
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Victoria Mironova,
Radboud University, Netherlands

REVIEWED BY

Desalegn D. Serba,
United States Arid Land Agricultural
Research Center (USDA), United States
Peng Zhou,
National Engineering Laboratory for
Crop Molecular Breeding (CAAS),
China

*CORRESPONDENCE

Peipei Wang
peipeiw@msu.edu
Shin-Han Shiu
shius@msu.edu

SPECIALTY SECTION

This article was submitted to
Plant Bioinformatics,
a section of the journal
Frontiers in Plant Science

RECEIVED 19 July 2022
ACCEPTED 16 September 2022

PUBLISHED 10 October 2022

CITATION

Ranaweera T, Brown BNI, Wang P
and Shiu S-H (2022) Temporal
regulation of cold transcriptional
response in switchgrass.
Front. Plant Sci. 13:998400.
doi: 10.3389/fpls.2022.998400

COPYRIGHT

© 2022 Ranaweera, Brown, Wang and
Shiu. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 10 October 2022

DOI 10.3389/fpls.2022.998400
Temporal regulation of
cold transcriptional
response in switchgrass

Thilanka Ranaweera1,2, Brianna N.I. Brown1, Peipei Wang1,2,3,4*

and Shin-Han Shiu1,2,5*

1Department of Plant Biology, Michigan State University, East Lansing, MI, United States,
2Department of Energy (DOE) Great Lakes Bioenergy Research Center, Michigan State University,
East Lansing, MI, United States, 3Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China,
4Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences,
Shenzhen, China, 5Department of Computational Mathematics, Science, and Engineering, Michigan
State University, East Lansing, MI, United States
Switchgrass low-land ecotypes have significantly higher biomass but lower

cold tolerance compared to up-land ecotypes. Understanding the molecular

mechanisms underlying cold response, including the ones at transcriptional

level, can contribute to improving tolerance of high-yield switchgrass under

chilling and freezing environmental conditions. Here, by analyzing an existing

switchgrass transcriptome dataset, the temporal cis-regulatory basis of

switchgrass transcriptional response to cold is dissected computationally. We

found that the number of cold-responsive genes and enriched Gene Ontology

terms increased as duration of cold treatment increased from 30 min to 24

hours, suggesting an amplified response/cascading effect in cold-responsive

gene expression. To identify genomic sequences likely important for regulating

cold response, machine learning models predictive of cold response were

established using k-mer sequences enriched in the genic and flanking regions

of cold-responsive genes but not non-responsive genes. These k-mers,

referred to as putative cis-regulatory elements (pCREs) are likely regulatory

sequences of cold response in switchgrass. There are in total 655 pCREs where

54 are important in all cold treatment time points. Consistent with this, eight of

35 known cold-responsive CREs were similar to top-ranked pCREs in the

models and only these eight were important for predicting temporal cold

response. More importantly, most of the top-ranked pCREs were novel

sequences in cold regulation. Our findings suggest additional sequence

elements important for cold-responsive regulation previously not known that

warrant further studies.

KEYWORDS

Temporal transcriptional response, random forest classifier, regulation of cold stress,
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Introduction

Switchgrass (Panicum virgatum L.) is a perennial C4 grass

species native to North America and identified as a major

lignocellulosic feedstock for biofuel production (Sanderson

et al., 2006). Higher biomass production has been a major

breeding target and a potent research area in switchgrass.

However, high-yielding switchgrass cultivars grow in narrow

climatic niches and are known to be less productive under

drought, high salinity, and freezing/chilling environmental

conditions (Sage et al., 2015; Zhuo et al., 2015; Lovell et al.,

2021). Expanding the growing range of high-yielding

switchgrass cultivars has been proposed as a way to achieve

economic bioenergy production (Sanderson et al., 2006).

Coupling high biomass production with low and freezing

temperature tolerance can be an effective way of increasing the

range expansion of high-yielding switchgrass cultivars. Thus, it

is important to understand which genes and how they are

responsive to cold stress in cold-resistant switchgrass cultivars.

The ability to tolerate and/or resist cold stress has been an

active area of research with respect to the underlying genes, their

transcriptional regulators, and signaling pathways (Thomashow,

2010; Park et al., 2018; Manasa et al., 2021). At the level of

transcriptional regulation, the C-repeat-binding factor (CBF)

cold response pathway is one of the best characterized. In

Arabidopsis thaliana, three C-Repeat Binding Factor/

Dehydration Responsive Element-Binding Protein 1 (CBF/

DREB1) transcription factor (TF) genes are rapidly up-

regulated in response to cold stress (Stockinger et al., 1997; Liu

et al., 1998). Such rapid cold response is due to a signaling

network that is active upon cold stress. During cold treatment,

cellular Ca+2 is elevated and activates Calmodulin proteins

(CAMs). CAMs then bind to promoters of CAM-binding

Transcription Activators (CAMTAs) and up-regulate

expression of CAMTAs. Finally, CAMTAs bind to the

conserved CGCG-box in CBF genes and up-regulate their

transcription. Another well-studied regulator of CBF

expression is the Inducer of CBF Expression (ICE)

(Chinnusamy et al., 2003). ICE TFs are activated through low

temperature mediated sumoylation and subsequently bind to

ICE-box promoters in CBF genes to activate its transcription

(Chinnusamy et al., 2003; Chinnusamy et al., 2007; Chinnusamy

et al., 2010). CBF TFs then up-regulate over 100 cold regulated

(COR) and low-temperature induced genes by binding to C-

repeat/dehydration-responsive (CRT/DRE) elements, located in

promoters of COR genes (Thomashow, 2010). This regulatory

hub is known as the CBF regulon which is a major mechanism of

cold stress response regulation in plants.

Beyond the CBF regulatory hub, there are examples of other,

non-CBF regulatory pathways important for cold stress response

in plants. Studies using CBF mutants have shown that TFs

rapidly responsive to cold, such as HSFC1, ZAT12, and CZF1,

also regulate COR gene expression, indicating CBF-independent
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regulation (Park et al., 2018; Liu et al., 2019). Another example is

BZR1 TFs in the brassinosteroid (BR) signaling pathway that

become dephosphorylated upon exposure to cold stress and bind

to BR responsive element and E-box in the promoter regions of

COR genes such as WRKY6, SAG21, and SOC1 (Li et al., 2017).

It is also shown that cold-induced, Abscisic Acid modulated

COR gene expression works independently from CBF regulon

(Liu et al., 1998). There are likely other, non-CBF regulatory

mechanisms for plant cold-responsive transcription that remain

to be discovered. In addition, in switchgrass, it remains unclear

how temporal regulation of cold response is regulated, CBF-

dependent or not.

Computational approaches are powerful tools in the

identification of genome-wide regulatory patterns in plants

under biotic and abiotic stress conditions. In switchgrass, co-

expression analysis has been used to establish the potential

transcriptional regulatory networks in heat, drought, and

biotic stress conditions (Pingault et al., 2020; Hayford et al.,

2022; Zhou et al., 2022). Recently, a comprehensive,

transcriptomic study on several panicoid grasses, including

switchgrass, revealed that machine learning approaches can be

implemented to predict cold stress responses of genes within and

between species based on nucleotide frequencies in promoter

regions of genes, among other features (Meng et al., 2021).

Beyond nucleotide frequencies, a similar approach using longer

nucleotide sequences (i.e., k-mers) can identify putative cis-

regulatory elements that are regulatory switches of gene

expression under cold stress in switchgrass. Such approaches

have been applied to identify the regulatory switches of genes

under wounding (Liu et al., 2018; Moore et al., 2022), high

salinity (Uygun et al., 2017), iron excess response (Kakei et al.,

2021), heat, and drought stress conditions (Azodi et al., 2020).

In this study, we aim to apply a similar, machine-learning

based approach in switchgrass to assess the involvement of CBF-

dependent components of cold response regulation and identify

other cis-regulatory mechanisms. Using existing cold stress time

course transcriptomes of switchgrass (Meng et al., 2021), we first

identified temporally cold-responsive genes. To test the extent to

which the temporal cold transcriptional response at different

cold treatment duration can be explained using potential cis-

regulatory sequences, we built machine learning models to

predict genes that are up- and down-regulated upon cold

treatment in the time course experiment using k-mers

enriched among up- or down-regulated genes. The k-mers that

were the most predictive for cold-responsive genes were

considered putative Cis-Regulatory Elements (pCREs)

controlling the temporal transcriptional response. To further

reveal the regulatory logic behind the temporal transcriptional

response, we examined transcription factors that may bind to

pCREs, similarity between pCREs to known CREs, as well as

functions of the genes that these pCREs are located on. In

addition, to understand if there are common mechanisms

underlying the transcriptional response at different time points
frontiersin.org
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after cold treatment, we assessed if pCREs identified in one time

point were similar to the regulatory elements identified in other

time points.
Results and discussion

Temporal transcriptional response in
switchgrass under cold stress

Switchgrass genes responsive to cold stress at different

treatment time points (0.5, 1, 3, 6, 16, and 24 hrs) were identified

using the transcriptome data from Meng et al. (2021) (S1 Table).

We found that the number of cold-responsive genes, regardless if

they were responsive to cold at multiple time points or at a specific

time point, increased as the duration of cold treatments increased

(S1A Figure). This observation is consistent with a cascading effect

of transcriptional response over time, similar to responses to other

biotic (Ren et al., 2008; Ikeuchi et al., 2017; Moore et al., 2022) and

abiotic (Joshi et al., 2016;Ohama et al., 2016) stress conditions. This

cascading effect could be because the key regulators are activated

sequentially during the cold treatment (Ding et al., 2019a; Lamers

et al., 2020). Moreover, as expected, more cold-responsive genes

tend tobe sharedbetween adjacent timepoints comparedwith time

points apart from each other (S1A Figure).

To understand what functions the genes that are responsive to

cold stress at different time points tend to have, we conducted

Gene Ontology (GO) enrichment analysis (see Methods, S1B, C

Figures). GO terms relevant to signaling and activity of

transcription factors, such as protein phosphorylation and

regulation of transcription, were enriched for genes up-regulated

at earlier time points (i.e., 0.5 - 3 hrs, S1B Figure). These early up-

regulated genes may act as initial regulators of genes that are

responsive to cold at later time points. Consistent with this, it is

known that the accumulation of Ca+2 as a result of initial cold

sensing activates the expression of calcium-dependent protein

kinases (CDPKs), which in turn activate transcription factors that

regulate downstream cold stress response (Chinnusamy et al.,

2010; Knight and Knight, 2012). Moreover, GO terms such as

glucan metabolism and trehalose biosynthesis were also found to

be enriched at initial time points. These biological processes are

known to be important in the initial cold acclimation in

Arabidopsis (Miranda et al., 2007; Maruyama et al., 2009). The

GO terms enriched in up-regulated genes at later time points (i.e.,

6-24 hrs) may involve biological processes that are required to

maintain the functionality of the plant under prolonged cold

stress. For example, during prolonged cold stress an increase in

plant respiration has been observed (Manasa et al., 2021). As a

result of elevated respiration, plants tend to accumulate higher

amounts of reactive oxidative species (ROS), followed by the

transcription of genes that are responsive to oxidative stress

(Wei et al., 2022). This is in line with the enriched GO terms

for later cold-responsive genes, such as response to oxidative stress
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and metal ion transport. Thus, the results from GO enrichment

analysis are also indicative of the cascading effect of temporal

transcriptional response under cold stress in switchgrass, where

initial responsive genes activate later cold-responsive genes that

are involved in different physiological and metabolic processes to

withstand cold stress conditions.
Putative cis-regulatory elements
regulating temporal cold
stress responses

The cascading effect of temporal transcriptional response that

we observed, as well as the differences between GO terms enriched

in genes that were up-regulated at different time points, indicates

that the transcriptional regulation differs among time points after

cold treatment. To understand how cold-responsive genes are

regulated at the cis-regulatory level, we first identified k-mers in

the promoter and gene body regions that were enriched among

cold-responsive genes at each timepoint.Then the enriched k-mers

were used to establish a predictive model to distinguish cold-

responsive genes from non-responsive genes for each time point

withmachine learning (seeMethods; Figure 1A). We calculated F-

measure (F1 score) on the validation and test instances (held out

beforemodel training, seeMethods). In ourmodeling setup, the F1

score ranges between one and zero, where one represents a model

with perfect prediction, while a score ~0.5 indicates a model with

predictions no better than random guesses. Among models

distinguishing genes that are significantly up- or down-regulated

fromnon-responsive genes at different time points, the F1s were all

higher than randomexpectation (> 0.7) (Figure 1B), indicating that

the sequence information (i.e., k-mers) was predictive of cold stress

response at a time point.

Next, we asked what features (k-mers) were most predictive of

the temporal cold stress response of genes with feature selection. By

assessing the model performance improvement by adding features

successively from the most to the least important, the minimal

number of features required to reach 95% of the optimal model

performance was identified for each time point model (S2 Figure).

The k-mers that met this criteria for each time point model were

defined as pCREs (S2, S3 Tables). From here onwards, we focus on

the pCREs predictive of up-regulated genes. Some of these pCREs

weregeneral across timepoints (indicating thesepCREswere found

in all the time point models) (Figure 2A), which may indicate: (1)

the genes regulated by these pCREs are responsive to cold across

time points; and/or (2) different genes that are responsive to cold

stress at different time points are regulated by the same pCRE set

and/or (3) these pCREs may be basal regulatory elements required

for cold-stress regulation which may be working in combination

with other CREs tofine-tune the temporal transcriptional response

under cold stress. We should note that only 154 and 411 genes for

up- and down-regulation across >4 time points, respectively. On

the other hand, 16,414 and 16,911 genes are up- and down-
frontiersin.org
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regulated in >=1 time points. Considering that very few genes are

commonly responsive across multiple time points, the first

possibility is unlikely. Some other pCREs were time point-specific

(indicating these pCREs were found only in a single time point

model) (Figure 2A). The remaining pCREs were identified by

models predicting genes up-regulated at 2~5, usually disjointed,

time points (S3 Figure).

GO terms enriched for down-regulated genes indicate that

genes involved in essential biochemical processes such as

photosynthesis and growth-related processes have been down-

regulated (S1 Figure C) which has also been observed in other

species such as Arabidopsis (Manasa et al., 2021). However, our

focus in this study is to identify the regulatory elements thatmay be

directly related with regulating physiological and metabolic
Frontiers in Plant Science 04
processes to endow plant resistance to cold. Although our down-

regulation models also had higher performance, the pCREs might

be a mixture of regulatory elements that are responsive to cold and

responsive to other physiological and biochemical processes that

are affected by cold stress. Thus, we will not be focusing on

regulatory elements that control the downregulation under cold

stress in our downstream analysis.

Known cold response regulation
transcription factors likely bound to
pCRE sites

Previous studies have shown that there are some conserved

CREs that control the expression of both early responsive
BA

FIGURE 1

Models predicting the cold responsiveness. (A) The overall procedure to model transcriptional response. Genes that are significantly up- or
down-regulated at a cold treatment time point were used as positive examples, while genes not responsive to cold treatment at any time point
and to other abiotic stresses (dehydration, salt, and drought) were used as negative examples. k-mers enriched in the gene body and flanking
non-genic regions of the cold-responsive genes were used as predictors (features). RandomForest classifier was used to train models, and the
model performance was evaluated using the F1 score. (B) Model performances (F1) on the cross-validation (CV) and test sets for each time point
model distinguishing genes that were up- (top chart) or down-regulated (bottom chart) after cold treatment for a specific duration from non-
responsive genes. The number of positive example genes used in each time-point model is shown in the parenthesis.
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transcription factors (TFs), such as CBF, and downstream cold-

responsive genes (e.g., COR genes) that carry out the cold stress

tolerance in plants (Chinnusamy et al., 2010; Thomashow, 2010;

Park et al., 2018; Ding et al., 2019b). To see if our models have

identified binding sites for these known regulators as well as

novel CREs, we examined the similarities between the general

and time point-specific pCREs and 35 known transcription

factor binding motifs (TFBMs) in Arabidopsis using DAP-seq

(O’Malley et al., 2016) and CIS-BP (Weirauch et al., 2014)

datasets (S3 Table). In addition, we collected 35 known TFs

regulating plant cold stress response that have binding site

information (S4 Table). Some pCREs that are significantly

more similar (see Methods) to binding sites of 11 out of 35

known TFs regulating cold response than the 95 percentile of

TFBMs from TFs of the same families (Figure 2A, see Methods).

Two general pCREs were similar to the binding sites of

CAMTA1 and CAMTA5 (orange and yellow in Figure 2B).

CAMTAs are known to be up-regulated by the activation of

Ca+2-dependent Calmodulin due to cold-induced Ca+2 spike

(Finkler et al., 2007; Manasa et al., 2021). In addition, CAMTAs

are major regulators of CBF genes that are known regulators of

cold responses, for the immediate cold stress response (Finkler

et al., 2007). Consistent with the involvement of CAMTAs in

early cold response pCREs, the most closely related to CAMTA

binding motifs had the highest feature importance in the 30 min

model (CAMTA1 and CAMTA5 ranked 17 and 6, respectively).
Frontiers in Plant Science 05
We should point out that the CAMTA1/5 binding motif-like

pCREs were also found in 1hr- and 16 hr-specific sets, indicating

that, like in Arabidopsis, (Doherty et al., 2009) the CAMTAs

may also be involved in maintaining CBF or other cold response

gene expression that are critical for overall cold acclimation in

switchgrass. Because only 11 of 35 cold CREs of known plant

cold stress TFs have similar binding sites to general and specific

pCREs (Figure 2A), we next examined if they could be recovered

using pCREs important in >1 time points (non-specific pCREs,

S3 Table). We found that no new cold CREs can be recovered.

Thus, in later discussion, we mainly focus on general and time

point-specific pCREs only.

Another notable finding is that pCREs are similar to ERF

binding sites (gray and green in Figures 2A, B) and were

identified both in the general and most of the time point-

specific pCRE sets (excluding the 3 and 6-hrs). Like CBF/

DREB TFs, ERF TFs are members of APETALA2/Ethylene

Responsive Element Binding Protein (AP2/EREBP) gene

family which are known to be involved in multiple types of

stress tolerance (Dey and Corina Vlot, 2015; Park et al., 2021).

ERF115 prevents water deprivation in rice under extreme

temperatures and drought conditions (Park et al., 2021).

Dehydration is a condition that can occur under cold stress

and transgenic switchgrass with higher water retention also has

an increased cold tolerance (Xie et al., 2019). Despite the lack of

experimental evidence for the function of ERF TFs in
BA

FIGURE 2

Interpretation of the temporal cold-responsiveness prediction models. (A) General and time point-specific pCREs and their similarities to known
cold responsive CREs. Heatmap in the left panel shows the relative importance of pCREs, short sequences in the middle indicate pCREs that are
similar to CREs known to regulate cold response (cold-TFBMs), which are shown in the right panel. Color scale in blue represents min-max
scaled Gini index calculated for features in a time point model; color scale in pink indicates similarities between pCREs and cold-TFBMs. (B)
Transcription factors (TFs) that bind to the cold-TFBMs are shown with different colors, and the sequence logos of TF binding sites are shown in
the rightmost panel. PCC, pearson correlation coefficient; TFBM, transcription factor binding motifs.
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switchgrass, our findings suggest that ERF TFs may play

important roles in cold tolerance in switchgrass. Moreover,

there were also pCREs that are similar to binding sites of TFs

from other TFs families, such as WRKY, BZR and ABR. pCREs

similar to binding sites for BZR1 (rank 1 to 4), WRKY24 (rank

seven to eight), and WRKY 30 (rank seven) were also among the

most predictive cold-CREs in cold-TFBM models (S4 Figure).

These TFs are known for cold signal transduction and cold stress

tolerance via CBF-independent pathways (Park et al., 2015;

Ramirez and Poppenberger, 2020). BZR1 is known to be

involved in cold stress tolerance through processes such as

ROS scavenging (Ramirez and Poppenberger, 2020) and

facilitating structural changes in cell membranes and cell walls

(Benatti et al., 2012). Moreover, WRKY TFs are also known to be

involved in phytohormonal-induced signal transduction for

low-temperature tolerance in plants (Park et al., 2015; Park

et al., 2018). ABR1 on the other hand is known to regulate

multiple stress responses, including cold stress in a CBF-

independent, CBL9-CIPK3-mediated, ABA-signaling cascade

(Pandey et al., 2005). These findings indicate that our

prediction models can not only predict cold-responsiveness for

different time points after cold treatment, but also recover

known plant cold-TFBMs.
Potentially novel cold cis-regulatory
sequences in switchgrass

While known TFs involved in cold-responsive regulation can be

identified, 45 pCREs either resembled known TFBMs but the TFs

were not known to be involved in cold-regulation. Perhaps more

importantly, another 598 pCREs did not have significant similarity

to known TFBMs. This raises the question if these pCREs not

resembling cold-TFBMs, represent novel component of switchgrass

cis-regulation under cold treatment. To address this, we compared

the informativeness of pCREs identified by our models and the

experimentally validated cold-TFBMs for predicting cold stress

response. Based on literature search, 35 TFs involved in cold

response regulation with binding site information in

different plant species (S4 Table) were used to build models

(hereafter referred to as cold-TFBM models). We found that the

cold-TFBM models had far worse prediction performance

(median F1 = 0.66) than models built using all pCREs

(median F1 = 0.85, Figure 3A). Since these 11 of 35 cold-TFBMs

are significantly similar to top-ranked pCREs (similarity >95% of

randomly expected matches, see Methods), it is not particularly

surprising that the cold-TFBMs predictive of cold responsiveness at

different specific time points are similar to the findings in Figure 2.

By looking at the feature importance of the cold-TFBMs models

built for each of the time points (S4 Figure), TFBMs of CAMTA1/5

and CBFs were among the most predictive features among the cold-

TFBMs time point models.
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While the all-pCRE models overall performed significantly

better than cold-TFBM-based ones (T-test, p < 0.01, Figure 3A),

it is possible that the all-pCRE models simply have far more

features. To address this, we also built models using the top 35

most important pCREs (based on the feature importance of time

point models) for comparison. We found that the cold-TFBM

models remain worse than models built using the top 35 pCREs

(median F1 = 0.77, p<0.01, Figure 3A). This finding, together

with that based on all-pCRE models, suggests that pCREs

identified in our models contain potentially novel cold-

responsive CREs that may or may not be specific to

switchgrass. In Figure 3B, the top 10 ranked pCREs from each

of the time point models are shown with emphasis on the

enrichment of novel pCREs in up-regulated genes under cold

stress of different timepoints. These novel pCREs are

significantly enriched (multiple testing corrected, p<0.05) in

cold stress up-regulated genes at each time point (Median log

odds ratio=0.55). Taken together, the comparison between cold-

TFBM models and the all-pCRE or the top-35 pCRE models

shows that known cold-TFBMs could not explain cold

responsiveness at any particular time point as well. These

findings suggest that there are novel temporal cis-regulatory

components of cold transcriptional response.
Relationships between pCREs across
time points

The majority of top pCREs are sequences that do not

resemble TFBMs associated with cold regulation. To further

understand how these pCREs we identified may be involved in

temporal cold stress regulation, we examined: (1) the similarity

of the pCREs across time point models (Figure 4A); (2) sequence

similarities between pCREs and TFBMs (earlier the focus was

only on cold-related TFs, Figure 4B) (3) importance of pCREs

from different clusters in predicting cold response (Figure 4C);

(4) functions carried out by the genes that the pCREs were

located in (Figure 4D); and (5) expression profiles of genes that

the pCREs were located in (Figure 4E). First, we categorized the

pCREs into clusters by calculating the pairwise PCC distance (1-

PCC) based on their sequences (see Methods; S5 Figure). The

clusters were defined using the same PCC distance threshold as

in (Liu et al., 2018), where pCREs with PCC distance <0.39 were

considered to be bound by TFs of the same family. The pCREs

were grouped into 27 clusters and pCREs in 25 clusters were

shared by >1 cold treatment time points. Since pCREs in a

cluster are likely bound by TFs of the same family, this finding

indicates the involvement of most TF families across time points.

These clusters consisted of pCREs important in >1 time points

were referred to as non-specific pCRE clusters (Figure 4A).

To assess if pCREs in different clusters may regulate distinct

sets of genes, we compared the differential expression profiles of

genes that contain pCREs from different clusters in different
frontiersin.org
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time points (Figures 4E, S6). To facilitate interpretation of the

differential expression profiles, we encoded the transcriptional

responsiveness of a gene at a time point as U, D, N if it is

significantly up-regulated, significantly down-regulated, and not

differentially expressed, respectively. For example, a profile of

“UUDDNN” indicates that the gene is significantly up-regulated

at 30 minutes and 1 hr, down-regulated at 3 hrs and 6 hrs, and

not differentially expressed at 16 hrs and 24 hrs after cold

treatment. Using this strategy, we investigated the frequency of
Frontiers in Plant Science 07
differential expression profiles of genes with pCREs in different

pCRE clusters. NNNUUN, NNNUUU, and NNUUUU were the

top three most frequent expression profiles found on the genes

that contain pCREs in all 25 non-specific pCRE clusters (S7

Figure). Because the up-regulatory patterns were contiguous

after 3hrs of cold treatment, regulatory switches common

between time points may have a role in the up-regulation and

maintaining the expression of genes at later time points.

Similarly, previous studies also show that in both CBF-
B

A

FIGURE 3

(A) Model performance comparison among models built using all the pCREs (blue), top 35 most important pCREs (cyan), and 35 known cold-
TFBMs (hot pink). (B) Enrichments of top 10 pCREs in 0.5, 1, 3, 6, 16, 24 hr time point models (a-f respectively).
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dependent and independent pathways, immediately cold-

responsive TFs are responsible for up-regulating and

maintaining the expression of a large number of downstream

cold-responsive genes by binding to conserved regulatory

sequences (Thomashow, 2010; Park et al., 2015; Li et al.,

2017). Some genes harboring pCREs from non-specific pCRE

clusters also had unique expression profiles (expressed in a single

time point) as well as much more complex expression profiles

(up- or down-regulated in multiple, non-contiguous time

points) (S6 and S7 Figure).

In addition to non-specific clusters, there were two 30 min-

specific pCRE clusters (clusters 23 and 25) (Figure 4A). pCREs in

these clusters may regulate initial cold transcriptional response.

However, these clusters were significantly enriched (q ≤ 0.05)

with the genes that are up-regulated only at the 30-min time

point compared to genes that contain pCREs in other clusters

(S8 Figure), For example, in cluster 23, UNNNNN, UNUUNN,

UNUNNU, UUUUUU, UUDDDD, and UUNNDD are among

profiles with the highest degrees of enrichment. There are ~360

different gene expression profiles that contain pCREs in all 25 of
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the shared pCRE clusters (S7 Figure). Thus, the temporal

regulation of cold transcriptional response is likely mediated

through a combination of general CREs that are important for

the entire duration, specific CREs that regulate response at a

particular time, as well as non-specific CREs that regulate a

certain duration (contiguous time points) or complicated

expression profiles (e.g., UNUNNU). To assess the functions

of genes that contained pCREs from pCREs clusters, we

examined which GO terms were enriched with genes

containing pCREs in a cluster (Figure 4D). Except for the

general enriched GO terms (e.g., metabolic processes), genes

containing pCREs of non-specific pCRE clusters were enriched

with biosynthetic processes that are involved in cold stress

responses (e.g., fatty acid biosynthetic process, lipid

biosynthetic process, and trehalose biosynthetic process) and

specific metabolic processes (e.g., response to oxidative stress,

carbohydrate metabolic process) (Figure 4D). These GO terms

are known to be enriched in late responsive genes under cold

stress (Manasa et al., 2021). Our findings suggest that some

genes containing pCREs from these non-specific pCRE clusters
B C D EA

FIGURE 4

Properties of pCRE clusters which were defined based on sequence similarity. (A) Heatmap showing the distribution of general and time point-
specific pCREs within a cluster. Color scale represents the percentage of general and time point-specific pCREs in each pCRE cluster. (B)
Potential transcription factors (TFs) that could bind to pCREs in pCRE clusters based on the similarity between pCREs and TF binding sites (TFBS)
information based on in-vitro binding assays. A TF was considered to bind a pCRE only if the PCC similarity between the pCRE and its binding
sites was above the 95th percentile of the background PCC distribution, which was calculated among TFs in the same TF family. TF families that
don’t fall under this threshold were marked in gray. Color scale represents the percentage of pCREs within a pCRE cluster that showed
significant similarity with TFBS. (C) Median importance of pCREs in a cluster. Cell color depicts median min-max scaled Gini index of the pCREs
within each cluster. Gray color indicates that the pCRE is not used in the time point model in question. (D) Significantly enriched biological GO
terms of genes containing pCREs in a pCRE cluster. Color scale represents the log10(odds ratio), for details, see Methods. (E) Differential
expression of genes that contain pCREs in clusters 3, 16, or 23 at different time points. Each row shows the profile of a gene, and color scale
indicates log2(FC).
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may contribute to metabolic processes crucial for cold tolerance.

None of the GO terms were enriched for genes containing

pCREs in the specific pCRE clusters 23 and 25, potentially due

to the small sample size of these two clusters.
Cold stress regulatory pCREs that do not
resemble known TFBMs

To further assess the regulatory role of the pCREs in pCRE

clusters, we asked what TFs may bind to these pCREs using the

in-vitro TFBM information of 344 Arabidopsis TFs. Although

the Arabidopsis and the switchgrass lineages diverged ~200

million years ago (Wolfe et al., 1989), the TFBMs of dicot and

monocot TFs from the same families are highly similar

(Weirauch et al., 2014).A TF was considered to have the

potential to bind to a pCRE if the similarity between its TFBM

and the pCRE in question was above the 95th percentile of the

similarity distribution calculated among TFBMs in the same TF

family (see Methods). In addition to members of the AP2-

EREBP family discussed previously (Figure 2, 4B), TFBMs of

B3, bZIP, MYB, Trihelix, and FAR1 TF families were also found

to have a significant similarity to pCREs in multiple clusters

(Figure 4B). In soybean, the bZIP TFs are known to regulate cold

stress in ABA-dependent pathways by inducing the expression

of downstream COR and ERF type genes that help plants to

resist cold stress conditions (Liao et al., 2008; Yu et al., 2020).

Moreover, in tomatoes, the Trihelix type TFs are known to be

up-regulated under cold stress conditions, and activate

downstream genes with products that modulate stomatal

conductance to prevent water loss (Liu et al., 2012; Yu et al.,

2018). In apples, R2R3-MYB TFs were found to be induced by

cold stress and activate ROS scavenging genes (An et al., 2018).

Aside from 19 clusters containing pCREs resembling known

Arabidopsis TFBMs, eight clusters did not contain pCREs

resembling TFBMs we investigated (Figure 4B). These pCREs

are referred to as “unknown” pCREs (those with “between”

threshold in S3 Table). In our time-point models, those

unknown pCREs were also important for predicting cold

responsiveness of a gene (S3 Table) as indicated by the median

importance of pCREs in clusters (Figure 4C). Furthermore, the

feature importance ranks of these pCREs in predicting cold

transcriptional response in the time point models (median

rank=0.45) are significantly similar (T-test, p-value<0.01) to

those of pCREs resembling known TFBMs (median

rank=0.38). Using general pCREs as examples, we built models

to predict genes up-regulated at different time points using solely

pCREs similar to known TFBMs (n=16), and another model

with unknown pCREs (n=38). We found that the performances

of models built using general pCREs similar to known TFBM

(median F1 = 0.66) and general “unknown” pCREs (median F1 =

0.70) were not significantly different (T-test, p-value>0.01). This

result also suggests that “unknown” pCREs have similar
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importance to pCREs that resemble known TFBMs in

predicting temporal cold-stress response in switchgrass. The

reasons we did not find similar TFBMs to these pCREs may be

because the threshold we used to assign a pCRE to TFBSs was

too stringent. However, the threshold used was established as the

degree of similarity that allows binding motifs of a plant TF

family to be identified (Azodi et al., 2020). Thus, it was not

asking if a pCRE resembled a specific TFBM, but the binding

motifs at the level of family. The second reason may be that

Arabidopsis TFBMs were used, which may miss TFBMs specific

in other species. Although there is broad conservation of TFBMs

across species, even between plants and humans (Weirauch

et al., 2014), this can only be assessed with additional

experimental studies either through DAP-seq or one-hybrid

assay. Another possibility is that the Arabidopsis TFBM data

may miss binding sites due to the limitations of in vitro binding

assays (Bartlett et al., 2017). Finally, it is also possible that,

instead of TFBMs, a subset of pCREs may represent motifs

relevant for levels of regulation beyond transcription, such as

post-transcriptional or translational regulation. This possibility

remains to be investigated.
Conclusion

In this study, we aimed to find DNA regulatory switches

responsible for temporal transcriptional response in switchgrass

under cold stress conditions. By examining the number of cold-

responsive genes at different time points, and the functions these

genes tend to have, we found a cascading effect of gene

transcriptional responses with regards to the time the plant

was exposed to cold stress. The k-mers enriched for cold-

responsive genes at a particular time point were predictive of

the cold responsiveness of genes at that time point. By examining

the top most predictive k-mers, we were able to identify well

known CREs that regulate cold stress response in plants,

indicating the usefulness of our models. Based on similarity of

a subset of pCREs to known cold TFs, switchgrass cold stress

response is mediated through both CBF-dependent and

independent pathways. Beyond the known cold-responsive

CREs, additional pCREs not known to be regulating cold

response were identified. Some pCREs were identified in

specific time point models, while others (general and non-

specific pCREs) appeared to be relevant to regulation of cold

response at multiple, sometimes disjoint, time points. In the

latter case, differential expression profiles of genes containing

these pCREs show complex patterns throughout the time course.

A substantial fraction of the pCREs do not resemble known

binding motifs of known cold response regulatory TFs or, in

general, Arabidopsis TFs with in vivo binding data. However, the

regulatory function of these pCREs in cold responses needs to be

experimentally validated using knockout lines and additional

efforts, including modeling complex expression patterns under
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cold stress response (i.e., non-contiguous, up-/down-regulation)

to identify the pCREs responsible for complex temporal

expression and modeling cold stress response using

combinations of pCREs to identify complex expression

patterns under cold stress are required to fully understand the

cold-responsive cis-regulatory code in switchgrass. We also

emphasize how building computational methods and their

interpretations are important for identifying the global

patterns of gene expression and their context-specific

regulatory elements. This study provides sequence elements

that regulate temporal cold stress response, allows a systematic

understanding of the temporal cold stress regulation in

switchgrass and, with subsequent validation studies, the

information can be used as the bases for fine tuning

switchgrass tolerance to cold stress.
Materials and methods

Transcriptome data collection,
preprocessing, and gene-set
enrichment analysis

The switchgrass cold response RNA-seq data were from a

published study of a time course (0.5, 1, 3, 6, 16, and 24 hrs)

under cold treatment (6°C) with paired control samples (29°C/

23°C in a 12-h/12-h day/night cycle) (Meng et al., 2021).

Switchgrass transcriptomes under three other stress conditions

were from three published studies [Dehydration ( (Zhang et al.,

2018)), salt ( (Zhang et al., 2021)), and drought ( (Zuo et al.,

2018)]. The RNA-sequencing (RNA-seq) data of these studies

were downloaded from NCBI-SRA database (https://www.ncbi.

nlm.nih.gov/sra), processed, and used to generate raw counts

and transcript abundance (transcripts per million, TPM) using

an RNA-seq analysis pipeline (https://github.com/ShiuLab/

RNA-seq_data_processing.git). For mapping RNA-seq reads,

Panicum virgatum v5.1 genome and the corresponding

genome annotations were downloaded from the Joint Genome

Institute (JGI) database (https://jgi.doe.gov). Only reads that

were uniquely mapped to the genome were used. Differential

expression of genes (fold change, FC) contrasting cold stress

treatment and corresponding control at each time point and

false discovery rate corrected p-values were calculated using the

EdgeR package implemented in R (Robinson et al., 2010).

Gene Ontology (GO) annotations of switchgrass genes were

downloaded from JGI Data Portal as of 07.08.2021 (https://data.

jgi.doe.gov). Fisher’s exact test was conducted to identify GO

categories enriched in cold-responsive genes at each time point

versus all the other genes in the genome. The resulting p-values

were adjusted using the Benjamini-Hochberg method

(Benjamini and Hochberg, 1995), and GO terms with adjusted

p-values ≤ 0.05 were considered as enriched for cold-responsive
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genes (https://github.com/ShiuLab/Manuscript_Code/tree/

master/2022_switchgrass_cold_pCREs). The GO enrichment

analysis was also conducted for genes that contain pCREs

from the same pCRE distance cluster versus all the genes in

the genome (see next sections).
Identification of cold-responsive putative
cis-regulatory elements

Cold-responsive genes were defined as genes that were either

significantly up-regulated (Log2FC≥1 and adjusted p ≤ 0.05) or

down-regulated (Log2FC≤-1 and adjusted p ≤ 0.05) upon cold

treatment at each time point. Genes were defined as non-

responsive to cold at any of the six time points and

nonresponsive to the other three stress conditions mentioned

above (|log2FC|<0.5 and/or adjusted p>0.05). Here, stress

conditions other than cold treatment were considered to

define non-responsive genes, because previous studies have

found that stress-responsive CREs could activate genes under

multiple stress conditions (Zou et al., 2011; Azodi et al., 2020).

Thus, contrasting the cold-responsive genes against genes that

are not responsive to combined stresses would allow us to

identify the full scale of pCREs, i.e., both cold-stress-specific

pCREs and pCREs responsible for multiple stress conditions

including cold stress.

To identify pCREs, we applied a combination of a k-mer

enrichment approach and machine learning. To avoid data

leakage, for each time point, cold-responsive genes (up- or

down-regulated after cold treatment) and non-responsive

genes were split where 80% of the genes were used as the

training set and 20% were the test set. The test set was set

aside and was not used for any pCRE identification or modeling

steps. For the k-mer enrichment step, genes in the training set

were further split into five bins. For each bin, we first identified

all possible k-mers (k=5-8 nucleotides where a forward k-mer

was considered as the same as its reverse complements) from

1kb upstream, gene body including 5’ and 3’ untranslated

regions, and 1kb downstream regions of both cold-responsive

and non-responsive genes. K-mers enriched for cold-responsive

genes (Fisher’s exact test adjusted p-value<0.05) were identified

for each bin, and the k-mers commonly enriched among all five

bins were used as features to establish machine learning models

classifying cold-responsive genes (positive examples) and non-

responsive genes (negative examples) in the training set.

To create a balanced training dataset (same numbers of

positive and negative examples), genes in the minority class with

fewer instances were randomly up-sampled using the Synthetic

Minority Over-sampling Technique (Chawla et al., 2002). We

also experimented with down-sampling where the majority class

was randomly selected to match the number of minority class

genes. Classification models were built for each time point to
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predict cold-responsive and non-cold responsive genes using the

random forest algorithm (Breiman, 2001) and grid search was

conducted based on 60 hyperparameter combinations

(‘max_depth’: [3, 5, 10], ‘max_features’: [0.1, 0.5, ‘sqrt’, ‘log2’,

None], ‘n_estimators’: [10, 100, 500, 1000]) in a five-fold cross-

validation scheme where every gene was used in the validation

set exactly once. The optimal hyperparameter set was selected

based on F1 score of the validation set predictions. F1 measure is

the harmonic mean of precision and recall. An “optimal” model

for each time point was then built using all training instances

with the optimal hyperparameters. The final model for each time

point was then applied to predict the cold responsiveness of

genes in the testing set and model performance was evaluated

using F1 measure.
Selection of minimal pCRE sets as
features and determining relationships
between pCREs

To identify the minimal number of features (enriched k-

mers) that have a similar performance as the optimal model

using all features to distinguish cold-responsive from non-

responsive genes, features were selected based on Gini

importance defined as the impurity difference of a node in the

decision tree when the feature in question is used, a measure of

the contribution of a feature for distinguishing the cold-

responsive and non-responsive genes. New models use the

training set again by increasing the numbers of features used,

starting with just the top 10 important features and, for

subsequent models, increasing the number of features by 20 in

order of decreasing feature importance. The trend line of the

cross-validation F1 score against the number of features was fit

with the Michaelis-Menten Equation. For each time point the

minimal number of features was determined as where the fitted

line had a near zero differential (e.g., the 30 min model, S1

Figure), or where the F1 first reached 90% of the optimal model

F1 if there was no clear plateau (e.g., the 30 min model, S1

Figure). Features within the minimal set were designated as

pCREs for the cold response at the time point in question. If the

same pCRE (an important k-mer with identical sequence) was

found among all time point models, we designated it as a general

pCRE, while a pCRE that was only identified in one time point

model was designated as time point-specific pCRE. To

determine the similarity between pCREs, pairwise PCC

distances between pCREs were calculated using the TAMO

package (Gordon et al., 2005), implemented in R. The distance

matrix was used to construct a UPGMA tree using average

linkage in the library ‘cluster’ in R (Maechler et al., 2012).

Sequence similarity of 0.39 was used as a threshold, such that

pCREs with similarity >0.39 can be treated as a single pCRE (Liu
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et al., 2018). For each cluster of pCREs, the proportion of pCREs

in different categories (general or time point-specific pCRE

groups) were calculated using custom scripts (https://github.

com/ShiuLab/Manuscript_Code/tree/master/2022_switchgrass_

cold_pCREs).
Identification of transcription factors
with binding sites similar to pCREs

The assessment of sequence similarity between pCREs and

known transcription factor binding sites (TFBSs) was carried out

using the Motif Discovery Pipeline (https://github.com/ShiuLab/

MotifDiscovery.git) as described in (Azodi et al., 2020). For this

analysis, only the pCREs responsible for up-regulation upon

cold treatment were considered. Known TFBS data was retrieved

from two datasets: (1) DNA Affinity Purification sequencing

(DAP-seq) database, where in-vitro DNA binding assays were

performed for 344 TFs in Arabidopsis thaliana; (2) Catalog of

Inferred Sequence Binding Preferences (CIS-BP) database,

where position frequency matrices (PFMs) for TFBS of 190

TFs (non-redundant TFBS with DAP-seq database) in A.

thaliana were available (Weirauch et al., 2014). To assess the

similarity between pCREs and TFBSs, the Pearson’s Correlation

Coefficients (PCC) between the position weighted matrices

(PWMs) of pCREs and PWMs of TFBSs were calculated as

described in (Azodi et al., 2020). The top matching TFBS for

each pCRE was reported in three threshold levels (same TF,

same family, or significantly more similar than randomly

expected) as described in (Azodi et al., 2020). To determine

the similarity between pCRE and TFBMs for TFs regulating cold

response, we checked if pCRE-TFBM PCC is higher than 95th

percentile of the PCCs calculated among TFBMs of different

transcription factors families. This is a mid-stringency threshold

out of the three thresholds we used to find similarities between

pCREs and TFBMs. Since we are using Arabidopsis TFBMs to

identify similar binding sites of specific TFs in switchgrass, we

wanted to use TFBMs with the highest similarity when

compared with other families of TFs, which with a higher

stringency threshold would not have been found. Using this

mid-stringency threshold we will be able to say if a pCRE

resembles a specific binding site of a particular TF in

comparison with other TFs in different TF families.

To assess how well the binding sites of TFs known to

regulate cold response might predict cold response, we

collected known cold regulation TFs through a literature

search (S4 Table). Using PWMs of binding sites of TFs known

to regulate cold stress in plants (cold-CREs), we mapped similar

binding sites in up-regulated genes in different time points.

Based on absence/presence of cold-CREs in a gene we recreate

feature tables for genes that are up-regulated in each time point.
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Using the similar machine learning methods used in the

“Identification of cold-responsive putative cis-regulatory

elements” section, we made models to predict cold

responsiveness of a gene up-regulated in each time point using

cold-TFBMs. The performance of these models were then

compared to our original time point models.
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SUPPLEMENTARY FIGURE 1

Propertiesof cold-responsivegenes at different timepoints. (A)Matrix showing

the number of up-regulated (top left triangle) and down-regulated (bottom
right triangle)genesatdifferent timepointsaftercoldtreatment.Colorscaleand

number within the cell on the diagonal represent the count of time point-
specific cold-responsive genes, while those in other cells indicate the number

of responsivegenessharedbetween twotimepoints. Forexample, thenumber
eight in thetop leftcell indicates that thereareeightgenesthatareup-regulated

at both 30 min and 24 hrs. (B, C) Biological process GO terms that are

significantly enriched (q ≤ 0.05) for genes that are down-regulated (B) or up-
regulated (C) at different time points. Color scale: -log10(q) for over-

representative GO terms, and log10(q) for under-representative GO terms.

SUPPLEMENTARY FIGURE 2

Feature selection. Graphs show the relationship between the F1score and the

number of features in time point models distinguishing genes up-regulated (left

panel) or down-regulated (right panel) after cold treatment fromnon-responsive
genes. The data points were fitted using theMichaelis-Menten Equation.

SUPPLEMENTARY FIGURE 3

pCREs that were identified from models predictive of genes up-regulated

in >1 time points and their resemblances with known cold-CREs.

SUPPLEMENTARY FIGURE 4

Heatmapshowing feature importance in thecold-TFBMmodels.Color scaleand

numbers in the cells represent the importance rank of features that have positive

Gini indexes, the darker color and smaller number, themore important a feature
was. Gray color indicates that the Gini index for the feature was negative.

SUPPLEMENTARY FIGURE 5

A dendrogram showing relationships among general and time point-
specific pCREs based on pairwise PCC distances. The dendrogram is

clustered based on the similarity threshold of 0.39.

SUPPLEMENTARY FIGURE 6

Heatmaps showing the degrees of differential expression of genes that
contain pCREs from different pCRE clusters at different time points after

cold treatment. Color scale indicates log fold change values.

SUPPLEMENTARY FIGURE 7

Frequencyofgenes showinga specificexpressionprofiles (e.g.,NNUDNN, y-
axis) and containing pCREs that belong to different pCRE clusters (x-axis).

Color scale indicates log2(counts) ofgenes showing theexpressionprofile.U,
up-regulated; D, down-regulated; N, non-responsive.

SUPPLEMENTARY FIGURE 8

Degrees of enrichment of genes containing pCREs from a pCRE cluster (x-

axis) that also have a specific expression profile (e.g., NNUDNN, y-axis). The
color scale represents the log odds ratio, which was calculated as ratios

between two values. The first value is the number of genes containing pCRE

in cluster C and having expression profile P divided by the number of genes
withCandnot inP.Thesecondvalue is thenumberofgeneswithnoCbut inP

divided by the number of genes without C and not in P.

SUPPLEMENTARY TABLE 1

Metadata of the transcriptome sequences used in this study.

SUPPLEMENTARY TABLE 2

Number of features selected in the feature selection processes and the

best threshold used in different time point models.

SUPPLEMENTARY TABLE 3

Enrichment p-values, feature importance scores, feature importance ranks,
and summary of the similarity between pCREs and in-vitro transcription

factor binding site data of pCREs in different time point models.
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