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Abiotic stresses adversely affect rice yield and productivity, especially under the

changing climatic scenario. Exposure to multiple abiotic stresses acting

together aggravates these effects. The projected increase in global

temperatures, rainfall variability, and salinity will increase the frequency and

intensity of multiple abiotic stresses. These abiotic stresses affect paddy

physiology and deteriorate grain quality, especially milling quality and

cooking characteristics. Understanding the molecular and physiological

mechanisms behind grain quality reduction under multiple abiotic stresses is

needed to breed cultivars that can tolerate multiple abiotic stresses. This review

summarizes the combined effect of various stresses on rice physiology,

focusing on grain quality parameters and yield traits, and discusses strategies

for improving grain quality parameters using high-throughput phenotyping

with omics approaches.
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1 Introduction

Global warming and accompanying climate variabilities

adversely impact global agricultural output, dwindling the

production of food grains such as rice (Ramegowda and

Senthil-Kumar, 2015). Abiotic stresses such as heat or

temperature stress, submergence, drought, or nutritional

deficiency create suboptimal environments (Jeyasri et al., 2021)

that impair germination, seedling establishment, vegetative

growth, flower initiation, panicle growth, grain filling, and

productivity (Banerjee and Roychoudhury, 2020; Beena et al.,

2021a). In rice, these attributes severely compromise crop

establishment, growth (Beena et al., 2021b; Anie et al., 2022;

Stephen et al., 2022), grain quality, and productivity (Pravallika

et al., 2020; Pathak et al., 2021). Some abiotic pressures in rice-

growing environments spur the development and infection of

biotic causal agents, aggravating the losses in productivity

(Narsai and Whelan, 2013) and grain quality.

As the major staple food crop in the world, reductions in rice

production due to climate change will have serious

socioeconomic impacts. Many paddy growers experience

frequent crop failure, resulting in unprecedented hardships

such as starvation and financial pressure (Rejeth et al., 2020).

Exposure to multiple abiotic stresses leads to physical and

biochemical alterations in crop produce (Manikanta et al.,

2020; Ali et al., 2022; Manikanta et al., 2022). Concurrent

abiotic stresses damage rice crops more than individual

stresses (Pandey et al., 2017), posing various physiological

effects that trigger cross-talk reactions that affect rice

phenology (Ramu et al., 2016; Ali et al., 2022). While not an

abiotic stress component, elevated CO2 (eCO2) can alleviate or

aggravate the stress effects.

Rice grain quality is measured primarily on the physical

appearance of the grain, mineral content, proportion of amylose

and amylopectin starch, aroma, and cooking quality

(Chakraborti et al., 2021). Abiotic stresses during grain filling

affect milling quality, grain chalkiness, starch composition, and

cooking quality (Lanning and Siebenmorgen, 2013). According

to ; Liu et al. (2021), high-temperature stress has the greatest

impact on grain quality attributes, including reducing the

sensory qualities of milled rice. Numerous studies have

investigated the fundamentals of rice grain biochemistry, but

few have examined how multiple abiotic stresses affect grain

quality (Liu et al., 2013; Kadam et al., 2014).

Among abiotic stresses, high temperatures are particularly

devastating, decreasing productivity and grain biochemical

components. High temperatures decrease photosynthesis and

photorespiration, decreasing total biomass production (Moore

et al., 2021). High temperatures post-anthesis affect grain quality

and appearance and decrease grain production (Dong et al.,

2014). Similarly, high temperatures reduce pollen viability and

increase spikelet sterility, decreasing grain production and

quality (Rang et al., 2011). Extreme temperature stress at the
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maturity stage abates grain chalkiness, physical appearance, and

biochemical properties such as amylose content and protein

composition (Ahmed et al., 2015).

Excessive water stresses such as waterlogging and

submergence adversely affect rice growth and grain yield.

While some historical rice cultivars exhibit notable resilience

to submergence, their total yield suffers (Singh et al., 2014). In

contrast, modern rice cultivars are sensitive to flooding, often

resulting in farmers losing their whole crop. Rice plants can

perish soon after flooding due to high energy expenditure and

protein hydrolysis during submergence. Flooding degrades the

quality of endosperm reserves, adversely affecting the nutritional

value and milling and cooking properties of rice grain (Zhou

et al., 2020). Flooding at harvest-ready stages results in pre-

harvest sprouting, compromising the marketable grain quality

(Nonogaki et al., 2018) and reducing the grain’s eating and

cooking quality (Zhou et al., 2020).

In recent decades, rice researchers have been working to

improve crop yield and quality under stressful situations (Patra

et al., 2020). Genomic techniques have been used to investigate

how abiotic stresses affect grain development (Verma et al.,

2021), with several genetic regulators of tolerance identified and

successfully used to improve rice cultivars. For example, genetic

loci controlling salinity stress have been discovered and

pyramided to develop green super rice types (Pang et al.,

2017). Using marker-assisted breeding, Kumar et al. (2018)

combined quantitative trait loci (QTL) for submergence and

drought tolerance to identify varieties with high yield potential,

validating their performance by exposing them to various

stresses. However, little information is available on combining

stress tolerance and grain quality traits to fulfill food security (Ali

et al., 2021).

Another major concern affecting plant growth is eCO2, with

carbon dioxide levels expected to reach 685 ppm by 2050, raising

the global mean temperature by 3–6°C relative to the pre-

industrial era (Kilkis and Caglar, 2022). At the global level,

crop models suggest that eCO2 levels could increase

precipitation, but large spatial and temporal variabilities exist

at the regional scale. Rainfall occurrence and intensity can be

unpredictable, creating patches of drought and waterlogging

(Walter, 2018). Various experiments have indicated that

optimum levels of eCO2 can mitigate the effects of

drought stress.

Candidate gene markers can be used to identify genes or

QTL for grain production (Azharudheen et al., 2022). Anabolic

gene expression requires favorable environmental conditions.

Increased temperature impairs starch production, slowing sugar

and starch metabolism and thus reducing grain filling and the

number of filled grains per panicle (Fahad et al., 2019); a similar

response occurs under salt stress (Hussain et al., 2017).

Furthermore, significant QTL identified for drought tolerance

are crucial for normal reproduction in paddy under drought

(Catolos et al., 2017; Feng et al., 2018). The effects of combined
frontiersin.org
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mild salinity stress (75 mM NaCl) and moderately high

temperatures (30/26°C day/night) were not additive when

compared to the individual stresses. The combined stress had

longer seedling roots and higher relative water content and Chl b

than the salinity treatment alone. He et al. (2018) reported that

ABA treatment mimicked protein perturbations in rice subjected

to combined salinity stress and desiccation. In another study,

Wytynck et al., 2021 reported similar ultrastructural changes in

young leaf cells of rice seedlings subjected to salinity or high

temperature stress, including the enhanced formation of rough

endoplasmic reticulum assembly, reduced cristae formation in

mitochondria, and disorganized cell wall fibrils.

QTL conferring tolerance to drought (qDTY1.1, qDTY2.1),

salinity (Saltol), and submergence (Sub1) were introgressed by

marker-assisted breeding, resulting in a climate-ready rice

genotype, Improved White Ponni, a classic example of how

information frommultiple studies can assist in pyramiding traits

for crop improvement (Muthu et al., 2020). The basal

methylation patterns in the genomes of Pokkali (salinity

tolerant), Nagina 22 (drought tolerant), and IR64 (susceptible)

revealed that various stress-associated transcription factors

(TFs) and signaling intermediates hypermethylated and thus

downregulated to impart stress tolerance relative to IR64 (Garg

et al., 2015). In addition, submergence-tolerant rice (FR13A)

could withstand the compromise in photosynthetic traits despite

lacking innate salinity tolerance (Sarkar et al., 2016). Several

combined salinity and submergence stress experiments have

revealed various physiological responses in rice. In one study,

one week of this combined stress had little impact, while two

weeks had detrimental effects on paddy rice, decreasing the

relative growth rate, increasing the time to flowering, and

decreasing yield (Kurniasih et al., 2021).

This review investigates the individual and interactive effects

of various abiotic stresses (e.g., drought, salinity, high

temperature, eCO2, submergence, nutrient deficiency) on rice

growth, agronomy, and physiological traits, including grain

quality and production, and the benefits of genomics for

improving rice productivity and grain quality.

2 Physiological and molecular
implications of individual stresses in
rice yield and quality

2.1 Impact of drought stress on paddy

Climate change disrupts the regularity and magnitude of

hydrological events, threatening crop production and affecting

food security. The major regions affected include South and

Southeast Asia, Sub-Saharan Africa, and Latin America, with

unbunded and bunded uplands and shallow rainfed lowlands.

Globally, drought stress events account for up to 40% of overall

crop and livestock output losses, totaling nearly USD 28 billion
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(FAO, 2017). In Asia, frequent drought stress affects about 34

million ha of rainfed lowland rice and 8 million ha of upland rice

(Barik et al., 2019). Drought stress frequently affects an area of 27

million ha of rainfed rice area (Shamsudin et al., 2016). In 2002,

severe drought and depleted soil moisture affected over 65% of

South Asia, resulting in considerable rice yield losses (~400 kg

ha–1).

Water deficit causes numerous unfavorable changes in rice

(Nithya et al., 2020). For example, 15 days of drought stress

during reproductive stage reduced rice yields by up to 70%,

increasing to up to 88% during flowering and 52% during grain

filling. Drought stress at the flowering stage resulted in

incomplete panicle exertion, 30% spikelet sterility, and a 20–

46% reduction in seed set in a set of rice cultivars (Bahuguna

et al., 2018). Drought stress during grain filling stage increases

the proportion of chalky grains (Yang et al., 2018). The

imposition of drought stress at the onset of anthesis for 30

days reduced the grain yield and harvest index of 25 rice

genotypes, with reduced pollen fertility and test weight of

grains for most genotypes, compared to irrigated conditions

(Ahmad et al., 2022). While leaf rolling is considered a defense

mechanism against drought stress, its promptness correlated

with anatomical traits rather than water deficit (Nithya et al.,

2021. While more leaf rolling occurred in genotypes such as

Dangar, water deficit did not affect transpiration (Cal et al.,

2019). Drought stress also affects the root system, with the ill-

effects on root architecture and yield genotype-dependent

(Prince et al., 2015; Beena et al., 2017; Beena et al., 2018c).

Plants have developed numerous adaptive responses to

drought stress that aid their survival, including deeper roots,

reduced water loss from shoots due to thick cuticle deposition,

reduced leaf area, and osmotic adjustment, primarily by

maintaining a high internal water status (Beena et al., 2018b;

Manikanta et al., 2020; Rejeth et al., 2020). Beena et al. (2012)

reported that root architecture, water uptake, and osmotic

adjustment are important traits for drought tolerance

screening. Physiological and biochemical changes in rice under

drought are given in Supplementary Table 1. In rice, QTL

mapping has revealed regions responsible for physiological

traits, yield, and yield components. Table 1 lists QTL/genes

introgressed into rice for drought stress tolerance.

2.2 Impacts of submergence on paddy

Rice is adapted to stagnant conditions because its well-

developed aerenchyma promotes oxygen transport through

roots. However, submergence caused by recurrent flooding can

adversely affect plant growth and productivity. In lowland and

deep-water rice areas, flooding occurs on more than 16 million

ha, with annual economic losses estimated to exceed $600 USD

mill ion (www.knowledgebank.irri .org) . In addition,

unpredictable flash floods can occur at any stage of

paddy development.
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TABLE 1 Major QTLs reported for physio-morphological traits under various abiotic stress conditions in rice.

Trait QTLs/Genes Chromosome Flanking markers References

High yield under drought deployed for introgression using MAS in rice

High yield under drought condition qDTY1.1 1 RM431–RM104 Ghimire et al. (2012)

1 RM104–RM12091

1 RM11943–RM12091 Vikram et al. (2011)

1 RM486–RM472 Venuprasad et al. (2012)

1 RM472 Muthu et al. (2020)

qDTY1.3 1 RM488–RM315 Sandhu et al. (2014)

qDTY1.2 1 RM259–RM315

qDTY2.1 2 RM2634 Muthu et al. (2020)

qDTY2.2 2 RM236–RM279 Swamy BP. et al. (2013)

2 RM211–RM263 Sandhu et al. (2014)

2 RM211–233A Palanog et al. (2014)

qDTY2.3 2 RM263–RM573 Sandhu et al. (2014)

2 RM573–RM250 Palanog et al. (2014)

3 RM168–RM468 Dixit et al. (2014)

qDTY3.2 3 RM569–RM517 Yadaw et al. (2013)

3 RM60–RM22 Vikram et al. (2011)

qDTY4.1 4 RM551–RM16368 Swamy BP. et al. (2013)

qDTY6.1 6 RM589–RM204 Venuprasad et al. (2012)

6 RM589-RM204

6 RM586-RM217 Dixit et al. (2014)

qDTY6.2 6 RM121-RM541 Dixit et al. (2014)

qDTY9.1. 9 RM105-RN434 Swamy BP. et al. (2013)

qDTY10.1 10 RM216–RM304 Vikram et al. (2011)

qDTY10.2 10 RM269–G2155 Swamy BP. et al. (2013)

qDTY12.1 12 RM28166–RM28199 Mishra et al. (2013)

Submergence

High survival qSUB1.1 1 id1000556-id1003559 Gonzaga et al. (2016)

High survival qSUB4.1 4 id4010621-id4012434 Gonzaga et al. (2016)

High survival qSUB8.1 8 id08005815-id8007472 Gonzaga et al. (2016)

High survival qSUB10.1 10 id10005538-RM25835 Gonzaga et al. (2016)

Anaerobic germination qAG-5 5 RM405–RM249 Jiang et al. (2006)

Anaerobic germination qAG-7-2 7 RM21868-RM172, seq- rs3583 Angaji et al. (2010); Zhang et al.
(2017)

Anaerobic germination qAG-7-1, AG2 7 RM3583–RM21427 Septiningsih et al. (2013)

Anaerobic germination qAG-9-2, AG1 9 RM3769-RM105, seq- rs4216 Angaji et al. (2010); Zhang et al.
(2017)

(Continued)
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TABLE 1 Continued

Trait QTLs/Genes Chromosome Flanking markers References

Anaerobic germination qAG-11 11 RM21–RM22, seq-rs5125 Angaji et al. (2010); Zhang et al.
(2017)

Anaerobic germination qAG-1-2 1 RM11125-RM104;
id29187939id32847451

Angaji et al. (2010); Hsu and
Tung (2015)

Anaerobic germination 3 RM7097-RM520 Angaji et al. (2010)

Anaerobic germination qAG-9-1 9 RM8303-RM5526 Angaji et al. (2010)

High survival qSUB8.1 8 8,608,433–8,686,009 Gonzaga et al. (2017)

High survival qSUB2.1 2 2,430,179–2,470,790 Gonzaga et al. (2017)

Salinity

Na+ absorption/Na+ uptake qSNK1 1 RM1287-RM10825 Thomson et al., 2010

qSNK2 2 2422788 – 2437583* Gimhani et al., 2016

qSNK4.1 4 4355198 – 4384860*

qNaK3.1 3 RM282-RM156 Puram et al., 2018

snkr1.1 1 RM1287-AP3206d de Ocampo et al., 2022

qNaK-R1.1 1 RM472-RM14 Rahman et al., 2019

qNaK-R3.3 3 RM5626- R3M53

qNaK-R5.4 5 RM163-RM19199

Relative shoot potassium conc. compared
to control

qSRI-K9.1 9 RM296-RM105 Puram et al., 2018

qSRI-NaK9.1 9 RM296-RM105

Na+/K+ ratio in root qNa/KR-9 9 HvSSR09-11-HvSSR09-39 Pundir et al., 2021

qRNK1 1 RM1287-RM10825 Thomson et al., 2010

Na+/K+ ratio in leaf qNa/KL-1.3 1 HvSSR01-56HvSSR01-70 Pundir et al., 2021

Na+/K+ ratio in leaf at reproductive stage qNa+/K+LR-3.1 3 RM563-RM186

Root Na+/K+ ratio qRNK1 1 RM1287-RM10825 Thomson et al., 2010

qSNC1 1 RM1287-RM10793 Thomson et al., 2010

qSNC-12 12 RM1285-RM423 Zheng et al., 2015

qSNC3 3 3528886– id3017899* Gimhani et al., 2016

qSNC10 10 9898598 – id10000153*

qNa3.3 3 RM5626-R3M53 Rahman et al., 2019

Na+ in leaves at vegetative stage qNa+LV-8.2 8 RM3395-RM281

Na+ in leaves at reproductive stage qNa+LR-8.1 8 RM3395-RM281

Na+ conc.in leaf qNaL-1.2 1 HvSSR01-56HvSSR01-70 Pundir et al., 2021

Shoot K+ Conc Trait based QTL 12 G24-R1684 Lang et al., 2001

Trait based QTL 1 G24-R1684 Koyama et al., 2001

qSKC1 1 RM8094-RM10825 Thomson et al., 2010

qSKC-2 2 RM1285-RM423 Zheng et al., 2015

qSKC10 10 13069784 – 9922981* Gimhani et al., 2016

(Continued)
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TABLE 1 Continued

Trait QTLs/Genes Chromosome Flanking markers References

qK-6 6 RM3827-RM340 Sabouri et al., 2009

qK3.2 3 RM5626-R3M53 Rahman et al., 2019

qK12.3 12 RM27615-RM27877

qK3.1 3 RM282-RM156 Puram et al., 2018

Root Na+ content qRNC-9 9 RM201-RM215 Zheng et al., 2015

qNaR-9 9 HvSSR09-11-HvSSR09-39 Pundir et al., 2021

rnc3.1 3 SO3072-SO3099 de Ocampo et al., 2022

Root K+ Conc qRKC-4 4 C891-C513 Lin et al., 2004

qRKC1 1 RM1287-RM11330 Thomson et al., 2010

qRKC6 6 RM19840-RM20350

qKR-1 1 HvSSR01-11-HvSSR01-34 Pundir et al., 2021

qKR-12 12 HvSSR12-11-HvSSR12-28

qKR-7.1 7 HvSSR07-25-HvSSR07-37

rkc3.1 3 SO3072-SO3099 de Ocampo et al., 2022

qSGEM-7 7 CDO59-RG477

Seedling dry matter qSDM-5 5 RZ70-RZ225

qSDM-6 6 CDO544-Amy2A

qSDM-10 10 RZ625-RZ500

Seedling root length qSRTL-6 6 RG162-RG653

Seedling height qSH1.2 1 RM5389-RM5759 Wang et al., 2012

qSH1.3 1 RM3482-RM3362

Trait based QTL 7 C1057-R565

qSL1.3 1 id1023892–id1017885* Rahman et al., 2017

qSL5.3 5 RM163-RM19199

qSHL4.2 4 RM3866-RM3288 Puram et al., 2018

qSHL-5 5 RM13-RM164 Ghomi et al., 2013

Shoot Fresh weight qFWsht1.2 1 id1023892 –id1017885* Rahman et al., 2017

qFWsht6.1 6 id6016941–id6001397*

qSFW-5b 5 RM459-RM3800 Ghomi et al., 2013

qDSW6.1 6 RM6818-RM6811 Wang et al., 2012

qDSW6.2 6 RM340-RM3509

qDWsht5.1 5 id5007714–id5014589*

qDWT8.1 8 RM44-RM515 Puram et al., 2018

qSDW-2 2 RM279-RM5911 Ghomi et al., 2013

Root fresh weight qRFW-4b 4 E36-M59-5E37-M60-3 Ghomi et al., 2013

rdw1.2 1 RM11570-S01132A de Ocampo et al., 2022

qRL-9 9 RM219-RM7038 Zheng et al., 2015

(Continued)
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TABLE 1 Continued

Trait QTLs/Genes Chromosome Flanking markers References

rl2.1 2 RM13332-RM5404 de Ocampo et al., 2022

Plant height qPH2 2 RM13197-RM6318 Thomson et al., 2010

qSTR-3a 3 RM1022-RM6283

Visual tolerance score qSES-2 2 RM1285-RM423 Zheng et al., 2015

Standard Evaluation qSES1.1 1 ud1000711– Id1004348* Rahman et al., 2017

qSES1.3 1 id1024972– id1023892* Gimhani et al., 2016

Overall Phenotypic performance qSES3.1 3 RM5626- R3M53 Rahman et al., 2017

qSES5.2 5 RM163-RM19199 Rahman et al., 2019

Survival % qSur1.1 1 RM472-RM14 Puram et al., 2018

qSTR-3a 3 RM1022-RM6283

Salt survival index qSSI4.2 4 454365 – 24572241* Zheng et al., 2015
* SNPs were used

qSSI10 10 9898598 – id10000153*

Panicle length qPL-2 2 HvSSR02-66-HvSSR02-68 Rahman et al., 2019

Biomass qBM-8 8 HvSSR08-11-HvSSR08-15

qBM-5a 5 E36-M59-10-RM440 Ghomi et al., 2013

High temperature

1. Spikelet fertility
2. Daily flowering time
3. Spikelet fertility and pollen shedding

qSFht2, qSFht4.2
qDFT3, qDFT8,
qDFT10.1,
qDFT11
qPSLht1,
qPSLht4.1,
qPSLht5,
qPSLht7,
qPSLht10.2

2.4
3,8,10, 11
1,4,5,7,10

RM1234–RM3850,
RM3916–RM2431
RM3766–RM3513
RM5891–RM4997
RM6737–RM6673
RM1355–RM2191
RM1196–RM6581
RM7585–Bb38P21
RM1248–RM4915
RM6394–RM1364
RM7492–RM1859

Zhao et al., 2016

Flowering time HT QTL qHTT8 8 LOC_Os08g07010
LOC_Os08g07440

Chen et al., 2021

1. Vegetative stage root length QTL
2. Vegetative stage root length QTL

rlc1.1
rlc1.2
rlc4.1
rlc4.2
rlc4.3
rlc7.1
slc6.1
slc6.2

1,2,.3
1,2

S1_10221082
S1_30191377
S4_100099
S4_1911293
S4_13167045
S7_24934857
S6_9368784
S6_32050861

Kilasi et al., 2018

1. Filled grain number per panicle
2. Grain yield
3. HT Score

RM468 - RM7076
RM241 - RM26212
RM16686 - RM564
RM241 - RM26212
RM26212 - RM127
RM3586 - RM160

Buu et al., 2014

1. Spikelet sterility %
2. Yield per plant

qSTIPSS9.1
qSTIY5.1

1,5 Shanmugavadivel et al., 2017

1. Spikelet fertility % qHTSF4.1 4 Ye et al., 2015

(Continued)
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Submergence reduces the quality and quantity of rice,

especially when it occurs during the reproductive and

maturity stages. Submergence significantly delays flowering

and maturity, reducing grain yield, shoot biomass, harvest

index, and yield components (Marndi et al. , 2022).

Reductions in grain filling, grain number per panicle, and

grain weight are primarily responsible for decreased grain

production due to submergence (Kato et al. , 2014).

Submergence during the vegetative stage affects critical grain

quality parameters, with a higher proportion of hull, brown

rice, and bran in rough rice compared to non-stressed

counterparts, as well as chalky grains, breakage during

hulling, and reduced proportion of amylose, but increased in

crude protein content. Starch accumulation negatively

correlated with ADP-glucose pyrophosphorylase activity in

submerged rice. ADP-glucose pyrophosphorylase (AGPase)

catalyzes the first committed reaction in the pathway of

starch synthesis. ADP-glucose pyrophosphorylase is activated

by posttranslational redox-modification in response to light

and to sugars in leaves of wheat and other plant species

(Ferrero et al., 2020).

Yield losses due to submergence are attributable to a smaller

sink size/capacity and reduced carbohydrate metabolism and

thus reduced partitioning into grain. Djali et al. (2012) reported

that submerged rice had higher protein, moisture, and amylase

contents than the control plants but lower yield, hardness,

stickiness, and brightness. Physiological and biochemical

changes in rice under submergence/flash flooding is given in

Supplementary Table 1. Further, increased starch and non-

structural carbohydrate accumulation positively correlated

with survival percentage under submerged conditions (Panda

and Sarkar, 2014). Table 1 lists QTL/genes identified in rice for

submergence tolerance.
2.3 Impact of salt stress on paddy

Rice is sensitive to soil salinity, which occurs in 25–30% of

irrigated regions of rice, equating to more than 1 billion ha of
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saline or sodic land (Shahid et al., 2018). Rice is more resistant to

salt during the germination and vegetative stages than the

seedling and reproductive stages. High-yielding rice cultivars

at salinity levels >3 dS m–1 suffered yield losses of ~12%, which

increased to ~50% at 6 dS m–1 (Kumar and Sharma, 2020).

Plants subjected to salt stress have delayed seed germination and

seed set, sterile spikelets, and reduced leaf dry matter, leaf area,

tiller number, grains per panicle, pollen viability (Reshma

et al., 2021).

Salt-stressed rice plants suffer from a reduced water

potential, poor nutrient uptake, and increased sodium (Na+)

and chlorine (Cl–) uptake. Salinity stress also affects proline

and anthocyanin contents, peroxidase activity, and Ca2+, Na+,

K+, chlorophyll, and H2O2 concentrations (Negrão et al.,

2017 ) . S a l t s t r e s s s i gn ifican t l y r educed amy lo s e

concentration in a salt-tolerant rice genotype but not a

semi-tolerant genotype, even at low EC (4 mS cm–1) and

alkalinity (pH 9.5), while high EC (8 dS m–1) and alkalinity

(pH 9.8) significantly reduced starch content in both

genotypes, but not the susceptible genotype (Rao et al.,

2013). Details of physiological and biochemical changes in

rice under salinity is listed in Supplementary Table 1. In

addition, salinity (EC 4 and 8 mS/cm) and high alkalinity

(pH 9.8) affected gel consistency in the salt-susceptible

genotype (Rao et al., 2013). Table 1 lists QTL/genes

identified in rice for salinity-related traits.
2.4 Impact of high temperature on paddy

Heat stress in rice is related to specific morphological,

physiological , biochemical , and molecular changes.

Morphological aspects include genotypes that shield the

panicles with their foliage to maintain a lower spikelet

temperature for increased spikelet fertility (Beena et al.,

2018a). An early morning flowering habit also plays a vital

role in plants avoiding high temperatures later in the day

(Hirabayashi et al., 2015; Raghunath and Beena, 2021).
TABLE 1 Continued

Trait QTLs/Genes Chromosome Flanking markers References

1. Spikelet fertility % qHTSF1.2
qHTSF2.1
qHTSF3.1

2,1,3 Ye et al., 2015

1. Spikelet fertility % qHTSF6.1
qHTSF11.2

6,11 Ye et al., 2015

* represents Single NucleotidePolymorphisms (SNPs).
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Physiological mechanisms that provide heat stress tolerance

in rice include an increased membrane stability index, which

reduces reactive oxygen species (ROS) damage to biological

membranes (Kumar et al., 2016). Increased pollen viability

ensures increased fertilization success, maintaining a higher

photosynthetic rate to offset yield losses due to excess

transpiration rate under heat stress (Sinha et al., 2022). An

increased transpiration rate ensures transpirational cooling to

prevent ROS increases (Xiong et al., 2014). Physiological

adaptations play a critical role in protecting membrane

integrity and the biological compounds required to maintain

cellular homeostasis. Heat shock proteins (HSPs), which

maintain the tertiary structure of proteins, are also critical

players in cellular tolerance (Khan and Shahwar, 2020). In

addition, enzymatic and non-enzymatic antioxidants such as

superoxide dismutase (SOD), peroxidase (POD), glutathione

peroxidase (GPX), catalase (CAT), ascorbic acid, phenolic

compounds, and carotenoids are crucial for negating the toxic

effects of ROS (Irato and Santovito, 2021). Physiological and

biochemical changes in rice under high temperature stress is

given in Supplementary Table 1.

Marker-assisted introgression of QTL controlling spikelet fertility

(Vivitha et al., 2018) and earlymorning anthesis traits (Ishimaru et al.,

2022) under high-temperature conditions have contributed greatly to

crop improvement. Table 1 lists QTL/genes identified for

physiological and yield traits in rice under high-temperature stress.
2.5 Impact of elevated CO2 on paddy

CO2 levels have risen from 270 ppm during the pre-industrial

era (1850s) to 400 ppm. At this rate, atmospheric CO2 (aCO2) will

reach eCO2 levels by 2050, estimated at 550 ppm, affecting the

morphology, physiology and biochemistry of rice (Abdelhakim et

al., 2022). A meta-analysis involving 125 studies on the effect of

eCO2 in rice showed that hybrid cultivars respond with higher

biomass and yield over popular indica and japonica types,

primarily due to increased panicle and spikelet numbers,

followed by tiller number. eCO2 levels increase the

accumulation of root biomass more than shoot biomass (Wang

et al., 2018). A three-year experiment in a free-air CO2 enrichment

(FACE) facility revealed a declining proportion of brown, milled,

and head rice under eCO2 (200 ppm above ambient) relative to

aCO2 (Gao et al., 2021). In addition, the eCO2 increased grain

chalkiness, viscosity, and stickiness but, improving palatability;

however, the eCO2 compromised the processing quality and

nutritional attributes such as protein and mineral contents (Ca,

Cu and S; except for K) (Gao et al., 2021). A comparative study at

eCO2 (700 ppm) improved seedling emergence, C/N ratio, and

biomass in two rice genotypes (IR20 and ADT46). Changes in

physiological traits under elevated CO2 is given in Supplementary

Table 1. When subjected to brown plant hopper infestation, the

eCO2-grown plants had greater insect attack, but insect survival
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decreased by several days, relative to the control plants

(SenthilNathan, 2021). Thus eCO2 poses several ecological

effects on rice-based agri-ecosystem.
2.6 Impact of soil nutrient deficit
on paddy

Since the green revolution, fertilizer application is essential

due to the unintentional emergence of fertilizer-responsive,

high-yielding semi-dwarf rice cultivars (Neeraja et al., 2021).

Reported poor nutrient use efficiencies in rice, with 30−50% for

nitrogen, 30% for phosphorous, and 26% for potassium. In

addition to macronutrients, breeders are now paying close

attention to micronutrient deficits (‘hidden hunger’) due to

human health concerns. The most common micronutrient

disorders are Fe insufficiency, Zn deficiency, and B toxicity for

wetland rice and Fe and B deficiency and Mn toxicity for upland

rice (Shrestha et al., 2020).

Rice is the primary source of nutrition for much of the

world’s population. However, rice is deficient in essential fatty

acids, vitamins, minerals, phytochemicals, and amino acids

(Sultana et al., 2022). Zhou et al. (2018) reported positive

effects of nitrogen on the milling and nutritional quality of

rice. Increased nitrogen application increased protein content

but decreased milling quality, appearance, amylose content, gel

consistency, cooking/eating quality, and rice flour viscosity (Zhu

et al., 2017). The nitrogen‐efficient line (OsNRT2.3b‐

overexpressing (O8) and wild type (WT) were treated with

different levels of nitrogen and carbon fertilizers under field

conditions to study the effects of different fertilization treatments

on rice quality. The results showed that the appearance,

nutrition, and taste qualities of O8 were generally high

compared with WT under various fertilization treatment

conditions (Zhang et al., 2022).

Rice is particularly vulnerable to nutrient deficit stress at the

seedling emergence, tillering, panicle initiation, booting, heading,

and maturity stages (Shrestha et al., 2020). During the early and

mid-phases of grain filling, K and Ca control root exudation,

which affects grain quality characteristics such as the proportion

of chalky kernels, chalkiness, and amylose content (Lijun et al.,

2011). N fertilization can affect micronutrient concentrations.
3 Physiological and molecular
implications of combined abiotic
stresses on rice yield and quality

3.1 Effect of combined drought
and temperature

Drought and high-temperature stress often occur

simultaneously in the field, drastically affecting plant growth,
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development, and yield by inducing physiological, biochemical,

and molecular changes and responses that impact various

cellular and whole plant functions (Figure 1). Combined effect

of drought and high temperature is more severe than individual

effects (Dreesen et al., 2012).

3.1.1 Physiological and genetic components
of sensitivity

Drought and heat stress combined affect rice crops at the

cell, organ, plant, and canopy level, ultimately reducing growth

and yield. The combined stress often has conflicting or

antagonistic responses dissimilar to their individual effects.

Vapor pressure deficit (VPD) naturally increases during heat

waves and droughts, impacting rice physiology (Williams et al.,

2014). During heat stress, plants open stomata to cool their

leaves by transpiration but cannot open them when faced with

combined heat and drought stress (Sinha et al., 2022). In

perennial grasses, combined heat and drought stress reduces

PSII function, weakens N anabolism, strengthens protein

catabolism, and increases lipid peroxidation. Long-term

combined heat and drought stress affects growth, leaf gas

exchange, and water use efficiency (WUE) in rice, severely

reducing total biomass relative to individual stresses (Perdomo

et al., 2015; Perdomo et al., 2016).

Rice is more sensitive to drought, heat, and combined stress

during the reproductive stage, specifically flowering, than the

vegetative stage. Combined heat and drought stress at the

seedling and tillering stages resulted in the absence of panicles

for seven African rice cultivars (Mukamuhirwa et al., 2019). The

number of germinated pollens on the stigma decreased when

exposed to heat (81%), drought (59%) and concomitant stress

(Rang et al., 2011). Combined heat and drought stress at
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flowering significantly affected peduncle length, anther

dehiscence, pollen number, pollen germination, spikelet

fertility, and thus yield in rice (Li et al., 2015; Rang et al.,

2010). Heat and drought stress hinder the accumulation of

various seed constituents in rice by inhibiting starch processes

and protein synthesis. Grain quality is more susceptible to

combined stress than yield. High temperature (30°C) inhibited

starch metabolism by decreasing starch synthase activity due to

thermal denaturation (Pravallika et al., 2020). Reduced grain

endosperm starch content is a leading cause of reduced quality

and yield in crops subjected to drought and heat (Worch et al.,

2011). Similar to drought, heat stress decreases starch content

but increases grain protein and mineral concentrations (Mariem

et al., 2021). Heat stress reduced amylose content and partially

altered the fine structure of amylopectin, indicating that the

abnormal expression of the starch synthesizing enzymes is a key

factor causing chalkiness (Nakata et al., 2017).

The changing climate is adversely affecting the nutritional

quality in terms of mineral content and protein, which will

impact human health (Mariem et al., 2021). Higher

temperatures also decrease aroma quality in rice. Basmati rice

had excellent aroma when grown under relatively cool

temperatures in the afternoon (25–32°C) and night (20–25°C)

and 70–80% humidity during the primordial and grain-filling

stages (Singh et al., 2000). It is important to understand the

physiological, biochemical and genetic mechanisms governing

the response to combined heat and drought stress to develop

strategies to improve stress tolerance.

3.1.2 Physiological and genetic components
of tolerance

Plants cope with drought and heat stress through cellular

tolerance via metabolic homeostasis, osmotic adjustment,

cellular membrane stability, oxidative stress management,

production of stress proteins (e.g., late embryogenesis

abundant proteins and HSPs) and secondary metabolites, and

reducing fatty acid desaturation. Sucrose accumulated in the

anthers of rice genotype Nagina 22 under combined drought and

high-temperature stress (Li et al., 2015). Heat shock factors

(HSFs) and HSPs showed differential upregulation in rice, with

HSF7A upregulated under drought stress, HSF2a upregulated

under heat stress, and HSP74.8, HSP80.2, and HSP24.1

upregulated under the combined stress (Piveta et al., 2020).

He et al. (2018) noted that a complex regulatory network

mobilizes these defenses by involving upstream signaling

molecules that transmit the stress signal via hormones, ROS, and

nitric oxide (NO). Under drought and heat stress condition,

overexpression of the gene Rab7 (OsRab7) improved tolerance in

rice by high survival rate, relative water content, chlorophyll

content, gas-exchange characteristics, soluble protein content,

soluble sugar content, proline content, and activities of

antioxidant enzymes (CAT, SOD, APX, POD) than that of the

wild-type. In contrast, the levels of hydrogen peroxide, electrolyte
FIGURE 1

The physiological aspects of sensitivity to combined drought and
high temperature stress in rice with respect to grain yield, and
quality.
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leakage, and malondialdehyde of the transgenic lines were

significantly reduced when compared to wild-type. Furthermore,

the expression of four genes encoding reactive oxygen species

(ROS)-scavenging enzymes (OsCATA, OsCATB, OsAPX2,

OsSOD-Cu/Zn) and eight genes conferring abiotic stress tolerance

(OsLEA3, OsRD29A, OsSNAC1, OsSNAC2, OsDREB2A,

OsDREB2B, OsRAB16A, OsRAB16C) was significantly up-

regulated in the transformed rice lines as compared to their

expression in wild-type (El- Esawi and Alayafi, 2019).

Combined heat and drought stress studies have been

undertaken on a few cultivars in rice, with one study

identifying Nagina 22 as the only tolerant cultivar (Reshma

et al., 2021). Therefore, systematic screening of rice germplasm

and mapping populations are needed to identify and introgress

QTL into elite cultivars. Genome-wide association studies can

identify QTL/genes for dissecting the genetic basis of combined

stress tolerance. The grain-filling stage is one of the most

important phases that determine yield. Stay green traits can be

used as an indicator of sustainable assimilate supply and stem

reserve utilization to promote seed filling under stressful

conditions (Abdelrahman et al., 2017). There is an immense

need to identify plant species and genotypes tolerant to

combined stresses (Zandalinas et al., 2018) and tailor

genotypes with acceptable performance under combined

drought and high-temperature stress for sustainable

crop production.
3.2 Effect of combined drought and
elevated CO2

3.2.1 Physiological and genetic components
of sensitivity

Rice requires 5000 L of water to produce 1 kg biomass and

3,000–5,000 L for 1 kilo grain (Mainuddin et al., 2020). Studies

in controlled environment chambers showed that eCO2 reduced

evapotranspiration, allowing photosynthesis to continue for 1–2

days longer than aCO2 under drought stress (Supplementary

Figure 1). While the saturation point for CO2 is 500 ppm in rice,

the down regulation of photosynthesis occurred beyond 900

ppm. In addition, eCO2 attenuated the canopy dark respiration.

Dark respiration has physiological relevance, as the energy

derived is used for plant growth and metabolism (Zou and Xu,

2021). The reduced stomatal aperture increased the canopy

temperature due to the suppression of transpiration.

Prolonged exposure to eCO2 also reduced the net

photosynthetic rate. The resultant decrease or increase in yield

will be location specific, influenced by regional temperatures.

Drought stress increases ABA content, which affects CO2 intake.

Drought stress also reduces the levels of RuBisCo large and small

subunits at the proteomic level. Thus plants cannot harness all of

the benefits of CO2 fertilization under drought stress (Perdomo

et al., 2017).
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Prolonged drought stress significantly decreases some core

physiological traits. The eCO2 treatment increased RuBisCo

activity by 17.5% compared to the aCO2 treatment. One study

showed that eCO2 (700 ppm) treated plants under drought stress

had a 40% lower CO2 exchange rate than drought-stressed plants

under aCO2 (350 ppm). The Km of RuBisCo also decreased

compared to irrigated and drought-stressed plants under aCO2.

Plants raised in a CO2-enriched atmosphere had higher RuBisCo

content and activity after ~20 days of drought stress, but this

comparative advantage did not occur after ~30 days of stress. In

this situation, eCO2 plants had inferior physiological traits.

Prabnakorn et al. (2018) reported that rice production would

suffer more under climate change events, where increases in CO2

cannot mitigate the adverse effects on rice productivity.

3.2.2 Physiological and genetic components
of tolerance

Rice grown under eCO2 has more tillers and higher grain

yield (Cho and Oki, 2012). eCO2 increased biomass by 5.7% due

to an increased leaf area index and leaf water potential in rice

(Kumar et al., 2017). Certain simulation models have

highlighted the significance of CO2 fertilization in assisting

crops to withstand water deficits (Kang et al., 2021). A meta-

analysis study on rice, wheat, and maize under increased CO2

levels and drought stress revealed that the CO2 component alone

increased grain yield and starch content but decreased protein

and mineral contents. The inevitable consequence of stomatal

conductance for CO2 leads to loss of water, affecting the

proportion of net photosynthesis to transpiration rate (i.e.,

transpiration efficiency), as a function of leaf anatomical

features that determine the utilization of CO2 levels in the

atmosphere (Ouyang et al., 2017). Under eCO2 (700 ppm), the

imposition of drought stress had less effect on yield attributes

than aCO2 and reduced water use by 10% (Shanker et al., 2022)

Similarly, combined eCO2 and drought stress maintained

canopy net photosynthesis by 6−12%. CO2 supply extended

the maintenance of mid-day photosynthesis for a few days,

which had an ameliorative effect on rice.

In rice, a soil matric potential of –40 kPa (~43% moisture) or

below results in water deficit stress (Kumar et al., 2019). An

eCO2 (550 ppm) treatment at a 2°C elevated temperature

imparted intrinsic drought (–40 kPa) stress tolerance traits in

aerobic rice genotypes (CR-143-2-2, APO, and CR Dhan 201),

reducing antioxidant enzyme (SOD, POX, CAT) activities in

leaves (Padhy et al., 2018). Drought stress also decreased the

aboveground biomass and yield in IR72. However, an eCO2 (700

ppm) treatment maintained higher rice biomass and yield than

aCO2 (350 ppm), with both CO2 regimes maintaining a

comparable harvest index in corresponding treatments. Both

CO2 regimes increased sucrose and reduced starch content in

drought-stressed IR72, reducing grain quality. Plants raised

under aCO2 conditions exposed to drought stress had more

pronounced reductions (45%) in sucrose phosphate synthase
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activity (sucrose biosynthesis enzyme) than those raised under

eCO2 (Wang et al., 2022).

Under drought stress, ABA acts as the primary regulator of

stomatal closure, eCO2 delays the sunthesis of ABA. Crosstalk

also occurs between these two components at the aquaporin level

(Li et al., 2020). A brassinosteroid (BR) treatment ameliorated

the ill-effects of drought stress by improving CO2 assimilation

(Raghunath et al., 2021; Lakshmi et al., 2022). The induction of

endogenous BR under drought stress might help accumulate

carbon. A study on d1 mutants for the Ga subunit (of

heterotrimeric G protein complex) gene RGA1 (Rice Ga
subunit 1) reported that Nipponbare and Taichung 65 had

higher mesophyll conductance for CO2 than the wild type and

likely had higher WUE and productivity under drought stress

(Zait et al., 2021). Overexpression of the OsEPF1 (Epidermal

Patterning Factor 1) gene reduced stomatal density in rice,

enhancing drought tolerance but compromising yield, which

improved with 450–480 ppm CO2 supply. Such a plant type will

benefit future climate scenarios with scant rainfall and elevated

CO2 (Caine et al., 2019).
3.3 Effect of combined high temperature
and eCO2

3.3.1 Physiological and genetic components
of sensitivity

Periods of high temperature and eCO2 concentration due to

anthropogenic activities threaten rice production (Supplementary

Table 2). eCO2 should enhance the photosynthetic rate, increasing

total yield and productivity (Kant et al., 2012; Hasegawa et al.,

2013) because CO2 is directly involved in major physiological

processes such as photosynthesis and stomatal conductance.

Rising temperatures reduce rice yield alone or in combination

with eCO2 (Wang et al., 2020). A higher respiration rate and

declining membrane thermostability reduce rice yield under high

night temperature (HNT) conditions (Mohammed and Tarpley,

2010). The decreased membrane stability index in susceptible rice

varieties under elevated temperature was related to the extent of

lipid peroxidation by ROS (Das et al., 2014; Kumar et al., 2016).

The most sensitive stages to high-temperature stress in rice

are booting, anthesis, and fertilization. Several studies have

investigated the effect of high temperature and eCO2

concentrations in rice in growth or open-top chambers. The

closed chamber experiments revealed that rice is highly

susceptible to heat stress and heat-induced spikelet sterility

(HISS) at flowering, resulting in yield losses. eCO2 cannot

ameliorate yield losses due to the high temperature (Wang

et al., 2018). Cai et al. (2016) and Wang et al., (2018, 2020)

reported that rising temperatures decreased panicle number per

unit area and spikelet number per panicle, decreasing rice yields;

these effects escalated under eCO2. eCO2 alone exacerbates HISS

as stomatal closure increases the canopy temperature, with a
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stimulatory effect on biomass production, but an increase in

night temperatures counteracts this effect. Significant

compromises in yield occur due to the higher respiratory cost

of the increased biomass. Night respiration increased by 4–18

mg C hill–1 h–1 in rice genotypes under eCO2 and HNT at

various crop stages before heading (Shanker et al., 2022).

The interactive effect of heat stress and eCO2 adversely

impacts rice growth, development, and pollen viability (Mittler

et al., 2012). Decreased anther dehiscence, poor pollen shedding,

poor pollen grain germination on stigmas, and decreased pollen

tube elongation led to spikelet sterility under heat stress. Raised

night temperatures have more adverse effects than raised day

temperatures due to deprived anther dehiscence, impaired

pollination, abnormal pollen germination, and floret sterility

(Das et al., 2014; Fahad et al., 2018). Floral sterility under high

temperatures reduces sink demand due to the reduction in

carbohydrate transfer from shoots to grain (Madan et al.,

2012). Active selection and breeding for the eCO2 response

and HNT-resilient rice are needed to compensate for

yield losses.

Heat stress during the reproductive and grain-filling stage

reduces rice yield by diminishing the proportion of fertile

spikelets (Beena et al., 2018a), shortening the grain-filling

period (Ahmed et al., 2015), and reduction in sink activity

(Kim et al., 2011). Thus, elevated CO2 and high-temperature

stress during flowering and early grain filling significantly reduce

rice seed set and thousand-grain weight (Chaturvedi et al., 2017).

eCO2 and high temperature also shorten the phenology of rice.

Rice grain quality is reflected in parameters such as head and

chalky rice rate, amylose and protein contents, and edible

quality, as indicated by gel consistency. As CO2 and

temperature increased, rice grain appearance initially declined

but then improved (Liu et al., 2017). Exposure to high

temperature during ripening causes abnormal morphology and

grain discoloration in rice, probably due to reduced enzymatic

activity related to grain filling, respiratory consumption of

assimilation products, and decreased sink activity. Combined

eCO2 and high-temperature stress significantly affects amylose

content and gel consistency (Supplementary Figure 2). Madan

et al. (2012) reported a slight decrease in amylose content and gel

consistency in the sensitive genotype IR64, which carries one of

two heat-sensitive alleles responsible for amylose accumulation

during grain filling.

Soluble protein is the principal holder of plant nitrogen and

an important index for measuring leaf aging. Liu et al. (2017)

documented that soluble protein content did not vary widely

across rice growth stages under eCO2 and high-temperature

conditions. In another study, eCO2 stimulated grain production

and starch accumulation but negatively affected nutritional traits

such as protein and mineral contents (Mariem et al., 2021). The

severity of eCO2 and high-temperature stress increases when the

stress period coincides with flowering and grain filling and

further intensified by high canopy temperatures associated
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with stomatal opening. Elevated CO2 combined with canopy

warming affects plant C, N, and P ratios due to insufficient N

uptake and allocation (Wang et al., 2019). The whole plant C/N

ratio will remain unaffected if C assimilation and N absorption

both increase under eCO2 and HNT conditions (Cheng

et al., 2010).

3.3.2 Physiological and genetic components
of tolerance

Being a C3 crop, rice theoretically will benefit from the eCO2

fertilization effect, whereas the concomittent increase in

temperature will negate the positive benefit of eCO2

(Chaturvedi et al. , 2017). At the cellular level, the

photosynthetic response to eCO2 will be greater at higher

temperatures due to the reduction in RuBisCo activity. In

addition, canopy photosynthesis will significantly increase with

eCO2, which could negate the adverse effects of high-

temperature stress on the C3 pathway (Kadam et al., 2014).

In contrast to high day temperature (HDT) stress, rice lacks

an escape or avoidance mechanism under HNT stress

(Bahuguna et al., 2014; Bahuguna et al., 2015; Hirabayashi

et al., 2015). However, rice may have an enhanced ability to

meet the increased carbon demand under increased night

respiration, minimizing the negative impact of HNT on grain

yield and quality (Impa et al., 2020). The usefulness of increased

crop responsiveness to eCO2 under warmer nights has not been

investigated. Bahuguna et al. (2022) reported that rice cultivars

with significantly higher CO2 responsiveness could fix the

additional carbon available under future scenarios.

FACE experiments revealed that eCO2 significantly reduced

rice grain quality. However, newly developed heat-tolerant rice

cultivars retained high grain quality under eCO2 (Usui et al.,

2014), suggesting that current breeding efforts for heat tolerance

will be useful for the projected climate change scenarios. Under

climate change, the photosynthetic apparatus should be

improved and some physiological responses such as stomatal

conductance and transpiration rate should be maintained. The

sensitivity of rice to HNT could be overcome by surveying

germplasm to develop climate-resilient varieties for eCO2

responsiveness through marker development and genomic

mapping (Silva et al., 2020; Bahuguna et al., 2022).

Supplementary Figure 2 shows the interactive effect of high

temperature, and eCO2.
3.4 Effect of combined salinity and
drought stress

3.4.1 Physiological and genetic components
of sensitivity

Salinity and drought stress disrupt morphological features

and physiological and biochemical processes in rice. While these

stresses have their respective domains and scopes, drought and
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salinity stress often co-occur in natural field environments (Fan

et al., 2015; Paul et al., 2019; Yadav et al., 2022). The severity and

occurrence of combined drought and salinity stress are expected

to increase with global environmental changes, which could have

profound implications on the food supply. This combined stress

is a major limiting factor for rice cultivation and productivity

(Landi et al., 2017), triggering oxidative, osmotic, and

temperature stresses leading to cellular dehydration and

reduced cytosolic and vacuolar volume (Fan et al., 2015). ROS

production under combined salinity and drought stress

amplifies the damage to proteins, DNA, and membranes

(Landi et al., 2017), reducing the photosynthetic rate and

efficiency and inducing programmed cell death; thus reducing

yields by more than 30% each year (Bhar, 2020).

Several studies have shown that drought and salt stress share

similar initial plant responses, resulting in ion toxicity in the long

term. Salinity and drought stress both cause physiological water

deficits that affect all plant organs to varying degrees. However,

plants react to hyper-ionic and hyper-osmotic stress under

extended salt stress. Concomitantly large VPD also increases

under drought stress. The effect of drought and salinity on

photosynthesis ranges from restricted CO2 diffusion into

chloroplasts, limited stomatal opening mediated by shoot and

root-generated hormones and CO2 transport through the

mesophyll, and changes in leaf photochemistry and carbon

metabolism (Ma et al., 2020). The combined effect of drought

and salinity at early stages (germination, seedling establishment,

and tillering) delays transplantation (in rainfed lowlands) or crop

establishment (in uplands) and stunts growth, resulting in poor

stand establishment and ultimately reducing the number of panicles

per unit area and panicle size. The combined stresses at the

reproductive stage (panicle initiation, flowering, and grain filling)

cause varying degrees of spikelet sterility and poor grain filling, with

greater detrimental effects on grain yield (Ali et al., 2022).

3.4.2 Physiological and genetic components
of tolerance

Most drought and salt stress studies focus on roots and shoots,

with measurements of physiological and genetic parameters (Qin

et al., 2020; Hao et al., 2022). Among them, ABA plays an

important role in plant responses to abiotic stresses (Zhao et al.,

2021). The overexpression of OsPYL5 can improve drought and

salt tolerance through ABA-mediated processes (Ruiz et al., 2021).

Secondarymessengers such as Ca2+ and ROS can alleviate osmotic

stress damage and improve drought and salt tolerance through

ABA-dependent/independent pathways. In addition, H2O2 plays a

vital role in stomatal closure through ABA-dependent and ABA-

independent pathways (Chen et al., 2021). Under drought and salt

stress, stress-response genes increase plant resistance by activating

the associated proteins and accumulating protective metabolites.

Downregulating the expression of DST1 (DROUGHT AND SALT

TOLERANT 1), ABIL2 (ABL INTERACTOR-LIKE PROTEIN 2),

and HDA704 (histone deacetylase) positively regulates drought
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and stress tolerance in rice. hda704 knockdownmutants exhibited

susceptibility to drought and salinity stress. HDA704 imparts

drought tolerance by promoting stomatal closure (Zhao et al.,

2021). Shikimate pathway is known to be activated under abiotic

stress conditions, such as drought and salinity, resulting in the

accumulation of high levels of aromatic amino acids and related

secondary metabolites (Francini et al., 2019). Overexpression of

OsSKL2 in rice increased tolerance to salinity, drought and

oxidative stress by increasing antioxidant enzyme activity, and

reducing levels of H2O2, malondialdehyde, and relative electrolyte

leakage (Jiang et al., 2022).

3.5 Effect of combined salinity and
submergence stress

The changing climate and resultant rise in sea water levels

lead to unexpected spells of multiple abiotic stresses at different

stages of paddy production. In coastal areas, increasing

temperatures, erratic rainfall, and inundation of saline water

due to sea-level rises can change the micro-environment in

fields. Studies are limited in this arena for rice. Tolerant rice

genotypes adapt to combined salinity and submergence due to

the presence of well-developed constitutive aerenchyma and

increased ethylene production and respiratory burst oxidase

homolog (RBOH) signaling. RBOH-mediated ROS production

resulted in the development of constitutive aerenchyma in a

saline and flooding tolerant rice variety, Rashpanjor

(Chakraborty et al., 2021). Chlorophyll fluorescence imaging

identified tolerant varieties under combined salinity and partial

submergence (Pradhan et al., 2018).
3.6 Effect of combined salinity and high
temperature

High temperature and salinity in tropical coastal belts derail

rice productivity. Exposure to salinity and high temperature, in

combination or in tandem, changes rice growth patterns, defense

mechanisms, reproduction, and survival functions, reducing shoot

fresh weight, relative water content, photosynthetic pigments, and

protein content and increasing proline and SOD activities. A

saline-tolerant rice variety, YNU31-2-4, under combined high

temperature and salinity stress, downregulated K+ transporter

OsHKT1;5 and upregulated OsHSP18, OsP5CS, and Na+/H+

antiporter OsNHX (Nahar et al., 2022). However, under

combined stress condition Nagina-22 performed well than other

genotypes in terms of proline content, cell membrane stability

index, SOD activity, pollen viability, spikelet fertility, and yield per

plant and lower lipid peroxidation and Na+/K+ ratio than

susceptible genotypes (Ali et al., 2021). Combined effects of

various abiotic stresses on physio-biochemical traits in rice is

given in Supplementary Table 2. Figure 2 shows the interactive

effect of high temperature, eCO2. and drought.
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Rice (Oryza sativa L.) is the staple food crop consumed by

much of the world’s population. Projected rice statistics for

2021–22 estimated global production of 505.4 million tons, an

increase of 1.9 million tons than previous year, mainly attributed

to China, Bangladesh, South Korea, and Taiwan. Paddy is

cultivated primarily in tropical climates, where water scarcity,

high temperatures, salinity, and nutrient deficits can significantly

reduce yields. Rapid fluctuations in environmental conditions

can impact the adaptive ability of rice, further impairing its

productivity. Various abiotic stresses affect seed germination,

seedling establishment, shoot and root lengths, plant height,

days to flowering, grain filling, maturity, and grain quality.

Abiotic stresses during both vegetative and reproductive stage

compromise panicle development and grain filling, impacting

overall grain production and jeopardizing global food security.

Genomics and QTL-based approaches have helped identify

genes and loci responsible for abiotic stress tolerance in rice.

Introgressing these newly identified molecular candidates can

improve rice physiological growth under suboptimal conditions

and stimulate reproductive development and grain production.

However, further studies involving next-generation sequencing

platforms and high-throughput phenotyping will help identify

novel candidate genes responsible for regulating grain

development in combined stress situations and pave the way

for developing climate-ready crops.
FIGURE 2

The physiological aspects of tolerance to various paired
combinations of high temperature, water deficit stress and
elevated CO2 with respect to grain yiled, and quality in rice.
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