an optimal solution with
fewer iterations and avoid the "endless loop" phenomenon.

Ant colony algorithm optimization
Although the adaptive dynamic genetic algorithm optimized

in this paper is able to accelerate the search efficiency, it does
not overcome the low search efficiency in the later stages of
the genetic algorithm. Moreover, the ant colony binary iterative
algorithm is a heuristic probabilistic search method with strong
local search capabilities, yet its search time is too long in the early
stage. Figure 5 presents the corresponding search speed-time
curves. In order to overcome the limitations of each algorithm,
we integrate the optimized genetic algorithm and ant colony
algorithm to produce a dynamic genetic-ant colony binary
iterative fusion algorithm.

In this study, the fusion time is evaluated using the evolution
rate of the DGA offspring population. At time tb in Figure 5, the
DGA exhibits a faster search rate and evolution of individuals
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FIGURE 5

Search speeds of the dynamic genetic algorithm (DGA) and ant
colony binary iterative algorithm (ACBIO).

relative to the ACBIO, while these variables are slower after tc
and are equal at ta. Therefore, the minimum evolution rate is set
as the evolution rate at time ta. The evolution rate of each group
iteration is subsequently compared; if the evolution rate of the
population is less than the minimum evolution rate for three
consecutive iterations, the DGA is terminated and the ACBIO
is executed. This ensures that the algorithm obtains the optimal
solution at the fastest speed. Figure 6 presents the flow chart of
the proposed fusion algorithm.

Simulation test design

Optimized performance tests of genetic
algorithm and ant colony optimization

In order to examine the capability of the improved DGA
and ACBIO in terms of search speed and accuracy, GA and
ACO were evaluated by comparing the corresponding computer
simulation test means with those of the optimized DGA and
ACBIO, respectively. The computer used for testing had the
following specifications: Intel(R) Core (TM) i7-6700HQ CPU
@ 2.60 GHz and 8 GB RAM. The test was simulated on 20
tea fields using MATLAB-2018a (MathWorks) under the Win-
10 platform. Table 1 reports the specific parameters of the
algorithm.

Dynamic genetic algorithm with ant colony
binary iterative optimization search
performance test

To verify the superior performance of the proposed DGA-
ACBIO in terms of search speed, accuracy and number of

iterations, simulations of 20 tea fields were executed and
compared using the dynamic genetic algorithm, ant colony
binary iterative algorithm, particle swarm algorithm (Zeng et al.,
2020; Zhou et al., 2022) and artificial fish swarm algorithm (Gao
et al., 2020).

For the UAV multi-tea field scheduling route planning
problem, the search accuracy and performance stability of the
algorithm are more important than the search time and the
number of iterations. Therefore, the typical traveling salesman
problems of berlin52 and kroA100 in the standard TSP LIB
database, which are a close match to the multi-tea field model
in this study, are selected for performance simulation tests. We
verify that the DGA-ACBIO algorithm has the highest search
accuracy and most stable performance with more complex
targets, namely, the shortest planned flight range and the least
variation in the results of each output, compared to state-of-the-
art algorithms.

The maximum number of iterations and population size
were set to 200 and 100, respectively. Table 1 lists the values of
the other parameters, which were set according to the literature.
By considering the randomness of the heuristic algorithm, each
algorithm was executed 20 times.

We adopt the nonparametric Wilcoxon rank sum test set to
determine significant differences between the results obtained
by the DGA-ACBIO in solving the multi-tea field scheduling
problem and those of the other algorithms (Kochengin et al.,
2019). The significance level is set at α = 5%, indicating
significant differences for p< 5% and vice versa. Table 5 reports
the p-values determined from the comparison.

Results

Genetic algorithm and ant colony
optimization optimized performance
tests

Results of dynamic genetic algorithm
with ant colony binary iterative
optimization search performance test

(1) Table 2 compares the optimal routes and convergence
curves of the DGA-ACBIO search performance test results. (2)
Table 3 reports the results of each algorithm for the 20 tests on
the self-built model Traveling salesman problem, as well as the
standard Traveling salesman problem LIB databases berlin52
and kroA100 for the typical traveling salesman problems.

(3) Table 4 reports the results of each algorithm for the 20
test simulations on the self-built Traveling salesman problem,
the standard TSP LIB database berlin52 and kroA100 problems,
and the iteration curves of the DGA-ACBIO algorithm.
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FIGURE 6

Search flow chart of DGA-ACBIO.

(3) Table 5 reports the significance levels of the differences
between the DGA-ACBIO results and those of each algorithm.

Optimized performance tests of
genetic algorithm and ant colony
optimization

The iterative curves of dynamic genetic algorithm (DGA)
and genetic algorithm (GA) in Figure 7A. exhibit obvious

breaks in the early stage, with significant improvements in the
density and smoothness of the former compared to the latter.
This demonstrates the ability of DGA to directly crossover the
poorly adapted individuals in the early stage and dynamically
adjust the crossover and variation probability sizes according
to the population adaptation dominance degree in the later
stage. It can also quickly and effectively eliminate the poorly
adapted individuals and improve the convergence efficiency of
the algorithm in the early stage. The GA optimization approach
is proved to achieve significant improvements in search speed,
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TABLE 1 Parameters for each algorithm.

Algorithms Parameters

GA Population size n = 100, crossover
probability Pc = 0.8, mutation probability
Pm = 0.2, maximum number of iterations
genmax = 200.

ACO ant colony number m = 100, information
heuristic factor α = 1, expected heuristic
factor β = 5, maximum number of
iterations genmax = 200

DGA Population size n = 100, crossover
probability as in Equation (2), mutation
probability as in Equation (3), maximum
number of iterations genmax = 200

ACBIO ant colony number m = 100, information
heuristic factor α = 1, expected heuristic
factor β = 5, maximum number of
iterations genmax=200

AFSA Number of artificial fish fishnum = 100,
maximum number of iterations genmax =
200, maximum number of probes
trynumber = 200, sensing ranges Visual =
16, crowding factor deta = 0.8.

PSO Evolution time nMax = 200, number of
individuals indiNumber = 100, particle
size parsize = 100

DGA-ACBIO Population size n = 100, crossover
probability as in Equation (2), mutation
probability as in Equation (3), maximum
number of iterations genmax = 200,
genmin = 20, ant colony number = 100,
information heuristic factor α = 1,
expected heuristic factor β = 5

yet advantages in the global optimization capability are not
obvious. A smaller convergence interval is observed for the
ant colony binary iteration optimization (ACBIO) iteration
curve compared to that of ant colony optimization (ACO),
and the search accuracy and global optimization capability are
significantly improved in the former (Figure 7B). This proves
that the ACBIO optimization method can significantly improve
the performance of the ACO search, yet advantages in search
speed are not observed.

Dynamic genetic algorithm with ant
colony binary iterative optimization
search performance test

Dynamic genetic algorithm with ant colony
binary iterative optimization presents
significant advantages in the optimization
accuracy and speed

The optimal routes and convergence curves of the search
performance simulation test results in Table 2 reveal that
although the five algorithms are able to obtain flight routes
traversing all tea fields, the search accuracy, speed and number
of iterations vary with algorithm. The p-values of the dynamic
genetic algorithm with ant colony binary iterative optimization

(DGA-ACBIO) in Table 5 are all less than 5%, indicating the
significantly improved optimization ability relative to the other
bionic algorithms. Furthermore, the optimal solution of DGA-
ACBIO exhibits the highest accuracy of 5131.6 m, while the
DGA optimal solution has the worst accuracy of 5847.4 m.
The optimal solution of DGA-ACBIO is 414.5 m less than the
shortest result of other bionic algorithms, demonstrating the
remarkable search accuracy of DGA-ACBIO.

The proposed algorithm also exhibits the shortest search
time (2.56 s), while ACBIO has the longest search time (6.23
s). The search times of DGA, ACBIO, artificial fish swarm
algorithm (AFSA), and particle swarm optimization (PSO)
are 2.43, 1.82, 2.04, and 2.05 times that of DGA-ACBIO,
respectively. Thus, DGA-ACBIO has the fastest search speed of
the tested algorithms, indicating the successful optimization of
the algorithm search speed performance in this study.

DGA-ACBIO presents the least number of iterations (64)
and AFSA the most (172). Compared with the other bionic
algorithms, DGA-ACBIO on average reduces the number of
iterations by 45.75, proving its ability to obtain the optimal
solution with fewer iterations.

The analysis indicates the DGA optimal solution to have
the worst accuracy and ACBIO to have the longest search time.
Despite this, the fusion of these two algorithms to obtain DGA-
ACBIO significantly improves the search accuracy and stability,
with the highest search accuracy and shortest search time among
the tested algorithms.

The mean optimal solutions of DGA-ACBIO are 5153.4,
7603.2, and 21826.2 m for the self-built model Traveling
salesman problem, the Berlin52 problem and the kroA100
problem solved by the LIB database, respectively. These values
are much smaller than those corresponding to the other four
bionic algorithms (Table 3). This is most obvious in the
traveling salesman problem solution of kroA100, where the
optimal solutions of DGA, ACBIO, AFSA, and PSO are 2.34,
1.69, 2.84, and 2.83 times that of the DGA-ACBIO results,
respectively. This indicates the great superiority of DGA-ACBIO
in the optimal solution accuracy, and the more complex the
target, the more obvious the advantage. Moreover, DGA-ACBIO
had the smallest range and coefficient of variation (687.4 and
0.009, respectively), demonstrating the higher credibility of the
results. The DGA-ACBIO designed in this study not only has
a high optimization accuracy, but also highly stable results,
which proves the improved performance of the algorithm
optimization.

This is attributed to the initial optimization search via
DGA to rapidly obtain the optimized solution followed by the
secondary search using ACBIO for the suboptimal solution,
thus optimizing the solution. The first step of the DGA-ACBIO
solution, namely, the implementation of the DGA, to some
extent determines the optimal solution size of the algorithm.
Comparing the iteration curves of the DGA and GA algorithms
in Figure 7A shows that the improvement of GA in this
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paper can substantially enhance the efficiency of the algorithm’s
preliminary search. More specifically, it can improve the
evolutionary efficiency of the algorithm, optimize the overall size
of the solution in fewer iterations, and reduce the search time.
The iteration curves of the DGA and GA algorithms in Figure 4.
reveal the improvement of GA in this paper to substantially

enhance the efficiency of the algorithm’s preliminary search,
namely. The evolutionary efficiency is increased, the overall size
of the solution is optimized in fewer iterations, and the search
time is lowered. Although the advantage is not obvious in terms
of the search accuracy, an optimized solution set can be obtained
in fewer iterations.

TABLE 2 Comparison of algorithm performances and optimal routes.

Algorithm Optimal route (m) Iteration results (times) Running time (s)

DGA 4.66

ACBIO 6.23

AFSA 5.25

PSO 5.23

DGA-ACBIO 2.56
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TABLE 3 Simulation results for different traveling salesman problems.

Problem Algorithm Best value (m) Worst value (m) Average value (m) Range (m) CV

Multi-tea field 20 DGA 5847.4 6571.2 6230.3 723.8 0.037

ACBIO 5559.9 6007.9 5724.0 448.03 0.017

AFSA 5720.6 6198.9 5904.3 478.3 0.025

PSO 5419.2 5900.5 5566.2 481.3 0.030

DGA-ACBIO 5131.6 5195.7 5153.4 64.1 0.005

berlin52 DGA 9450.0 11528.4 10343.8 2078.4 0.058

ACBIO 8611.1 9326.3 8934.8 715.2 0.025

AFSA 9245.3 10172.5 9832.5 927.2 0.026

PSO 8819.5 9515.7 9111.9 696.2 0.022

DGA-ACBIO 7544.4 7703.8 7603.2 159.4 0.007

kroA100 DGA 41475.1 58243.7 50356.0 16768.6 0.091

ACBIO 33418.4 40526.3 36375.4 7107.9 0.060

AFSA 58148.7 64499.5 61217.5 6350.8 0.028

PSO 58127.0 64854.3 60823.0 6726.7 0.035

DGA-ACBIO 21511.3 22198.7 21835.2 687.4 0.009

TABLE 4 Simulation results of each algorithm and iterative performance curve of DGA-ACBIO.

Results of each algorithm after performing
different problems 20 times

Iteration curve of DGA-ACBIO algorithm after
performing different problems 20 times
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Despite its advantage in the search accuracy, it may not
be possible to obtain the optimal solution by the arithmetic
power of ACBIO alone within a limited maximum number
of 200 iterations (Figure 7B). Since the nature of ACBIO is
a positive feedback mechanism, the suboptimal solution will
hold a greater advantage if it is obtained first, causing the

algorithm to focus on the better candidate solution earlier.
This mechanism reduces the population diversity and limits
the global optimization capability of the algorithm (Chen et al.,
2021; Skinderowicz, 2022). As shown in Figure 7A and the left
panel of Table 4, GA does not exhibit great improvements in
the global optimization capability. Taking the average solution
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TABLE 5 Significance of differences in algorithm results.

Comparison of algorithms P-value

DGA-ACBIO vs. DGA 1.186E-9

DGA-ACBIO vs. ACBIO 0.001540

DGA-ACBIO vs. AFSA 6.9579E-7

DGA-ACBIO vs. PSO 1.267E-7

of ACBIO as the reference of the suboptimal solution, the
average solution of DGA is different by 10, 15, and 38%
to the suboptimal solution, respectively. These gaps indicate
that although the DGA can effectively optimize the prior
solution, the optimization is not sufficient to reach the improved
candidate solution of ACBIO. Moreover, the dynamic crossover
and variation probabilities proposed in this study enrich the
output population diversity and reserve enough optimization
space for ACBIO in the fusion algorithm. Thus, ACBIO is
prevented from falling into a local optimum prematurely to
some extent. Although ACO is not observed to obviously
improve the search speed, it can significantly improve the
convergence accuracy and global optimization ability of ACO
(Figure 7B). The serial fusion of the two algorithms provides
the ACBIO algorithm with enough iterations (under an iteration
limit of 200) to take full advantage of the high search accuracy.
This not only speeds up the search speed, but also improves the
search accuracy to achieve the effect that 1+1 is greater than 2.

Strong stability advantage of dynamic genetic
algorithm with ant colony binary iterative
optimization search results

The DGA-ACBIO search results do not fluctuate much
(right panel of Table 4), which proves that the search

performance of the algorithm is more stable. The 20-test
simulation results of DGA-ACBIO and DGA in the left panel
of Table 4 reveal that DGA-ACBIO overcomes the poor
stability of DGA, significantly improving the search result
stability. Furthermore, DGA-ACBIO exhibits less fluctuation
in the output results than ACBIO when smaller solutions are
obtained. The reason behind this is two-fold: (i) the final
solution is a double search based on the optimized solution
set, limiting the difference in the output results; and (ii)
since the nature of ACBIO is to use a positive feedback
mechanism, and the difference in the output results is small.
Therefore, DGA-ACBIO possesses both the characteristics of
high stability of the ACBIO output results and the rapid DGA
pre-search.

The left panel in Table 4 shows that there are minimal
differences between the simulation results of all algorithms
for the solutions of the self-built model Traveling salesman
problem and the berlin52 problem. However, when solving
the kroA100 problem, the PSO and AFSA, which originally
exhibited better output results, performed poorly, with relatively
large differences compared to the DGA-ACBIO results.
The mechanism of each of these algorithms and the way
they are programmed are distinct, and thus may not
improve in a limited number of iterations. However, DGA-
ACBIO is not affected by the aforementioned problems, and
as shown in Tables 4, 5 the differences between DGA-
ACBIO and DGA, ACBIO, AFSA, and PSO are significant.
This proves that DGA-ACBIO can effectively solve the
kroA100 problem within 200 generations, indicating its wider
adaptability and strong performance in self-modeling multi-
tea fields problems, as well as its ability to quickly obtain
the optimal solution of more complex Traveling salesman
problem.

FIGURE 7

Iterative convergence curves of DGA and GA (A) iterative convergence curves of DGA and GA; (B) iterative convergence curves of ACBIO and
ACO.
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Conclusion

In this study, the optimal scheduling route planning
problem for UAV operations over multiple tea fields is
transformed into a Traveling salesman problem by modeling
the multi-tea field environment. The adaptive dynamic genetic
algorithm (DGA) is proposed by improving the crossover
and variation operators of the genetic algorithm (GA). These
operators are dynamically adjusted in real time with individual
fitness values to quickly and effectively eliminate poorly adapted
individuals and to improve the search efficiency at the early
stage of the algorithm. The ant colony binary iterative algorithm
(ACBIO) is proposed to improve the search speed and accuracy
of the algorithm by introducing the iteration cycle and acting
as reinforcement to the pheromone update rule of the ant
colony algorithm (ACO). The optimized algorithm is serially
fused to obtain the dynamic genetic algorithm with ant colony
binary iterative optimization (DGA-ACBIO), optimizing the
UAV operation route for activities including the application of
fertilizer in multi-tea fields.

The optimization performance tests of GA and ACO
reveal the capability of the GA optimization method to
significantly improve the search speed, yet advantages in
the search accuracy are not clear. The ACBIO optimization
approach can significantly improve the search accuracy and
performance of ACO, while this is not true for the search
speed. Comparisons of the optimization performance of various
bionic algorithms prove the proposed DGA-ACBIO to have
a significant superiority in the optimization accuracy, speed,
number of iterations and adaptability. As the number and
complexity of the objectives increase, the superiority of the
DGA-ACBIO algorithm performance becomes more obvious,
and it can solve more complex Traveling salesman problems in
a timely manner. The algorithm can streamline the route and
improve the efficiency of plant protection. This research can
provide technical support for the multi-area scheduling route
planning of multi-tea field UAVs and manned helicopters in
hilly mountainous areas, as well as basic theoretical support for
the research of aerial precision operation technology, and can
also act as a reference for the investigation of the Traveling
salesman problem.

Future research on the global task scheduling planning of
UAV plant protection will face more challenges. For example,
the introduction of more constraints, such as recharging and
mission time constraints (Pinto et al., 2020; Lin et al., 2022),
or dynamic environmental constraints (Zhang et al., 2020),
making the classical optimization algorithm challenging to
solve. However, the aforementioned studies typically focus
on finding the optimal safe path to a set destination, which
differs from the plant protection approach in this paper. The
outstanding performance of the proposed DGA-ACBIO in this
complex optimization problem is attributed to its excellent
global optimization capability and the ability to avoid local
minima. Nevertheless, due to the limitation of the battery

range of the plant protection UAV, this study did not conduct
simulation experiments over a wide range of tea fields. Future
work will explore UAV scheduling route planning for multiple
tea fields in hilly mountainous regions based on optimal energy
recharge areas.
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Lin, X., Yazıcıoğlu, Y., and Aksaray, D. (2022). Robust planning for persistent
surveillance with energy-constrained UAVs and mobile charging stations. IEEE
Robot. Autom. Let. 7, 4157–4164. doi: 10.1109/LRA.2022.3146938

Liu, H., Li, X., Wu, G., Fan, M., Wang, R., Gao, L., et al. (2021). An iterative
two-phase optimization method based on divide and conquer framework for
integrated scheduling of multiple UAVs. IEEE. T. Intell. Transp. 22, 5926–5938.
doi: 10.1109/TITS.2020.3042670

Liu, Y., Ru, Y., Liu, B., and Chen, X. (2020). Algorithm for planning full
coverage route for helicopter aerial spray. Trans. Chin. Soc. Agric. Eng. 36, 73–80.
doi: 10.11975/j.issn.1002-6819.2020.17.009

Pang, B., Dai, W., Hu, X., Dai, F., and Low, K. H. (2021). Multiple air route
crossing waypoints optimization via artificial potential field method. Chin. J.
Aeronaut. 34, 279–292. doi: 10.1016/j.cja.2020.10.008

Pinto, V. P., Galvão, R. K. H., Rodrigues, L. R., and Gomes, J. P. P. (2020).
Mission planning for multiple UAVs in a wind field with flight time constraints.
J. Control Autom. Electr. Syst. 31, 959–969. doi: 10.1007/s40313-020-00609-5

Qin, Z., Wang, W., Dammer, K. H., Gou, L., and Zhen, C. (2021). Ag-YOLO:
A real-time low-cost detector for precise spraying with case study of palms. Front.
Plant Sci. 12:753603. doi: 10.3389/fpls.2021.753603

Qu, C., Gai, W., Zhang, J., and Zhong, M. (2020). A novel hybrid grey wolf
optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowl.
Based Syst. 194:105530. doi: 10.1016/j.knosys.2020.105530

Roberge, V., Mohammed, T., and Gilles, L. (2013). Comparison of parallel
genetic algorithm and particle swarm optimization for real-time UAV path
planning. IEEE. T. Ind. Inform. 9, 132–141. doi: 10.1109/TII.2012.2198665
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