
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Linkai Huang,
Sichuan Agricultural University, China

REVIEWED BY

Danmei Liu,
Shanxi University, China
Peizhi Yang,
Northwest A&F University, China

*CORRESPONDENCE

Yuxiang Wang
wyx9868@163.com
Yongzhen Pang
pangyongzhen@caas.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Plant Breeding,
a section of the journal
Frontiers in Plant Science

RECEIVED 16 July 2022
ACCEPTED 01 September 2022

PUBLISHED 11 October 2022

CITATION

Li Q, Jiang W, Jiang Z, Du W, Song J,
Qiang Z, Zhang B, Pang Y and Wang Y
(2022) Transcriptome and functional
analyses reveal ERF053 from
Medicago falcata as key regulator in
drought resistances.
Front. Plant Sci. 13:995754.
doi: 10.3389/fpls.2022.995754

COPYRIGHT

© 2022 Li, Jiang, Jiang, Du, Song,
Qiang, Zhang, Pang and Wang. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply
with these terms.

TYPE Original Research
PUBLISHED 11 October 2022

DOI 10.3389/fpls.2022.995754
Transcriptome and functional
analyses reveal ERF053 from
Medicago falcata as key
regulator in drought resistances
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Jiaxing Song3, Zhiquan Qiang3, Bo Zhang1, Yongzhen Pang2*

and Yuxiang Wang1*

1Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education,
Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science,
Xinjiang Agricultural University, Urumqi, China, 2Institute of Animal Science, Chinese Academy of
Agricultural Sciences, Beijing, China, 3College of Grassland Agriculture, Northwest A&F
University, Shanxi, China
Medicago falcata L. is an important legume forage grass with strong drought

resistant, which could be utilized as an important gene pool in molecular breed

of forage grass. In this study, M. falcata seedlings were treated with 400 mM

mannitol to simulate drought stress, and the morphological and physiological

changes were investigated, as well as the transcriptome changes of M. falcata

seedlings at different treatment time points (0 h, 2 h, 6 h, 12 h, 24 h, 36 h and

48 h). Transcriptome analyses revealed four modules were closely related with

drought response in M. falcata by WGCNA analysis, and four ERF transcription

factor genes related with drought stress were identified (MfERF053, MfERF9,

MfERF034 and MfRAP2.1). Among them, MfERF053 was highly expressed in

roots, and MfERF053 protein showed transcriptional activation activity by

transient expression in tobacco leaves. Overexpression of MfERF053 in

Arabidopsis improved root growth, number of lateral roots and fresh weight

under drought, salt stress and exogenous ABA treatments. Transgenic

Arabidopsis over-expressing MfERF053 gene grew significantly better than

the wild type under both drought stress and salt stress when grown in soil.

Taken together, our strategy with transcriptome combined WGCNA analyses

identified key transcription factor genes from M. falcata, and the selected

MfERF053 gene was verified to be able to enhance drought and salt resistance

when over-expressed in Arabidopsis.
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Introduction

Drought is one of the most serious abiotic factors that can

cause significant damage to both agriculture, human and

livestock populations (Gupta et al., 2020). Forage grass are

subjected to damage caused by drought stress due to the lack

of rainfall and insufficient water supply over a long period of

time, which eventually leads to a significant decrease in yield

(Ray et al., 2015). Therefore, in order to largely prevent

environmental damage, plants themselves have evolved specific

regulatory protection mechanisms (Pinhero et al., 1997). During

drought stress, dramatic changes occur from biochemical and

physiological to gene expression and metabolic processes (Rao

et al., 2020; Waititu et al., 2021). Drought stress system promotes

the production of metabolites such as proline, initiates the

antioxidant defense system internal to scavenge increased

reactive oxygen species (ROS), prevents cell damage by

scavenging free radicals, reduces the degree of membrane lipid

peroxidation, and maintains membrane integrity (Wang et al.,

2009; Anjum et al., 2011; Wei et al., 2019). Many drought related

genes had been identified and used as candidate genes in genetic

engineering, such as EDT1 (Yu et al., 2016), MfNACsa (Duan

et al., 2017), CYT75B1 (Rao et al., 2020), MYB30 (Wen et al.,

2021), CBF4 (Haake et al., 2002) and ERF172 (Zhao et al., 2020).

Among them, many of them are transcription factors, and they

play key roles in regulating the expression of downstream

targeted genes and metabolic pathway.

AP2/ERF superfamily transcription factors are one of the

largest plant-specific transcriptional regulator groups in plants,

with a conserved AP2/ERF DNA-binding structural domain of

57-66 amino acids in size (Okamuro et al., 1997). Ethylene

responsive factors (ERFs) belong to AP2/ERF superfamily,

which participate in plant response to hormone and abiotic

stress (Qiang et al., 2010; Gibbs et al., 2015; Jung et al., 2017).

In rice, overexpression of JERF3 and OsERF115/AP2/EREBP110

can increase the soluble sugar and proline content of transgenic

plants, up-regulated the expression of P5CS gene under drought

stress, and improve the tolerance of crops to drought and osmotic

stress (Thoenes et al., 2004; Zhang and Huang, 2010). In addition,

overexpression of tomato ethylene response factor ERF (TSRF1)

in rice can improve permeability and drought resistance through

binding GCC box, and up-regulated the expression of MYB,

MYC, proline synthesis and photosynthesis-related genes (Quan

et al., 2010), activated the expression of the abscisic acid (ABA)

synthesis gene SDR, thereby enhanced the sensitivity of transgenic

rice to ABA. However, overexpression of OsDERF1 down-

regulates ethylene synthesis and negatively affects drought

tolerance (Zhai et al., 2012). OsERF71 positively regulates ABA

signaling to alter root structure and impart drought tolerance

(Dong-Keun et al., 2016; Li et al., 2018). NtERF172 acts as a

positive factor in drought stress tolerance, transgenic tobacco

showed higher oxidase activity, and lower H2O2 accumulation,
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in part by regulating the dynamic balance of CAT-mediated H2O2,

thereby exhibited greater drought tolerance (Zhao et al., 2020).

M. falcata is widely distributed in northern China, and most

of them are wild resources with good drought resistance and

good palatability, providing rich nutrients for cattle, sheep and

other livestock (Yue and Zhou, 2004). By cross-pollination, M.

falcata can be crossed with alfalfa to produce Medicago varia

with stronger resistance and higher utilization value, therefore

M. falcata is an important gene source for Medicago breeding

(Wang et al., 2008; Kang et al., 2011). In M. falcata, some genes

have been reported to be associated with abiotic stress response,

including MfNACsa (Duan et al., 2017), MfNAC3 (Qu et al.,

2016),MfUSP1 (Gou et al., 2020), and galactinol synthase gene 1

(MfGolS1) (Zhuo et al., 2013). At present, the functional study

on ERF genes in response to drought are not clear in M. falcata.

In this study, we explored the physiological and molecular

responses to drought stress in M. falcata seedlings, and the

correlation analysis of the clustered modules with physiological

indicators analyzed by WGCNA. Combined with these analysis,

an ERF gene was found to be strongly correlated with drought-

related module, suggesting a potential role in drought stress.

Furthermore, we reported the functional characterization of

MfERF053 in conferring multiple resistances to abiotic stresses

by over-expression in Arabidopsis.
Materials and methods

Plant materials and sample collection

Seeds of M. falcata were provided by the Key Laboratory of

Grassland Resources and Ecology of Western Arid Region,

Ministry of Education, College of Grass Industry, Xinjiang

Agricultural University. The seedlings were grown at the

Institute of Animal Science, Chinese Academy of Agricultural

Sciences, Beijing. To ensure the consistency of seed germination,

seeds with uniform size and fullness were selected and gently

scratched with knife. The seeds were then sterilized with 75%

ethanol for 10 min, 5% sodium hypochlorite for 10 min,

followed by wash with sterile water for 4-5 times. The seeds

were then sow on 1/2 MS medium, and placed at 4 °C for 3 days,

and then in an light incubator at 22 °C for germination (16 h

light/8 h darkness). Seedlings were transferred into flasks

containing different concentrations of mannitol for drought

treatment. The concentrations of mannitol were 200 mM, 300

mM, 400 mM, 500 mM, 600 mM, and the treatment without

mannitol was set as the control group (CK) in this study.

In this experiment, the treatment with 400 mM mannitol

were selected for physiological index determination, and seven

different treatment time points were selected with 15-day-old

seedlings, these samples were collected at 0 h (CK), 2 h, 6 h, 12 h,

24 h, 36 h and 48 h. For each treatment time point, three
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biological replicates were performed with 15 plants with whole

seedlings for each replicate, samples were quickly collected and

frozen in liquid nitrogen, and stored in a -80°C refrigerator.
Measurement of physiological index

The content of MDA, Proline, SOD, CAT and POD in 15-

day-old seedlings as for transcriptome sequencing were

measured according to the instruction manual as provided at

the website (https://www.solarbio.com/), and they were

measured by using spectrophotometry methods. Statistical

analysis was performed by one-way analysis of variance

(ANOVA) and Duncan multiple tests using SPSS 22.0.
RNA extraction and library construction
for transcriptome analysis

The Eastep Super Total RNA Extraction Kit was used for

RNA extraction (Promega Biotech, Shanghai, China). RNA

quality was assessed on an Agilent 2100 Bioanalyzer (Agilent

Technologies, Palo Alto, CA, USA) and checked using RNase

free agarose gel electrophoresis. Twenty-one cDNA libraries

were constructed, then the cDNA fragments were purified

with QiaQuick PCR extraction kit (Qiagen, Venlo, The

Netherlands), end repaired, poly(A) added, and ligated to

Illumina sequencing adapters to sequence. The ligation

products were size selected by agarose gel electrophoresis, PCR

amplified, and sequenced using Illumina HiSeq2500 by Gene

Denovo Biotechnology Co. (Guangzhou, China).
Raw data processing, sequence assembly
and functional annotation

Raw read containing adapters or low quality bases will affect

the following assembly and analysis, which were uploaded in

NCBI SRA (http://www.ncbi.nlm.nih.gov/sra): SRR19146603-

SRR19146623. Thus, to get high quality clean reads, reads

were further filtered by fastp (Chen et al., 2018) (version

0.18.0). An index of the reference genome was built (Chen

et al., 2020), and paired-end clean reads were mapped to the

reference genome using HISAT2. 2.4 (Kim et al., 2015) with

“-rna-strandness RF” and other parameters set as a default.
Identification of differentially expressed
genes and PCA analysis

Analyses on differentially expressed genes were performed by

DESeq2 software (Love et al., 2014) between two different groups,

and by edgeR (Smyth, 2010) between two samples. The criteria of
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differentially expressed genes/transcripts (DEGs) screening was set

as FDR<0.05 and |log2FC|>1. Principal component analysis (PCA)

was performed with R package models (http://www.r-project.org/).
WGCNA analysis

WGCNA (Weighted gene co-expression network analysis) is

an analytical method to analyze the gene expression patterns of

multiple samples (Zhang and Horvath, 2005), which allows

clustering genes with similar expression patterns, and

analyzing the association between modules and specific traits

or phenotypes. Therefore, in this study, physiological indicator

traits were analyzed in association with gene modules, using the

R language package (Langfelder and Horvath, 2008). For

annotation of the biological functions of the DEGs, GO and

KEGG pathway enrichment analyses were performed with

agriGO 2.0 (https://systemsbiology.cau.edu.cn/agriGOv2/) and

KOBAS 3.0 (https://kobas.cbi.pku.edu.cn/), respectively.
Quantitative real-time PCR

Four MfERF genes were selected for validation using qRT-

PCR. Actin gene was amplified as internal standard gene, and

AlleleID 6 Tool was used to design the gene-specific primers

(Table S1), relative expression level was normalized by

comparing with control and calculated using 2-DDCt method

(Livak and Schmittgen, 2001), qRT-PCR analysis program was

as follows: one cycle at 95°C for 15 min, followed by 40 cycles at

95°C for 10 s, 60°C for 20 s and 72°C for 30 s.
Gene cloning and analyses on sequences
and phylogenetic relationship

The full-length coding DNA sequence (CDS) of MsERF053

was isolated from the roots of Medicago falcata, and cloned into

pENTR vector for sequencing. The protein sequence of the

homologous gene was selected by blast and multiple sequence

comparisons. DNAMAN software was used to perform multiple

sequence alignment. The phylogenetic tree was developed using

protein sequences from Medicago truncatula, Medicago sativa,

Medicago ruthenica, Mucuna pruriens, Arabidopsis thaliana,

Glycine sopa, Vigna angularis and Vigna radiata with MEGA

7.0 (http://www.megasoftware.net) and visualize by using

Evolview with bootstrap value of 1000 replications.
Transactivation assay

The open reading frame of MfERF053 was also cloned with

gene-specific primers by seamless cloning with KOD
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polymerase. The transactivation construct was generated by

inserting the full-length sequence of MfERF053 into the Kpn I

and Xba I sites of vector pCAMBIA1300BD. The BDGAL4

plasmid was used as control, and BDGAL4-MfERF053

recombinant plasmid were transformed into A. tumefaciens

strain GV3101 and infiltrated into leaves of N. benthamiana as

previously reported (Yang et al., 2021). After 48 h, the leave

samples were taken separately, the proteins were extracted and

the activity was determined.
Phenotypic analysis of transgenic
Arabidopsis over-expression MfERF053

MfERF053 gene was cloned into the plant overexpression

vector pB2GW7 and transformed into the Agrobacterium

tumefaciens strain GV3101 for transformation in Arabidopsis

by using floral dipping method. Three over-expression lines

(OE19, OE20 and OE33) of T3 generation and wild type

Columbia-0 (Col) plants were used for subsequent phenotype

analyses. Seedlings were grown in soil at 24°C (16 h light/8 h

darkness), 70%-80% relative humidity, and 400 mmol·m-2·s-2

light intensity.

We transferred four-day-old transgenetic and wild type

Arabidopsis plants that were germinated on plates containing

1/2 MS medium to plates containing 1/2 MS medium supplied

with different concentrations of mannitol (300 mM and 400

mM), NaCl (100 mM, 125 mM, 150 mM and 200 mM) and ABA

(50 mM, 100 mM, 150 mM and 200 mM). Root length, lateral root

number and fresh weight were measured after 10-day treatment.

Each measurement contained 10 seedlings with triplicates.

Seedlings grown in soil under normal conditions for 30 days

were used for stress treatment. For drought stress, seedlings were

grown without water for 15 days, then rewatered for 5 days. For

salt stress, transgenic and wild type Arabidopsis plants were

treated with 300 mM NaCl for 7 and 12 days, and the seedlings

were photographed, respectively.
Results

Analysis of phenotypic and
physiological indicators of M. falcata
under drought stress

Initially, four-week-old M. falcata seedlings were subjected

to mannitol treatment with concentration of 200 mM, 300 mM,

400 mM, 500 mM, and 600 mM. Mannitol treatment inhibited

the growth ofM. falcata, and the root length gradually decreased

and the number of lateral roots significantly decreased with the

increase of mannitol concentration (Figure S1A). These

seedlings were more severely stressed and showed purplish-red

root color and wilted leaves at mannitol concentration of 500
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mM and 600 mM (Figure S1A), thus a relatively lower

concentration of 400 mM mannitol was selected for

subsequent experiments.

Seedlings were subjected to mannitol treatment (400 mM) at

different time points (0 h, 2 h, 6 h, 12 h, 24 h, 36 h and 48 h). The

seedlings grew normally at 2 h, and the leaves appear slightly

wilted at 6 h, and started to lose water at 24 h, and finally the

leaves wrinkled and severely wilted at 48 h (Figure S1B). It was

clear that leaf wilting became more severe with stress time, and

M. falcata responded to mannitol stress in a relatively short

period of time.

To study the effect of drought stress on physiology changes in

M. falcata, seedlings stressed with 400 mM mannitol at different

time points were subjected to determine physiological indicators,

including content ofMDA, proline, and activity of SOD, POD and

CAT (Figure 1). MDA content gradually increased from 2 h to

about 55 mmol/g, and then gradually increased from 6 h to 48 h

and reached the highest content at 48 h, indicating that the cells

were most severely damaged by the treatment (Figure 1A).

Drought stress significantly affected proline content in M.

falcata plants at later stage (Figure 1B), with 10-fold increase

(p<0.01) to 200 mg/g at 24 h, reaching maximum level at 48 h

compared to untreated samples (Figure 1C). SOD activity of M.

falcata plants increased with treatment time, began to increase

significantly (p<0.05) after 2 h, and reached maximum level of

approximately 280 U/g at 48 h, an increase of 186% compared to

the control (Figure 1C). In terms of POD activity, the greatest

increase was observed after 2 h treatment, with a slight increase at

6 h followed by a decrease at 12 h, with no significant differences

from 24 h to 48 h (Figure 1D). CAT activity increased from 2 h to

36 h with its maximum value of 4200 U/g-1/min-1 at 12 h

(Figure 1E). In conclusion, these physiological indicators of M.

falcata responded to mannitol stress at different treatment time

points with different degree.
De novo transcriptome assembly and
functional annotation of unigenes

The 21 cDNA libraries yielded 8,624,521,500 bp raw reads

(Table S2), the clean data is 8,537,671,848 bp, the Q30 before

and after filtration was relatively high (around 94%), and the GC

content was around 44% (Table S2), indicating good sequencing

quality. In order to assemble the sequencing data, the reference

genome of alfalfa ecotype Xinjiang Daye was selected as the

reference genome for comparison, and the sequencing results

were assembled and annotated as shown in Table S3. For all

samples, the unmapped reads were only about 6.92-10.78%, the

unique mapped reads were 39.86-42.11%, and the total mapped

reads accounted for 89.22-93.68%, thus these data clearly

indicated that the genome sequences of M. falcata have a very

high matching rate with that ofM. sativa, which can be used for

subsequent analysis.
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Identification and analysis of expression
pattern of DEGs

Principal component analysis (PCA) showed that samples

from CK were clustered into a separate category and they were

separated away from the samples under stress treatments (Figure

S2). Samples from 2 h and 6 h treatments were closer than with

other treatments, samples from 12 h treatments were clustered

into a separate category, and samples from 24 h, 36 h and 48 h

with long duration stress treatments were clustered into one

category (Figure S2). These data together indicated that samples

from different treatments tend to cluster differently.

The FPKM values for different samples were analyzed to

investigate the changes in gene expression and to identify critical

genes involved in drought stress in M. falcata. The volcano plot

can be used to visualize the differentially expressed genes

between treatment groups and control group. A total of 16,304

DEGs were obtained from transcriptome of M. falcata at 7

treatment time points. Among them, total 3,426, 3,632, 4,543,

3,944, 2,898, and 3,408 genes were down-regulated at 2 h, 6 h, 12

h, 24 h, 36 h and 48 h when compared with the control group at

0 h, respectively (Figure 2A). Meanwhile, 1,232, 2,165, 3,723,

4,156, 2,932, and 3,916 genes were down-regulated at 2 h, 6 h, 12

h, 24 h, 36 h and 48 h when compared with the control group at

0 h, respectively (Figure 2A).

Among these DEGs, 88 of them were found to be

transcription factor genes belonging to 16 TF families

(Figure 2B), including 14 bHLH genes, 11 ERF genes, 11 bZIP

genes, and 10 NAC genes. Heat maps for the expression profiles

of these 88 transcription factor genes under drought treatment
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showed that 73 of them were up-regulated compared with the

control group (0 h) (Figure 2C, top), whereas 15 of them were

down-regulated (Figure 2C, bottom). Among them, 10 out of 11

ERF genes were up-regulated (Figure 2C), indicating they may

play leading roles in drought resistance in M. falcata.
WGCNA of common DEGs in
drought stress

In order to further investigate potential key genes involved in

drought response inM. falcata, the weighted gene co-expression

network was constructed using WGCNA, resulting in eight

modules (Figure S3). In order to explore the correlation of

these clustered modules with the above-mentioned

physiological indicators, correlation analysis was performed

between the module eigenvalues with activity of POD, CAT,

SOD, content of Pro and MDA. Heat map was used to display

the top correlation coefficient (Figure 3). The correlation

coefficient between the black module and three indicators

(MDA, SOD and Pro) were relatively high with values of 0.83,

0.88 and 0.92 (significance of 4e-06, 2e-07 and 3e-09),

respectively (Figure 3). Grey60 module was significantly

correlated with SOD activity and Pro content with correlations

coefficient of 0.72 and 0.88, respectively (Figure 3). Both the

lightcyan and darkgreen modules showed highly significant

positive correlations with CAT activity, with correlation

coefficients of 0.75 and 0.64 (significance of 1e-04 and 0.002),

respectively (Figure 3). These data clearly indicated that four

modules, namely black module, Grey60 module, lightcyan
B

C D E

A

FIGURE 1

Physiological response of Medicago falcata to 400 mM mannitol treatment. Plant samples were collected under normal conditions and treated
with 400 mM mannitol for 2 h, 6 h, 12 h, 24 h, 36 h and 48 h. The values are the average and error of three biological replicates. The same
letters mean no significant difference, and different letters mean significant difference. (A), MDA content; (B), Proline content; (C), SOD activity;
(D), POD activity; (E), CAT activity.
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B

CA

FIGURE 2

Analysis of differentially expressed genes at each time point under mannitol treatment. (A), Volcano of difference among treatments. The
horizontal coordinate indicates the log2(FC) of the difference between two groups, and the vertical coordinate indicates the negative log10 value
of the FDR of the difference between the two groups. Red (up-regulated expression of group_2 relative to group_1) and blue (down-regulated
expression) points indicate difference in gene expression (judged by FDR < 0.05, and more than two-fold difference), and black points indicate
no difference. (B), Statistic analysis of the number of different types of transcription factors. (C), Heat map clustering of transcription factor
expression. Red represents high expression and blue represents low expression. MfERF genes were highlighted in red.
FIGURE 3

Character correlation diagram of physiological indicators. The horizontal coordinates indicate the character and the vertical coordinates indicate
the module, which is plotted with Pearson correlation coefficient. Red represents positive correlation and green represents negative correlation.
The darker the color, the stronger the correlation. The number in the brackets below represents significance P-value. The smaller the value, the
stronger the significance.
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module and darkgreen module, were likely contain genes

involved in drought responsive in M. falcata.
Screening of candidate gene
among DEGs

The four modules (black, Grey60, lightcyan and darkgreen)

were up-regulated modules, but they differed in expression

patterns, which was consistent with the expected expression

pattern of concern. The darkgreen module was up-regulated in

early stage (2 h and 6 h) but down-regulated in the late stage (12

h, 36 h and 48 h, Figure 4A). The lightcyan module was up-

regulated in the early and middle stage (2 h, 6 h, 12 h) and down-

regulated in the late stage (36 h and 48 h, Figure 4B). The black

and grey60 modules showed a higher expression in the late stage

(36 h and 48 h) than the earlier time points (Figure 4C, D).

Furthermore, venn diagram with these four modules and ERF

genes showed that 6 ERF genes were expressed in two out of four

modules (Figure 4E). Among these 6 genes, both MS.gene31493

and MS.gene043401 from the darkgreen modules were two

different transcripts for the same gene MfERF053, and

MS.gene38367 and MS.gene38697 were for MfRAP2-1 gene
Frontiers in Plant Science 07
(Table S4), therefore, the expression of these four genes,

namely MfERF053, MfERF9, MfRAP2-1 and MfERF034 were

further verified by qRT-PCR. It was revealed that the expression

of these four genes were up-regulated to different levels under

drought treatment at different time points (Figure 4F), which is

consistent the transcriptome sequencing data as verified by

correlation analyses (Figure S4). Among these four genes,

MfERF053 showed the highest expression level, which was

thus selected for further investigation.
Cloning, multiple sequence alignment
and evolutionary tree analysis

The full-length open reading frame ofMfERF053 was cloned

and the sequence was submitted to the National Center for

Biotechnology Information (NCBI) under GenBank accession

number of OM970125. Multiple sequence alignment of

MfERF053 with ERF053 from other plant species showed that

MfERF053 shared 95%, 56%, 54% similarity with its homology

genes from M. truncatula, Vigna angularis and Glycine soja at

amino acid level (Figure 5A). All proteins fromM. truncatula, G.

soja, V. angularis, Arabidopsis thaliana, Vigna radiata var.
B

C D

E

F

A

FIGURE 4

Differential candidate gene analysis. (A–D), Heat map of gene expression pattern of each module. The above figure showed the expression level
map of genes in modules in different samples; The following figure shows the characteristic values of modules in different samples. (A–D)
represent darkgreen, lightcyan, black and gray60 module, respectively. (E), The number of transcription factors differentially expressed in the five
candidate combinations were screened by Venn map. Black, lightcyan, darkgreen and grey60 represent the three candidate modules screened
by WGCNA, and ERF represents the number of ERF genes common shared by all treatments and controls. (F), The expression level of four
MfERF genes under mannitol treatment at different time point as detected by qRT-PCR.
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radiata,M. sativa,Medicago ruthenica shared the characteristics

features of DREB proteins, with conserved YRG, WLG, and

RAYD motifs (Figure 5A).

Phylogenetic analyses revealed thatMfERF053 was clustered

with ERF053 from M. truncatula and G. soja, which was

separated from those of A. thaliana, M. sativa, M. ruthenica

with relatively low sequence similarity (51%, 49% and 48%,

respectively, Figure 5B).
Expression profile and transcriptional
activity of MfERF053

We analyzed relative expression level of MfERF053 gene by

qRT-PCR in roots, stems, leaves, flowers, branches and
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inflorescences of seedlings of M. falacata under normal growth

condition. It was found that MfERF053 was most highly

expressed in roots, followed by in leaves and stems

(Figure 6A). This finding suggests that MfERF053 may be

involved in mediating drought stress signaling through roots.

To investigate whether MfERF053 possesses transactivation

activity, we generated a transactivation construct (35S::

GAL4DB- MfERF053) and expressed it in tobacco epidermal

cells by Agrobacterium-medicated transformation, using

GAL4DB as a negative control (Figure 6B). It was revealed

that MfERF053 could activate the GAL4-responsive expression

of the LUC reporter protein, and the relative luciferase activity

for MfERF053 were about 9 times higher than the control

(GALDB), indicating that MfERF053 acts as a transcription

activator (Figure 6C).
B

A

FIGURE 5

Sequence analysis of plant ERF genes. (A), Multiple sequence alignment. The alignment were constructed by MEGA-X and visualized by Jalview.
Residues with more than 50% similarity were shaded. Conserved regions (YRG element, WLG element and RAYD element) were indicated at the
top. (B), Phylogenetic analysis ERF053 genes from different plant species.
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Over-expression of MfERF053 in
Arabidopsis enhanced resistance under
plate culture condition

qRT-PCRs were performed to measure the expression levels

of MfERF053 in leaves of the transgenic Arabidopsis of the T3

generation. Among twenty-five lines that were detected, three

independent transgenic lines with relatively high expression level

were selected for further analyses (lines OE19, OE 20, and OE

33). No significant difference were observed between the

transgenic line and the wild type control under normal plate

culture condition (Figure S5). Both the transgenic lines and the

wild-type Arabidopsis seedlings were grown on plates supplied

with mannitol of different concentrations (300 mM and 400

mM), NaCl (100 mM, 125 mM, 150 mM, and 200 mM) and

ABA (50 mM, 100 mM, 150 mM and 200 mM) (Figure 7, Figure

S6, Figure S7, Figure S8).

When treated with 300 mMmannitol and 400 mMmannitol

for 10 days, the root length of the overexpression lines did not

show any difference from the control (Figure 7A, Figure S6), but

the number of lateral roots and fresh weight increased

significantly compared with the control (p < 0.05). Moreover,

the increase in both lateral root number and fresh weight under

400 mM mannitol treatment were greater than those with 300

mM mannitol treatment (Figures 7B–D, Figure S6).

After 10 days of treatment with 100 mM NaCl,

overexpression lines grew significantly better than the wild

type, showing longer root length and increased number of

lateral roots (Figure S7). After 10 days of treatment with 125

mM NaCl stress, the chlorophyll content of the leaves in the

wild-type plants decreased with yellow leaves, while the

overexpression lines showed green leaves and increased in root

length, number of lateral roots and fresh weight (Figures 7E–H).
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After 10 days of treatment with 150 mM NaCl stress, the wild-

type plants turned white, but the overexpression lines remained

green, with significantly more green leaves and fibrous root than

the wild-type (Figure S7). After 10 days of treatment with 200

mM NaCl stress, both the wild-type and overexpression lines

turned white, and their growth were severely inhibited, but leave

color of the overexpression lines changed to light purple and

some leaves turned white (Figure S7).

In addition, the wild-type and overexpression Arabidopsis

were grown on plates supplied with different concentrations of

ABA treatment for 10 d (Fig 7I, Fig S7). It was found that the

leaves of the overexpression lines showed darker green and the

number of lateral root increased after ABA stress with low

concentration (50 and 100 mM) for 10 d (Figure 7I, Figure S8).

However, high ABA concentration inhibited the growth of

Arabidopsis roots, but the transgenic lines grew better than the

wild-type (Figure S8). The root length, lateral root number and

fresh weight of the overexpression lines were significantly

increased compared with the wild type under ABA treatment

(p < 0.01), indicating that overexpression of MfERF053 gene

could improve the sensitivity to ABA on root growth in

Arabidopsis under certain concentration (Figures 7J–L,

Figure S8).
Over-expression of MfERF053 in
Arabidopsis enhanced resistance
grown in soil

Three transgenic Arabidopsis strains (OE19, OE20 and

OE33) showed no significant difference with the wild type

control when plants grew in soil under natural watering

condition (Figure 8A). But after 12 days of drought stress,
B

C

A

FIGURE 6

Characteristic of MfERF053 gene. (A), Validation of expression pattern of M. falcata in various tissues by qRT-PCR. (B), Schematic diagram of
reporter and effector for MfERF053 gene for transactivation assay. (C), MfERF053 transcriptional activity analysis.
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B C D
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FIGURE 7

Evaluation of different resistance of MfERF053 transgenic Arabidopsis. (A, E, I), Plants overexpression MfERF053 were treated with 400 mM
mannitol, 100 mM NaCl and 100 mM ABA with wide type, respectively. (B, F, J), Root length of different plant lines. (C, G, K), Lateral root number of
different plant lines. (D, H, L), Fresh weight of different plant lines. Three replicates per treatment, 6 plants per replicate, * p < 0.05, ** p < 0.01,
Duncan’s t-test.
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wild-type Arabidopsis was more severely stressed than the

transgenic lines (Figure 8B). The wild type plants turned

significantly purple, whereas some of the older leaves of the

transgenic lines were still green or green-yellow (Figure 8B).
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When drought stress was continued for 15 d, the wild-type

Arabidopsis plants withered and could not grow, while the

transgenic Arabidopsis continued to grow and flowered, and

the leaves remained green (Figure 8C). After rehydration for 5
B

C D

E F

G H

A

FIGURE 8

Phenotype of MfERF053 transgenic overexpression Arabidopsis under drought NaCl and treatment in soil. (A-D), The phenotype of wide type
and transgenic of Arabidopsis under normal (A), drought after 12 days (B), drought after 15 days (C) and recover after 5 days (D), respectively. (E-
H): The phenotype of wide type and transgenic of different strains of Arabidopsis under normal (E), salt after 7 days (F), salt after 12 days (H) and
salt after 12 days (I), respectively.
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days, the wild-type Arabidopsis plants did not recovered and

dried completely, while the overexpression Arabidopsis plants

grew well and the leaves became green and the inflorescences

could develop into pods normally, indicating that the transgenic

Arabidopsis plants over-expressing MfERF053 have conferred

drought resistance (Figure 8D).

Both the transgenic and the wild type Arabidopsis were

treated with 300 mM NaCl in the soil (Figure 8E). After 7 d of

treatment, the leaves of the wild-type plants turned purple with

significantly reduced chlorophyll, while the transgenic

Arabidopsis remained green with few leaves turning purple

(Figure 8F). After continuous stress for 12 days (Figure 8G),

the wild-type Arabidopsis withered and died, while the

transgenic Arabidopsis remained green with some old leaves

turning purple, and they could still flower normally and grow

(Figure 8H), indicating that the transgenic Arabidopsis conferred

salt resistance when compared with the wild-type.
Discussion

Among various environmental stress, drought is one of most

serious stresses affecting the growth and development of plant.

Drought stress triggers a series of responses from morphology to

physiology, and to gene level. With the increase of drought

stress, the antioxidant system of plants is destroyed, and the free

radicals produced are greater than those cleared, resulting in

excessive accumulation of ROS and membrane damage (Puyang

et al., 2015; Nahar et al., 2017). In this study, the detailed

information of physiological and transcriptome data of M.

falcata under drought stress was provided. Under drought

stress, the activities of SOD, POD and CAT increased

(Figure 1), and the contents of proline and MDA increased,

indicating that M. falcata has better ROS scavenging ability

toward drought. It can be proven that the increase of these

enzyme activities can eliminate stress-induced ROS and

peroxides, inhibit plasma membrane peroxidation, and protect

cells from damage (Zhang et al., 2004; Anjum et al., 2011; Koh

et al., 2015; Quan et al., 2015; Xiong et al., 2022). The results of

physiological indexes showed that M. falcata is capable of

reducing the accumulation of harmful substances by regulating

the activity of defense enzymes.

M. falcata is one of the candidate models to study abiotic

stress response mechanism in legumes (Miao et al., 2015). The

transcriptome analysis of drought provides a new biochemical

and molecular mechanism for abiotic stress adaptation. Taking

the genome of M. sativa cv ‘Xinjiang Daye’ as the reference

genome, the tetraploid M. falcata transcriptome was sequenced,

assembled and annotated, resulting in a total of 172,892 genes,

with a comparison rate of more than 75% with the reference

genome. The annotation of most genes is more similar to the

annotation information of M. truncatula, indicating that the M.
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falcata transcriptome has good homologous sequence coverage,

and it will also provide evidence for the expression of predicted

genes in the genome of M. truncatula (Miao et al., 2015).

Compared with the other transcriptome data for alfalfa with

similar treatment (Luo et al., 2019), this study seems more

complete. The number of genes obtained in each library in

this study is higher than that produced in transcriptome of

alfalfa under abiotic stress, which may be due to different

samples used for sequencing. The sample for alfalfa is the

roots, while the sample of this study is the whole seedlings.

Therefore, the genes obtained for the transcriptome of alfalfa

may be the genes specifically expressed in the roots, while in this

study the obtained genes may be widely expressed in

various parts.

In plants, some studies have screened stress resistance

related genes through transcriptome sequencing (Gao et al.,

2021; Li et al., 2022). In this study, we used M. sativa cv

Xinjiang Daye as the reference genome, screened candidate

genes through RNA-seq technology, and used expression

patterns analysis and WGCNA analysis to mine hub ERF

genes in response to dehydration of M. falcata (Figures 3, 4).

The biological functions of these genes need to be further

explored and verified, but at least qRT-PCR for these four

candidate genes were consistent with the transcriptome data,

which proves the reliability of WGCNA co-expression network

analysis method. In conclusion, this strategy of screening

functional genes related to drought stress is of great

significance to the study of stress resistance in M. falcata as in

other studies (Qin et al., 2020).

A drought responsive MfERF053 gene in M. falcata was

screened in this study by transcriptome sequencing (Figure 4).

Previous studies have reported that ERF transcription factors act

as both activators and repressors of transcriptional functions

(Yant et al., 2010). MfERF053 was shown to have transcriptional

activation activity based on transcriptional activity assays

(Figure 6B), which is similar as that of the SlERF3 gene (Pan

et al., 2010). The activation activity of MfERF053 is consistent

with its lack of an EAR (ERF-associated amphiphilic repression)

inhibitory element, therefore, it is reasonable that MfERF053 is

involved in different biological processes mainly in the form

of activator.

Compared with the wild type, overexpression lines with

higher expression level of MfERF053 showed significant

changes in root length and lateral roots as well as fresh weight

(Figures 7, 8), indicating that overexpression ofMfERF053 had a

significant effect on root growth in Arabidopsis. It has been

shown that overexpression of the apple MdERF11 and

MdERF106 genes (Han et al., 2020) can significantly improve

the growth characteristics of plants to withstand abiotic stresses.

Initial studies found that higher expression of AtERF53 showed

no significant difference in dehydration tolerance from wild

type, it is speculated that the AtERF53 protein requires or may
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require post-translational modifications controlled by another

mechanism (Hsieh et al., 2013). In addition, other studies

showed that the E3 ligase RGLG1 E3 can promote the

degradation of PP2CA through an ABA dependent pathway,

and the RING E3 ligase RGLG2 interacts with AtERF53 to

negatively regulate drought stress response in Arabidopsis

(Cheng et al., 2012; Belda-Palazon et al., 2019). GmERF113

can enhance the drought resistance through activating the

expression of PR10-1 by binding to the GCC-box in soybean

plants (Fang et al., 2022). Overexpression of the GmERF75 gene

in soybean hairy roots showed stronger growth than wild type

under 100 mmol/L-1 ABA and 120 mM NaCl treatment,

indicating that overexpression of GmERF75 improved soybean

tolerance to salinity and exogenous ABA (Zhao et al., 2019). All

these results suggested that ERF genes have a conserved role in

response to abiotic stresses in different plant species. In this

study, overexpression of MfERF053 improved the resistance of

Arabidopsis to osmotic stress through the ABA transduction

pathway. Nevertheless, the regulation mechanism of MfERF053

on drought and salt resistance in both M. falcata and in

transgenic Arabidopsis requires further investigation in the

near future.
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Gene clustering map by WGCNA analysis. Left, Sample Hierarchical

Clustering Tree. Right, Module level clustering diagram.
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Correlation analysis between qRNA-seq and RT-PCR data for the four
candidate MfERF genes.

SUPPLEMENTARY FIGURE 5

Phenotype of MfERF053 overexpression plants under normal plate
growth condition. Col, the wide type control; Three over-expression

lines: OE19, OE20 and OE33.

SUPPLEMENTARY FIGURE 6

Evaluation of overexpression plants MfERF053 were treated with 300 mM
mannitol. (A), Overexpression of Arabidopsis 10-day phenotype under 300mM

mannitol treatments. (B), Root length of different plant lines. (C), Lateral root
number of different plant lines. (D), Fresh weight of different plant lines.

SUPPLEMENTARY FIGURE 7

Evaluation of overexpression plants MfERF053 were treated with different

salt concentrations. (A, E, I), Overexpression of Arabidopsis 10-day
phenotype under 100 mM, 150 mM and 200 mM mannitol treatments,

respectively. (B, F, J), Root length of different plant lines. (C, G, K), Lateral
root number of different plant lines. (D, H, L), Fresh weight of different

plant lines.
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SUPPLEMENTARY FIGURE 8

Evaluation of overexpression plants MfERF053 were treated with different
ABA concentrations. (A, E, I), Overexpression of Arabidopsis thaliana 10-day
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phenotype under 100 mM, 150 mMand 200 mMABA treatments, respectively.
(B, F, J), Root length of different plant lines. (C, G, K), Lateral root number of

different plant lines. (D, H, L), Fresh weight of different plant lines.
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