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Nicosulfuron is an herbicide widely used in corn fields. In northeast China,

sugar beet is often planted adjacent to corn, resulting in frequent phytotoxicity

of nicosulfuron drift in sugar beet fields. This study was conducted by spraying

nicosulfuron to assess the phytotoxicity and clarify the mechanism of

nicosulfuron toxicity on sugar beet. The results showed that nicosulfuron

impaired growth and development by reducing photosynthetic capacity and

disrupting antioxidant systems at a lethal dose of 81.83 g a.i. ha–1. Nicosulfuron

damaged the function of photosynthetic system II (PSII), lowered

photosynthetic pigment content, and inhibited photosynthetic efficiency.

Compared with the control, the electron transfer of PSII was blocked. The

ability of PSII reaction centers to capture and utilize light energy was reduced,

resulting in a weakened photosynthetic capacity. The maximum net

photosynthetic rate (Amax), light saturation point (LSP), and apparent

quantum yield (AQY) decreased gradually as the nicosulfuron dose increased,

whereas the light compensation point (LCP) and dark respiration (Rd)

increased. Nicosulfuron led to reactive oxygen species (ROS) accumulation in

sugar beet leaf, a significant rise inmalondialdehyde (MDA) content, electrolytic

leakage (EL), and considerable oxidative damage to the antioxidant system. This

study is beneficial for elucidating the effects of nicosulfuron toxicity on sugar

beet, in terms of phytotoxicity, photosynthetic physiology, and antioxidative

defense system.
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1 Introduction

Weeds are an important limiting factor in agricultural

production (Ghosh et al., 2020; Skalicky et al., 2020).

Herbicide application is a common means of weed control in

agricultural production, but improper use can easily cause

phytotoxicity. In recent years, herbicide has attracted

widespread attention. Studies have shown that crops such as

rice (Bellaloui et al., 2006), soybean (Brown et al., 2009), peanut

(Koger et al., 2010), sorghum (Steppig et al., 2017), maize (Egan

et al., 2017), wheat (Wiersma and Durgan, 2018) and melon (Xu

et al., 2018) have been infested with herbicide toxicity, affecting

growth and crop yield.

Nicosulfuron is widely used in corn fields because of its fast-

acting, strong persistence and high safety. It is an Acetolactate

Synthase (ALS) inhibitor herbicide that inhibits ALS enzyme

activity in sensitive plants, thereby inhibiting the formation of

branched-chain multiple amino acids (Wright et al., 2017). As a

result, plants affected by nicosulfuron will eventually stop

growing, or even die. Field weed resistance and the relentless

pursuit of crop yield have resulted in an increase in the use of

nicosulfuron in agricultural production year after year.

Herbicide phytotoxicity not only occurs in crops but also

causes phytotoxicity to neighboring crops due to herbicide

drift of droplets formed during herbicide spraying (Meloni

and Bolzón, 2021).

Sugar beet (Beta vulgaris L.), a widespread sugar crop in

temperate climates, meets about 20% of the global sugar demand

(Song et al., 2022). At the same time, sugar beet is a susceptible

crop to herbicides. It is often damaged by herbicide drift from

adjacent field crops (Li et al., 2021). Corn and sugar beet are

frequently cultivated adjacent in northeast China. Nicosulfuron

toxicity is a common phenomenon in local production areas and is

an important cause of sugar beet yield decline (Wang et al., 2009;

Ellis and Miller, 2010). Since corn is a monocotyledonous plant,

nicosulfuron is commonly used in corn fields to control

dicotyledonous weeds. Because of this, nicosulfuron drift is more

harmful to sugar beet that grows next to corn fields (Li et al., 2017).

Under herbicide stress, plants usually produce large amounts

of reactive oxygen species (ROS), leading to oxidative stress in

plants. The surge of ROS activates the plant’s antioxidant system,

which allows the plant to scavenge excess ROS (Jervekani et al.,

2018; Li et al., 2022b). At the same time, plants are also able to

respond to herbicide stress by regulating hormonal activity and

promoting or inhibiting the formation of key metabolites.

Therefore, it is common to mitigate herbicide toxicity in crops

by application of plant hormones (Li et al., 2022a).

The effects of Herbicide toxicity stress on crop growth

parameters, photosynthetic properties, and antioxidant systems

have received extensive attention, including wheat (Yadav et al.,

2019; Feng et al., 2021), maize (Wang et al., 2018; Wang et al.,

2021a; Sun et al., 2022) and black bean (Meloni and Bolzón,

2021). However, fewer studies have been reported on sugar beet
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toxic symptoms and photosynthetic physiology under herbicide

toxicity. In particular, the response of sugar beet under

nicosulfuron stress in terms of physiology, photosynthetic

system and the antioxidant system is not clear. Consequently,

a pot experiment was conducted to explore the phytotoxic effects

of nicosulfuron on sugar beet, to provide a reference for

assessing herbicide phytotoxicity and addressing nicosulfuron

drift damage on sugar beet.
2 Materials and methods

2.1 Experimental material

Sugar beet variety KWS1176 was provided by Seed Co., Ltd.

(Germany). Qingdao Hansen Bioscience Co., Ltd. supplied the

24% nicosulfuron oil suspension. The soil type is black soil with

the following initial properties, pH: 6.64; bulk density: 1.26 g cm–

3; organic matter content: 21.23 g kg–1; alkali-hydrolyzable N:

122.64 mg kg–1; available P: 46.30 mg kg–1; available K: 330.92

mg kg–1.
2.2 Experimental design

The experiment was carried out in a greenhouse at

Heilongjiang University, China. The test soil was filled with

0.073 g kg–1 of urea, 0.078 g kg–1 of phosphate diamine, and

0.095 g kg–1 of potassium sulfate in polyethylene plastic pots

(300 g per pot) and poured with 45 mL of distilled water. Each

pot was sown with 3 sugar beet seeds, and covered with 100 g of

soil. The seedlings were cultivated in a greenhouse under natural

light with a light intensity of 138 mol m-2 s-1, 14 h of light per

day, 25°C/20°C (day/night), and 50–60% relative humidity. One

plant was left in each pot after one week of cultivation.

The recommended dose of nicosulfuron in the corn field was

60 g a.i. ha–1. Considering the herbicide over-application in

agricultural production, the nicosulfuron doses of the five

treatment groups were designated 1/100, 1/10, 1/3, 1, and 2

times the recommended dose in the field, noted as N0.6, N6,

N20, N60, N120. Water was sprayed as a control group (CK) and

each treatment was replicated six-time. The sugar beet seedlings

were sprayed with various concentrations of nicosulfuron

solution once the second pair of sugar beet leaves were utterly

extended. Control treatments were sprayed with distilled water.
2.3 Measurement of phytotoxicity index
and physiological properties

Phytotoxicity index, growth indexes, photosynthetic

parameters, and fluorescence parameters were measured

within 20 days after being treated with nicosulfuron. On 20
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DAT (days after treatment), samples of the second pair of true

leaves of sugar beet were taken and stored at −20°C to determine

physiological indicators.

2.3.1 Determination of growth parameters
SPAD values of the second pair of true leaves of sugar beet

were measured using SPAD chlorophyll meter (Minolta SPAD-

502Plus, Tokyo, Japan). The plant height, leaf length and leaf

width of the second pair of true leaves in the natural state of the

sugar beet were measured using a straightedge. To collect the

samples, the beets were removed from the pots, cleaned of root

soil, and placed flat on a glass plate. The plants extended

naturally and the length of the underground part of the plants

was recorded as root length with a straightedge. The root

thickness was measured with vernier calipers. Leaf area was

calculated from the leaf area index (Hoffmann and Blomberg,

2004). The above- and below-ground parts were split with

scissors and the fresh weight of the plants was determined

separately. Beets were killed in an oven at 120°C for 2 h, dried

at 80°C to a constant weight, and weighed for dry weight after

natural cooling.

2.3.2 Calculation of phytotoxicity index and
dose-fresh weight response curve

The phytotoxicity index was calculated based on the

phytotoxicity grade (Dai et al., 2017) (Table 1).

To get the dose-fresh weight response curve, a three-

parameter log-logistic model in R Studio was utilized to

perform regression analysis on the dose-fresh weight response

data (Stevan et al., 2007). The effective herbicide dosage that

resulted in a 50% growth reduction (GR50) was determined.

2.3.3 Determination of leaf photosynthetic
parameters

The photosynthetic pigment content was determined using

the ethanol method (Arnon, 1949). The net photosynthetic rate

(Pn), stomatal conductance (Gs), transpiration rate (Tr), and

intercellular CO2 concentration (Ci) of the second pair of true
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leaves of sugar bee were determined with a portable

photosynthesis instrument, TARGAS-1 (Deligiosa et al.,

2019). The investigations were run during 9:00-11:00 AM

under the photosynthetically active radiation (PAR) level of

250 µmol m–2 s–1. The PAR levels of 1500, 1200, 800, 600, 400,

300, 200, 100, and 0 mmol m–2 s–1 were measured to get the Pn-

light curve, Gs-light curve, Tr-light curve and Ci-light curve.

The non-rectangular hyperbola model was utilized to calculate

photosynthetic parameters, including the maximum net

photosynthetic rate (Amax), light compensation point (LCP),

light saturation point (LSP), apparent quantum yield (AQY),

and dark respiration (Rd) (Ye et al., 2014).

2.3.4 Determination of chl a fluorescence
parameters

The chl a fluorescence transient (OJIP transient) of the

second fully expanded sugar beet leaf under different

treatments was determined using Pocket PEA continuous

excitation fluorimeter (Handy, UK). The initial fluorescence

(FO) was set as O (50 ms), K (300 ms), J (2 ms) and I (30 ms)

are the intermediates (FK, FJ and FI, respectively) and P (1000

ms) as the maximum fluorescence (Fm). The original (without

normalization) chl a fluorescence intensity (Ft) curves were

plotted. The original OJIP transients were double normalized

between the two fluorescence extreme O (FO) and P (Fm) phases

and the variable fluorescence between OP expressed as VO–P was

determined. The difference in transients (DVO–P) concerning a

reference was calculated. Further, the chl a fluorescence

transients were double normalized between FO and FJ
expressed as VO–J and the difference between transients

expressed as DVO–J was determined.

Maximal Photochemical Efficiency of PSII (FV/Fm),

performance index on absorption basis (PIabs), electron

transport flux per reaction center (RC) (ETO/RC), dissipated

energy flux per RC (DIO/RC), absorption flux per RC (ABS/RC),

dissipated energy flux per CS (DIO/CSM), electron transport flux

per CS (ETO/CSM), section absorption flux per CS (ABS/CSM)

were measured based on the above fluorescence parameters as

reported by Strasser et al. (1995).

2.3.5 Determination of physiological indicators
Physiological indicators were determined using the second pair

of true leaves of sugar beet from the stored samples. The content of

superoxide anion (O−
2 ) was measured as reported by Zhang et al.

(2007). The hydrogen peroxide (H2O2) content was measured as

reported by Wang et al. (2021b). The malondialdehyde (MDA)

content was measured by the thiobarbituric acid reaction (Dhindsa

and Matowe, 1981). Electrolytic leakage (EL) was measured by a

multi-parameter water quality analyzer (DZS-706-A) according to

Belkhadi et al. (2010).

The activities of superoxide dismutase (SOD), peroxidase

(POD), catalase (CAT), and ascorbate peroxidase (APX) were

determined according to the approach of NBT reduction
TABLE 1 Classification standard of phytotoxicity grades.

Phytotoxicity
grade

Description of phytotoxicity symptoms

0 Control treatment

1 Seedlings’ height and leaf color slightly different from the
control

2 Seedlings were slightly deformed, lower in height than the
control

3 Seedlings were shorter, with thicker stalks, slightly thicker
leaves, and yellow color

4 Seedlings stopped growth. Seedlings were deformed and stiff
or the whole leaf was yellow and dead.

5 Seedlings death
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(Giannopolites and Ries, 1977), guaiacol method (Chance and

Maehly, 1955), UV absorption method (Khorram et al., 2016),

and the way of Jiang and Zhang (2001), respectively.
2.4 Data analysis

The data were analyzed by one-way ANOVA and Duncan’s

method, and differences across groups were assessed. All data

were expressed as ‘Means ± SD’. IBM SPSS Statistics 26 (SPSS

Inc., Chicago, IL, USA) were applied for data analysis. Origin

2018 (OriginLab, Northampton, 210 MA, USA) was employed

to draw graphs.
3 Results

3.1 Effects of nicosulfuron on the growth
parameters of sugar beet

The symptoms of phytotoxicity appeared on 4 DAT. On 20

DAT, sugar beet stopped growth when the dose of nicosulfuron

reached 20 g a.i. ha–1. The plants were deformed, and yellow

spots on leaves were obvious. Sugar beet seedlings were wilted

and deformed at a recommended dosage of 60 g a.i.ha–1. The

plant mortality rate was 60%, with the growing point as the

starting point and extending upward to the petiole blackened.

All plants died at 120 g a.i. ha–1 (Figure 1A). As the dose of

nicosulfuron increased, the area of sugar beet leaves was

enlarged and damage was visible (Figures 1B, C). The

phytotoxicity index showed a remarkable difference between

treatment groups and CK at 6 g a.i. ha–1 and above (p <

0.05) (Figure 1D).

The dose-fresh weight response regression equation for

nicosulfuron was calculated as y = 64.13 × exp (–x/65.99) +

31.63 (y represents the percentage of fresh weight in each

treatment to the fresh weight in the control group and x

represents the dose of nicosulfuron). The lethal dose GR50

value was 81.83 g a.i. ha–1, which was higher than the

recommended field dose (60 g a.i. ha–1) by 36.38% (Figure 1E).

The biomass of shoot and root were reduced with expanding

doses of nicosulfuron. The shoot biomass were more affected

than the root. There was a remarkable difference in shoot DW

compared with CK when the dose reached 6 g a.i. ha–1, with a

45% reduction (p < 0.05). At this dose, the dry weight of the

shoot did not change significantly, which was only 7.69% lower

than the control (Table 2).

All plant growth parameters were significantly reduced with

increasing dose, such as plant height, leaf area, and SPAD value.

The plant height, leaf area, and SPAD value were significantly

different from the control at 20 DAT as the dose reached 0.6 g a.i.

ha–1 (p < 0.05) (Figures 2A, B, C). There was a remarkable

inhibition in shoot water content, leaf length, leaf width, and
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root length at 6 g a.i. ha–1 compared to the control, 10.45%,

10.63%, 10.76% and 18.24% (p < 0.05) (Figures 2D, E, F).
3.2 Effects of nicosulfuron on the
photosynthetic parameters of sugar beet
leaf

The content of photosynthetic pigment was reduced with

increasing doses of nicosulfuron. When the dose of nicosulfuron

reached 6 g ai ha–1, the content of chlorophyll a, b, and

carotenoids were decreased by 31.43%, 29.29% and 31.36%,

compared to CK, respectively (p < 0.05). When the dose

reached the highest dose in this study (120 g a.i. ha–1), the

content of carotenoids and total chlorophyll decreased by

75.75% and 58.48% (Figure 3).

The Pn of sugar beet leaf showed a linear enhancement trend

with light intensity as PAR increased when the PAR was under

400 mmol m–2 s–1. After that, the increase in Pn slowed under

each treatment as PAR continued to grow. Under different doses

of nicosulfuron treatment, the changing pattern of the Pn-light

curve began to differ as the PAR was over 400 mmol m–2 s–1. The

highest Pn-light curve changes were observed in CK treatment

and the lowest in N120 treatment. As the PAR reached 1200

mmol m–2 s–1, Pn gradually saturated (Figure 4A). Both Gs and Tr

showed an upward trend with increased PAR and nicosulfuron

dose while Ci declined (Figures 4B, C, D).

The inhibitory effects of nicosulfuron on Pn, Gs, Tr and Ci

increased with increased doses of nicosulfuron. There were

remarkable differences in Pn, Gs, Tr, and Ci at 60 g a.i. ha–1 as

compared with CK (p < 0.05) (Figures 4E, G, H). Only the

difference in Gs reached significance at the lowest dose of

nicosulfuron (0.6 g a.i. ha–1) in the study, with a reduction of

22.39% as compared with CK (p < 0.05) (Figure 4F).

The Amax, LSP and AQY gradually decreased with

increasing nicosulfuron dose as compared with CK.

Specifically, the differences in Amax, LSP and AQY reached

significance when the dose reached 0.6 g a.i. ha–1 were 12.45%,

8.05%, and 15.79% lower than the control (p < 0.05). The LCP

and Rd increased with increasing nicosulfuron dose. The

difference between Rd and the control was significant when

the dose was over 0.6 g a.i. ha–1, and the Rd increased by 35.14%

at 0.6 g a.i. ha–1 (p < 0.05) (Table 3).
3.3 Effects of nicosulfuron on the chl a
fluorescence parameters of sugar beet
leaf

On the OJIP transient, fluorescence intensity at the O point

showed an upward trend as the doses of nicosulfuron treatment

increased. In contrast, it showed the opposite at the P point.

(Figure 5A). The effects of nicosulfuron on Fm and Fv were more
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pronounced compared to FO. At 6 g a.i. ha–1, Fm showed

remarkable differences at 8 DAT (Figures 5B, C, D). The

variations of Fv/Fm and PIabs were decreased with increasing

doses. On 20 DAT, Fv/Fm and PIabs significantly decreased by

18.75% and 53.86% at 60 g a.i. ha–1 (p < 0.05) (Figures 5E, F).

The VJ and VK of sugar beet leaf significantly lowered under

nicosulfuron toxicity. The VK was more remarkably affected

than VJ (Figures 6A, B). At 20 DAT, VJ and VK increased
Frontiers in Plant Science 05
significantly by 84.20% and 96.33% at 60 g a.i. ha–1 contrasted

with CK (p < 0.05) (Figures 6C, D). The ABS/CSM and ETO/CSM
of sugar beet leaf declined with the increase of nicosulfuron dose

while DIO/CSM increased significantly. The DIO/RC and ABS/

RC increased, while ETO/RC reduced (Figure 6E). The trends of

each light energy absorption and distribution parameter on 20

DAT were consistent with those of the 4 DAT, but the changes

were significantly greater than those of the 4 DAT (Figure 6F).
TABLE 2 Effects of nicosulfuron on biomass of sugar beet.

Treatment Shoot Root Root-shoot ratio

FW (g plant–1) DW (g plant–1) FW (g plant–1) DW (g plant–1)

CK 4.31 ± 0.42a 0.78 ± 0.02a 0.25 ± 0.02a 0.15 ± 0.03a 0.09 ± 0.01a

N0.6 3.91 ± 0.33a 0.77 ± 0.04a 0.23 ± 0.02a 0.13 ± 0.01a 0.07 ± 0.01ab

N6 3.76 ± 0.64a 0.72 ± 0.04ab 0.22 ± 0.06ab 0.10 ± 0.03a 0.05 ± 0.02bc

N20 3.63 ± 0.28a 0.69 ± 0.03b 0.19 ± 0.01ab 0.09 ± 0.06a 0.05 ± 0.01bc

N60 2.33 ± 0.59b 0.57 ± 0.01c 0.16 ± 0.03b 0.11 ± 0.03a 0.04 ± 0.01c

N120 1.87 ± 0.25b 0.60 ± 0.04c 0.07 ± 0.01c 0.11 ± 0.02a 0.03 ± 0.01c
FW, fresh weight; DW, dry weight. Data with the different letters indicate significant differences between different doses of nicosulfuron drift (n = 6, p < 0.05).
FIGURE 1

Effects of nicosulfuron on visible symptoms of phytotoxicity on sugar beet. The growth of sugar beet (A), DAB staining (B), NBT staining (C),
phytotoxicity index (D), and dose-fresh weight response curve (E) in sugar beet on 20 DAT with different doses of nicosulfuron. Triangles, circles
and asterisks represent different repetitions. Data with the different letters indicate significant differences between different doses of
nicosulfuron drift (n = 6, p < 0.05).
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3.4 Effects of nicosulfuron on the
physiological indicators of sugar beet leaf

An increased dose of nicosulfuron enhanced the generation

rate ofO−
2 , the contents of H2O2, MDA and EL in sugar beet leaf.

When the dose reached 0.6 g a.i. ha–1, the generation rate of O−
2

and H2O2 contents increased significantly by 84.73% and 65.96%

(p < 0.05) (Figures 7A, B). The differences in MDA content and

EL reached significant amounts at 6 g a.i. ha–1, increasing by

183.15% and 102.46% (p < 0.05) (Figures 7C, D).

The SOD, POD and CAT activities were enhanced first and

afterward lowered, reaching a peak at 6 g a.i. ha–1 as the dose of

nicosulfuron increased, while the APX activity decreased

gradually. The difference in SOD and CAT activities was

significantly contrasted with CK lowered by 5.74% and 7.44%

at 20 g a.i. ha–1 (p < 0.05) (Figures 7E, G). The POD activity was

in an upward trend at 0.6 g a.i. ha–1, which significantly
Frontiers in Plant Science 06
increased 77.78% compared to the control (p < 0.05). And it

was on the decline at 60 g a.i. ha–1, with a remarkable reduction

of 25.93% contrasted with the control (p < 0.05) (Figures 7F).

APX activity was significantly lowered by 23.29% contrasted

with CK at 6 g a.i. ha–1 (p < 0.05) (Figures 7H).
4 Discussion

4.1 Nicosulfuron phytotoxicity repressed
the growth of sugar beet seedlings

Growth parameters are the most visible indicator of the

degree of crop phytotoxicity in a stress condition. The most

commonly used method for describing herbicide phytotoxicity is

a simple and subjective visual estimation of the observed crop

injury (Weber et al., 2017). Nicosulfuron can be harmful to
A

B

D

E

FC

FIGURE 2

Effects of nicosulfuron on the growth parameters of sugar beet. Plant height (A), leaf area (B), SPAD value (C), shoot water content, root water
content (D), leaf width, leaf length (E), root width and root length (F) in sugar beet with different doses of nicosulfuron. Data with the different
letters indicate significant differences between different doses of nicosulfuron drift (n = 6, p < 0.05).
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plants, leading to the inhibition of plant growth indicators

(Wang et al., 2021b). Under the influence of nicosulfuron at

the recommended dose of nicosulfuron in the field (60 g a.i. ha–

1), plants showed the symptoms of phytotoxicity on 4 DAT. On

20 DAT, plants were deformed with blackened growing points

and yellow leaves. Biomass was significantly suppressed, and the

mortality rate was 60%. It was noteworthy that the symptoms

were more pronounced on new leaves than on old leaves. This

might be because nicosulfuron was a systemic herbicide that

stems, leaves, and roots can taken up. The new leaves were young

and metabolically active, so they were more susceptible to

damage by such herbicides (Rey Caballero et al., 2016).

The phytotoxicity degree of nicosulfuron to plants depends

on the dose. The range of variation in GR50 for different plants

ranges from 0.95 to 169.93 g a.i. ha–1 (Xu et al., 2018), which

indicates that the resistance to nicosulfuron varies widely among

different plants. The reason is that the resistance of nicosulfuron

depends mainly on the plant’s genetic material. There are

differences in resistance even among different varieties of the

same plant (Choe and Williams, 2020). In this experiment, the

GR50 was 81.83 g a.i. ha–1 of sugar beet, which was close to the

response of cocklebur (X. strumarium L.) to nicosulfuron (Božić

et al., 2015). The GR50 of nicosulfuron on sugar beet increased by

36.38% of the recommended field dose of nicosulfuron (60 g a.i.

ha–1). In comparison, the total drift of nicosulfuron was

generally less than 25% of the total applied dose in agricultural
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production (Wang et al., 2009). So, the toxic effects of

nicosulfuron drift on sugar beet were usually not deadly, even

considering the over-application of nicosulfuron in agriculture.
4.2 Nicosulfuron inhibited
photosynthetic performance
in sugar beet

In this study, the contents of chlorophyll and carotenoid

were significantly reduced by nicosulfuron toxicity. This might

be due to the over-production of reactive oxygen species (ROS)

inhibiting the photochemical activity of chloroplasts and

blocking the formation of photosynthetic pigment. Another

reason could be the degradation of chlorophyll due to cell

damage caused by the accumulation of ROS. ALS inhibitors

induced a reduction in Pn after being treated in plants according

to numerous studies (Orcaray et al., 2010), which were

consistent with the findings of this study. The reduction of Pn
in sugar beet leaf by nicosulfuron toxicity was similar to the

change in photosynthetic pigment content, which indicated that

the decrease in photosynthetic pigment is one of the essential

reasons for the decrease in Pn. The stomata of plant leaf control

gas exchange which can further affect photosynthetic capacity by

limiting water loss and controlling CO2 uptake, affecting Tr and

Ci (Hetherington and Woodward, 2003; Geiger et al., 2009). In
A B

DC

FIGURE 3

Effects of nicosulfuron on the photosynthetic pigment of sugar beet leaf. Chlorophyll a (A), chlorophyll b (B), carotenoids (C) and total
chlorophyll (D) in sugar beet on 20 DAT with different doses of nicosulfuron. FW: fresh weight. Data with the different letters indicate significant
differences between different doses of nicosulfuron drift (n = 6, p < 0.05).
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this study, Gs gradually decreased with increasing doses, which

led to a decrease in Tr. Notably, Ci also showed a decreasing

trend, suggesting that photosynthesis capacity might be limited

by stomatal and non-stomatal factors (Singh et al., 2013).

Photosynthetic light-response curves can determine the extent

to which the photosynthetic efficiency of plants is affected by

environmental change. It is shown that nicosulfuron significantly

suppressed the Amax, LSP and AQY, while the LCP, was

increased. This indicated that the photosynthetic efficiency of
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sugar beet was significantly reduced in response to light

environment change. This might be due to the fact that

phytotoxicity reduced the pigment-protein complexes that

absorb and convert light energy in sugar beet, resulting in a

reduced ability of sugar beet to utilize both strong and weak light

(He et al., 2018). The Rd of sugar beet leaf was significantly higher

under nicosulfuron poisoning conditions, probably due to the

inhibition of assimilate transport in sugar beet. Increased Rd

consumed the excess assimilation accumulated in the leaves and
A B
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FIGURE 4

Effects of nicosulfuron on the gas exchange parameters of sugar beet leaf. Pn-light curve (A), Gs-light curve (B), Tr-light curve (C), Ci-light curve
(D), Net photosynthetic rate (Pn) (E), stomatal conductance (Gs) (F), transpiration rate (Tr) (G) and intercellular CO2 concentration (Ci) (H) in sugar
beet on 20 DAT with different doses of nicosulfuron. Data with the different letters indicate significant differences between different doses of
nicosulfuron drift (n = 6, p < 0.05).
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slowed the inhibition of photosynthesis (Pavithra et al., 2020).

This indicated that sugar beet adapted to the toxicity mainly by

promoting respiration.
4.3 Nicosulfuron inhibited PSII activity
and photosynthetic energy

By blocking the electron transport chain in chloroplasts, ALS

inhibitors can damage the structure and function of the

photosynthetic system II. Fv/Fm and PIabs are considered the

most common indicators to characterize PSII reaction center
Frontiers in Plant Science 09
activity (Yi et al., 2016). The most sensitive fluorescence

parameter to different stress treatments was the PIabs. It is

used to quantify the overall photosynthetic performance of the

sample. The reduction of Fv/Fm and PIabs in this study

demonstrated that nicosulfuron remarkably repressed the PSII

reaction center activity of sugar beet leaf. The restraint extent

was connected with nicosulfuron dose, similar to the

investigation by Zhang et al. (2018). Compared with CK, both

VK and VJ increased to different degrees with increasing doses of

nicosulfuron. The enhancement in VJ demonstrated the electron

transfer process from QA to QB is blocked, which leads to a large

accumulation ofQ−
A, a typical inhibition of the PSII receptor side.
TABLE 3 Effects of nicosulfuron on the Pn-PAR curve parameters of sugar beet leaf.

Treatments Amax (µmol m–2 s–1) LCP (µmol m–2 s–1) LSP (µmol m–2 s–1) AQY Rd (µmol m–2 s–1)

CK 13.57 ± 0.01a 12.60 ± 1.42a 1433.71 ± 76.26a 0.038 ± 0.001a 0.37 ± 0.03a

N0.6 11.88 ± 0.07b 15.94 ± 1.61a 1318.94 ± 12.43b 0.032 ± 0.002b 0.50 ± 0.05b

N6 10.58 ± 0.01c 20.87 ± 1.56a 1166.65 ± 9.81c 0.032 ± 0.001b 0.62 ± 0.09bc

N20 9.03 ± 0.02d 32.40 ± 3.66b 1205.10 ± 9.78c 0.030 ± 0.001c 0.65 ± 0.06bc

N60 7.79 ± 0.01e 34.56 ± 1.76bc 1082.99 ± 2.64d 0.022 ± 0.002d 0.72 ± 0.14cd

N120 5.69 ± 0.03f 42.88 ± 5.42c 915.21 ± 3.74e 0.020 ± 0.003d 1.17 ± 0.04d
Amax, maximum net photosynthetic rate; LSP, light saturation point; AQY, apparent quantum yield; Rd, dark respiration. Data with the different letters indicate significant differences
between different doses of nicosulfuron drift (n = 6, p < 0.05).
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FIGURE 5

Effects of nicosulfuron on the PSII activity of sugar beet leaf. OJIP transient on 20 DAT (A), FO (B), Fm (C), Fv (D), Fv/Fm (E) and PIabs (F) in sugar
beet with different doses of nicosulfuron. Data with the different letters indicate significant differences between different doses of nicosulfuron
drift (n = 6, p < 0.05).
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The increase in VK indicated that the PSII electron donor side of

the oxygen-evolving complex OEC was destroyed (Strasser,

1997). This was consistent with the response of mulberry (Liu

et al., 2018) and alfalfa (Guo et al., 2020) under herbicide stress.

The most significant change in each characteristic point of the

OJIP transient was the elevation of the J point. From this, we

conclude that the PSII receptor side of sugar beet plants is more

sensitive to nicosulfuron toxicity.

Under phytotoxic stress, plants often improve adaptation by

adjusting energy distribution (Arthaud et al., 2021). With the

increase of nicosulfuron dose, the variation of ABS/CSM was

decreased. This indicated that nicosulfuron caused inactivation

of partial reaction centers in sugar beet leaf on the one hand and

also damaged antenna pigment-protein which then resulted in a

decrease in the amount of captured light energy and the

reduction of ETO/CSM. The experiment showed a reduction in

DIO/CSM with nicosulfuron dose increased, indicating a

decrease in the amount of active reaction centers and the rate

of excess excitation energy consumption in the leaf. In this

experiment, as the dose of nicosulfuron increased, the ABS/RC

enhanced and the DIO/RC boosted, implying that the dissipation

of the remaining active reaction centers expanded. This might be
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due to the increased burden on the remaining active reaction

centers, compelling them to be more efficient in better

dissipating the energy in the electron transfer chain.
4.4 Nicosulfuron increased ROS
accumulation

In adverse circumstances, the content of ROS increases, and

cell membranes are disrupted inside the plant. ROS causes

oxidative damage to the photosynthetic apparatus in

chloroplasts, resulting in the photoinhibition of PSII

(Ajithkumar and Panneerselvam, 2014; Alzandi and Naguib,

2020). The study showed that under nicosulfuron stress, the

generation rate of O−
2 and H2O2 contents of sugar beet were

considerably enhanced, along with MDA content and EL, which

indicated significant oxidative damage to sugar beet. This might

be due to the accelerated generation rate of O−
2 in plants under

adversity and the reduced ability of plants to utilize

photosynthetic excitation energy. Excess electrons in the

excited state synthesized electron transport chains to scavenge

freeO−
2 . ROS triggered membrane lipid peroxidation and
A B

D

E F

C

FIGURE 6

Effects of nicosulfuron on the photosynthetic energy of sugar beet leaf. VO-P, DVO-P curves on 20 DAT (A), VO-J, DVO-J curves on 20 DAT (B), VJ

(C), VK (D), energy distribution parameters on 4 DAT (E) and 20 DAT (F) in sugar beet leaf after treatment with different doses of nicosulfuron.
Data with the different letters indicate significant differences between different doses of nicosulfuron drift (n = 6, p < 0.05).
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produced MDA, which altered the structure and function of cell

membranes and disrupted membrane stability (Lanza and Dos

Reis, 2021), thus leading to a significant increase in EL.

It was found that toxic treatment increased the activities of

SOD and CAT in leaf to stable ROS content within a certain toxic

concentration range (Wu et al., 2020). SOD, POD, and CAT

activities enhanced afterward and decreased with increasing doses

of nicosulfuron at 6 g a.i. ha–1, while APX activity gradually

decreased. This may be because when ROS in plants exceeded the

capacity of antioxidant enzymes, the antioxidant enzyme system

cannot scavenged ROS in time. Excess ROS might decreased

antioxidant enzyme activity, making plant cells more susceptible

to oxidative damage (Li et al., 2011; Meloni and Martıńez, 2021).

In addition, plants can respond to toxic damage by regulating

hormone levels to affect key enzyme activities in plants. Studies

have shown that topical application of salicylic acid to valerian can

reduce the toxic effects of bentazon herbicides by enhancing

oxidative defense mechanisms and altering POD, CAT and

APX enzyme activities (Khatooni et al., 2022).
5 Conclusion

Nicosulfuron led to the disruption in the function of PSII in

sugar beet leaf. Photosynthetic parameters were altered, resulting in

lower photosynthetic efficiency and significant photoinhibition. The

ROS content, MDA content and EL of sugar beet leaf were

enhanced significantly. The oxidative defense system of sugar

beet was disrupted, and SOD, POD, CAT, and APX enzyme
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activities were inactivated considerably. The GR50 of nicosulfuron

toxicity on sugar beet was 81.83 g a.i. ha–1. This study showed how

nicosulfuron affected sugar beet. It also showed that the toxicity of

nicosulfuron on sugar beet is a cause for concern and that the risk of

herbicide in agricultural ecosystems should be taken into account.
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