
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Jianping Wang,
University of Florida, United States

REVIEWED BY

Senjuti Sinharoy,
National Institute of Plant Genome
Research (NIPGR), India
Fang Xie,
Institute of Plant Physiology and
Ecology, Shanghai Institutes for
Biological Sciences (CAS), China
Yasuyuki Kawaharada,
Iwate University, Japan

*CORRESPONDENCE

Masayoshi Kawaguchi

masayosi@nibb.ac.jp

Meng Liu

liumeng611@hotmail.com

†
PRESENT ADDRESS

Hiromu Kameoka,
CAS-JIC Centre of Excellence for
Plant and Microbial Science (CEPAMS),
Center for Excellence in Molecular
Plant Sciences (CEMPS), Chinese
Academy of Sciences, Shanghai, China
Taro Maeda,
Institute for Advanced Biosciences,
Keio University, Tsuruoka, Yamagata,
Japan

SPECIALTY SECTION

This article was submitted to
Plant Symbiotic Interactions,
a section of the journal
Frontiers in Plant Science

RECEIVED 16 July 2022

ACCEPTED 19 December 2022

PUBLISHED 17 January 2023

CITATION

Liu M, Kameoka H, Oda A, Maeda T,
Goto T, Yano K, Soyano T and
Kawaguchi M (2023) The effects of
ERN1 on gene expression during early
rhizobial infection in Lotus japonicus.
Front. Plant Sci. 13:995589.
doi: 10.3389/fpls.2022.995589

TYPE Original Research
PUBLISHED 17 January 2023

DOI 10.3389/fpls.2022.995589
The effects of ERN1 on gene
expression during early rhizobial
infection in Lotus japonicus
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Legumes develop root nodules in association with compatible rhizobia to

overcome nitrogen deficiency. Rhizobia enter the host legume, mainly

through infection threads, and induce nodule primordium formation in the

root cortex. Multiple transcription factors have been identified to be involved in

the regulation of the establishment of root nodule symbiosis, including ERF

Required for Nodulation1 (ERN1). ERN1 is involved in a transcription network

with CYCLOPS and NODULE INCEPTION (NIN). Mutation of ERN1 often results

in misshapen root hair tips, deficient infection thread formation, and immature

root nodules. ERN1 directly activates the expression of ENOD11 in Medicago

truncatula to assist cell wall remodeling and Epr3 in Lotus japonicus to

distinguish rhizobial exopolysaccharide signals. However, aside from these

two genes, it remains unclear which genes are regulated by LjERN1 or what

role LjERN1 plays during root nodule symbiosis. Thus, we conducted RNA

sequencing to compare the gene expression profiles of wild-type L. japonicus

and Ljern1-6 mutants. In total, 234 differentially expressed genes were

identified as candidate LjERN1 target genes. These genes were found to be

associated with cell wall remodeling, signal transduction, phytohormone

metabolism, and transcription regulation, suggesting that LjERN1 is involved

in multiple processes during the early stages of the establishment of root

nodule symbiosis. Many of these candidate genes including RINRK1 showed

decreased expression levels in Ljnin-2 mutants based on a search of a public

database, suggesting that LjERN1 and LjNIN coordinately regulate gene

expression. Our data extend the current understanding of the pleiotropic role

of LjERN1 in root nodule symbiosis.
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Introduction

Legumes are able to overcome nitrogen deficiency by

establishing root nodule symbiosis with nitrogen-fixing

bacteria known as rhizobia. Inside the unique organs of

symbiosis, root nodules, rhizobia convert atmospheric nitrogen

into ammonium for plants’ benefits, in exchange for carbon

source. Rhizobia enter legumes through cracks on the epidermis

or, more commonly, through root hairs (Guinel and Geil, 2002).

In Lotus japonicus and Medicago truncatula—two model

legumes primarily used for studying root nodule symbiosis—

the attachment of compatible rhizobia to the surface of a host

root hair is observed to induce polar growth of the root hair tip,

resulting in the formation of a “shepherd’s crook” structure.

Rhizobia entrapped in the crook of the root hair multiply and

form microcolonies. Subsequently, the rhizobia enter the root

hair cell through the inward growth of tubular structures, which

are called infection threads. The formation of infection threads is

accompanied by the modification of the root hair cell wall,

plasma membrane, and cytoskeletal structure. Concomitant with

infection thread progression, cortical cells underneath the

infection sites re-enter the cell cycle, divide, and form nodule

primordia. Eventually, the infection threads reach the nodule

primordia and release rhizobia into the nodule cells (reviewed by

Oldroyd, 2013; Roy et al., 2019). One of the fundamental

questions on the topic of root nodule symbiosis is how the

legume–rhizobium association is established through root

nodule symbiosis signal transduction.

The root nodule symbiosis signaling pathway has been

observed to be initiated through the detection of rhizobia by

the host legume. The host legume distinguishes Nod factors

from compatible rhizobia via receptor kinases, including Nod

Factor Receptor1 (LjNFR1)/LysM Receptor Kinase3 (MtLYK3),

LjNFR5/Nod Factor Perception (MtNFP), and LjNFRe (Amor

et al., 2003; Limpens et al., 2003; Madsen et al., 2003; Radutoiu

et al., 2003; Murakami et al., 2018). These receptors transduce

the signal to the nucleus and activate calcium signaling, which is

then decoded by calcium and calmodulin-dependent protein

kinase (LjCCaMK)/Doesn’t Make Infections 3 (MtDMI3)

(Ehrhardt et al., 1996; Lévy et al., 2004; Miwa et al., 2006;

Tirichine et al., 2006). Downstream of CCaMK activation,

several transcription factors, including LjCYCLOPS/Interacting

Protein of DMI3 (MtIPD3), Nodulation Signaling Pathway1

(NSP1), NSP2, NODULE INCEPTION (NIN), and ERF

Required for Nodulation 1 (ERN1), form a network to

reprogram gene transcription (Catoira et al., 2000; Kaló et al.,

2005; Heckmann et al., 2006; Marsh et al., 2007; Messinese et al.,

2007; Middleton et al., 2007; Cerri et al., 2016; Fonouni-Farde

et al., 2016; Jin et al., 2016; Cerri et al., 2017; Murakami et al.,

2006; Schauser et al., 1999; Smit et al., 2005; Yano et al., 2008;

Singh et al., 2014; Yano et al., 2017). Among these transcription
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factors, NIN plays a central role in regulating the expression of

genes associated with cell wall remodeling, cytoskeleton

rearrangement, and cell division. Target genes of NIN encode

proteins such as NODULATION PECTATE LYASE (LjNPL),

an enzyme that mediates cell wall degradation during infection

thread initiation (Xie et al., 2012; Liu et al., 2019a); SCAR-

Nodulation (LjSCARN), a component of the actin regulatory

complex that promotes the formation of new actin filaments in

root hairs during infection thread development (Qiu et al.,

2015); and Nuclear Factor-YA1 (LjNF-YA1/MtNF-YA1), a

transcription factor that promotes cortical cell division for

nodule organogenesis (Combier et al., 2006; Soyano et al.,

2013). MtNF-YA1 also regulates infection thread formation

via direct activation of MtERN1 expression in M. truncatula

(Laloum et al., 2014). Additionally, phytohormones are involved

in root nodule symbiosis signaling (Buhian and Bensmihen,

2018; Lin et al., 2020). For example, auxin has been determined

to positively affect infection thread formation (Nadzieja et al.,

2018). Auxin can be detected in infected root hairs and dividing

cortical cells (Suzaki et al., 2014). Mutation of Auxin Response

Factor 16a (MtARF16a) leads to a reduced number of infection

threads inM. truncatula (Breakspear et al., 2014). More recently

it has been shown that IAA carboxyl methyltransferase 1

(IAMT1), which converts auxin (IAA) to its methyl ester

(MeIAA), is required for nodule development and its

metabolite MeIAA can induce NIN expression (Goto et al.,

2022). Cytokinin is found to promote cortical cell division but

represses infection in the epidermis. Exogenous application of

cytokinin or gain-of-function mutations of the cytokinin

receptor gene LjLHK1 (snf2 and snf5) results in spontaneous

root nodules, while Ljlhk1 (hit1) mutants exhibit a reduced

number of nodules and an increased number of infection

threads (Murray et al., 2007; Tirichine et al., 2007; Heckmann

et al., 2011; Miri et al., 2016; Liu et al., 2018). Another

phytohormone, gibberellin (GA), has been identified to

suppress root hair deformation and infection thread formation

by degrading DELLA, a protein that interacts with CYCLOPS

and NSP1-NSP2 to enhance symbiotic gene expression

(Maekawa et al., 2009; Fonouni-Farde et al., 2016; Jin et al.,

2016). In summary, root nodule symbiosis signaling involves

various genes related to signal transduction, gene transcription

regulation, and phytohormone metabolism.

Previously, we reported the function of LjERN1 in root

nodule symbiosis signaling through the characterization of two

allelic symbiotic mutant lines, Ljern1-5 and Ljern1-6, which

show deficiencies in their response to rhizobial infection. Like

Mtern1 mutants, Ljern1 mutants display abnormal balloon-

shaped root hair tips, a decreased number of infection threads,

and immature root nodules (Cerri et al., 2017; Kawaharada et al.,

2017a; Yano et al., 2017). Gain-of-function CCaMK or

application of cytokinin does not induce spontaneous nodule
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production in Ljern1 mutants (Kawaharada et al., 2017a). The

corresponding gene ERN1 encodes an AP2/ERF transcription

factor, which is expressed in infected root hairs and developing

nodules (Middleton et al., 2007; Cerri et al., 2016; Cerri et al.,

2017; Kawaharada et al., 2017a; Yano et al., 2017). The

phenotype of ern1 mutants and expression pattern of ERN1

suggest that ERN1 is needed for infection thread formation and

promote nodule organogenesis. Two genes have been identified

as targets of ERN1: M. truncatula Early Nodulin11

(MtENOD11), which is involved in cell wall modification, and

L. japonicus Exopolysaccharide Receptor3 (LjEpr3), which is

responsible for compatible rhizobial recognition (Andriankaja

et al., 2007; Kawaharada et al., 2017b). To determine the role of

ERN1 in L. japonicus, we conducted RNA sequencing (RNA-

seq) to compare the gene expression profiles of wild-type (WT)

plants and Ljern1-6mutant roots. Ljern1-6 is a null allele mutant

isolated from L. japonicus accession Miyakojima MG-20 and

lacks approximately 10 kb including the entire length of ERN1

(Yano et al., 2017). Although a transcriptome study has already

been conducted in Mtern1 mutants, the relationship between

ERN1 and NIN differs between M. truncatula and L. japonicus

and L. japonicus lacks an ERN2 ortholog gene, suggesting that

ERN1 may function differently between these two species

(Andriankaja et al., 2007; Yano et al., 2017; Liu et al., 2019a;

Liu et al., 2019b). In this present study, we found that of 3,763

genes induced by rhizobial infection in WT plants, 234 were

significantly decreased in Ljern1-6 mutants. These genes were

found to be involved in processes including cell wall

modification, signal transduction, phytohormone metabolism,

and regulation of gene transcription. The differentially expressed

genes (DEGs) with high fold change in Ljern1-6 encoded

expansins, pectin methylesterases (PMEs), and PME inhibitors

(PMEIs), which are related to cell wall loosening and extensity.

The Ljern1 mutation was also found to reduce the expression of

several LjNIN-targeting genes, which is consistent with our

previous finding that LjERN1 and LjNIN coordinately affect

downstream gene expression. This study extends our

understanding of the regulatory network governed by LjERN1.
Materials and methods

Plant materials and growth conditions

L. japonicus accession Miyakojima MG-20 (Kawaguchi,

2000) was used as the WT. Ljern1-6 mutant was generated

from a MG-20 background by ion beam mutagenesis and carry

approximately 10 kb deletion including the entire length of

ERN1 (Yano et al., 2017). Ljnin-9 was isolated from MG-20 by

EMS mutagenesis (Suzaki et al., 2012). The mutant lines Ljern1-

1 and Ljnin-2 were generated from a Gifu Background (Schauser

et al., 1999; Kawaharada et al., 2017a). L. japonicus seeds were
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surface-sterilized in 10% NaClO and germinated in 1/2 B5

medium in a growth chamber at 24°C (16 hr light/8 hr dark).

Four-day-old seedlings were transferred to vermiculite with

B&D medium (Broughton and Dilworth, 1971). Two days

after adaptation, seedlings were inoculated with M. loti

MAFF303099. For the inoculation, 15 mL of M. loti liquid

culture (OD600 = 1.8-2.0) was diluted in 1 L of B&D medium.

Each cultivation pot containing 10 plants was poured twice with

50 mL of the medium.
RNA sample preparation, library
synthesis, qRT-PCR and sequencing

For each set of sampling conditions, three biological

replicates were harvested (20 plants/sample) for total RNA

isolation. Total RNA was isolated using the RNeasy Plant Mini

Kit (QIAGEN). Genomic DNA was removed by treatment with

DNase I (QIAGEN). The integrity of the RNA samples was

determined using a bioanalyzer (Agilent). A 350 ng sample of

RNA from each replicate was used for library preparation.

Library construction was performed using the NEBNext®

Ultra™ II RNA Library Prep Kit for Illumina (NEB) and the

NEBNext® Poly(A) mRNA Magnetic Isolation Module (NEB).

The concentration of the library was measured using a

bioanalyzer (Agilent). RNA-seq was conducted on an Illumina

HiSeq 2000 platform by single-end sequencing (read length =

50 bp).

For qRT-PCR validation, 50 ng of the total RNA from the

extractions described above was used for each sample. The

primer sequences were as fol lows: Ubiquit in_fwd,

ACGGCTCTTATCAAGGGACCA ; Ub iqu i t i n_ r e v ,

CACTTGAGGTGGTTGTAGAGG; EXPB2_fwd, GGA

GCTACGAAATGCTGGAA ; EXPB 2 _ r e v , CACC

ATCCCCATCCTCATAC ; E p r 3 _ fwd , GTCTTCA

GCGGGGTATTTGA ; E p r 3 _ r e v , TGGCAGCAG

TTTTGAACAAG; LOG4_ fwd , CCTTGAAGAACT

GTTGGAAATCATC; LOG4_rev, TCAAGCTTGCAC

ATGAGGTCTTG; RINRK1(ALB1)_fwd, TATGCCTTTGG

TGTGATGCT ; R INRK1(ALB1 )_ r ev , TCCACAGT

CCATTCCTCTCT ; N IN_ fwd , AGCAAAGAGCA

TTGGTGTATGT; NIN_rev, AGCACCCTGCACTGAATCAA;

Lj0g3v0070749_fwd, GGTTTGGAATTGGATGGTGTTG;

Lj0g3v0070749_rev, AGGGACAAAATCAGAAGCACC;

Lj0g3v0320499_fwd, GGTGCTGTTGATTTTATCTTTGGTG;

Lj0g3v0320499_rev, GGTGCTGTTGATTTTATCTTTGGTG;

Lj2g3v3339140_fwd, GGGAACGAACCCAAATGAAGAG;

Lj2g3v3339140_rev, TCTCCTGTTACAAACTTGACCTTTG;

Lj3g3v3751920_fwd, CAAGTGGTGGAGGATTGCTTTG;

Lj3g3v3751920_rev, AGGTCAGCAACATCAAGACGT;

Lj5g3v0642670_fwd, GGAGCTACGAAATGCTGGAA;

Lj5g3v0642670_rev, CACCATCCCCATCCTCATAC.
frontiersin.org

https://doi.org/10.3389/fpls.2022.995589
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.995589
Data analysis

After sequencing, 66 bp of each sample was trimmed by

trimmomatic (v0.33) and aligned to the L. japonicus genome

assembly (v3.0) using Tophat2 (v2.1.0; Kim et al., 2013). Raw

counts were calculated using HTSeq (v0.6.0; Anders et al., 2015)

and analyzed using the edgeR package (v3.26.8; Robinson et al.,

2010; McCarthy et al., 2012) in R (version 3.6.1; R Core Team,

2020; v1.1.453; R Studio Team, 2020). After filtering, genes that

met our criteria (FC > 1.5 and FDR < 0.05) were defined as

DEGs. For K-means clustering, the package factoextra was used

to estimate the optimal number of clusters (Kassambara and

Mundt 2020). A heat map was generated using Z-scores with the

pheatmap package (Kolde, 2019). A Venn diagram was

produced by BioVenn (Hulsen et al., 2008) and the gplots

package (Warnes et al., 2022). BLAST and GO enrichment

were conducted using BLAST® command line applications

(NCBI) and Blast2GO (Götz et al., 2008). FASTA files for

BLAST were generated using the packages Biostrings (Pagès

et al., 2020) and seqRFLP (Ding and Zhang, 2012). Protein

kinase domains were predicted using SMART (Letunic et al.,

2015; Letunic and Bork, 2018). The classification of transcription

factors was based on PlantTFDB (Jin et al., 2014; Jin et al., 2015;

Jin et al., 2017; Tian et al., 2020).The R packages openxlsx

(Schauberger and Walker, 2020) and tidyverse (Wickham et al.,

2019) were used to import and sort data.
Plasmid construction and hairy root
transformation

For promoter-GUS analysis, the modified binary vector,

pCAMBIA1300 whose HPTII was replaced with GFP and AscI

site was introduced into the SmaI site was used (Kumagai and

Kouchi, 2003). RINRK1 promoter region (2,976 bp)

was amplified using a primer set (5 ’-ATGGTACC

CGCAATATGAGCCACTGCTA-3’, 5’-ATGGCGCGCCTT

TTTGCTCTGTATTTTTTTGTTGAATTGTGAAGTTAG-3’).

The promoter fragment was digested with KpnI and AscI, and

ligated with the vector. ALB1 terminator region (1,309 bp) was

a m p l i fi e d u s i n g a p r i m e r s e t ( 5 ’ -

ATGGCGCGCCCCCAGAGTTTAGTTACCATGGAC-3’, 5’-

ATGTCGACTGAACTTGCAGGAGGAGATG-3 ’). The

terminator fragment was digested with AscI and SalI, and

ligated with the vector. The reading frame cassette C.1 of the

Gateway vector conversion system (Invitrogen) was inserted into

AscI site of the vector. GUSPlus gene in pCAMBIA1305.1 was

amplified by 2 rounds PCR using 1st primer set (5’-

AAAAAGCAGGCTACCATGGTAGATCTGAGGGTAA-3’,

5 ’-AGAAAGCTGGGTTCACACGTGATGGTGATGGT-

3’) and 2nd primer set (5’-GGGGACAAGTTTGTACAA

AAAAGCAGGCT-3 ’ , 5 ’ -GGGGACCACTTTGTACA
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AGAAAGCTGGGT-3’). The GUSPlus fragment was inserted

into pDONR/ZEO (Invitrogen) via Gateway BP reaction

(Invitrogen). The GUSPlus gene was transferred between the

promoter region and the terminator region via Gateway LR

reaction (Invitrogen).

For complementation analysis, the RINRK1 (ALB1) cDNA

amplified using a specific primer set (5 ’-AAGTCGA

CATGAGCCTAAAACCATTCTGGGC-3 ’ , 5’-AAGCGG

CCGCCATGTGTCAAATGATATGGATTTTTCATCT-3’) was

inserted between SalI and NotI sites of pENTR-1A (Thermo

Fisher Scientific), and subsequently transferred to pUb-GW-

GFP (Maekawa et al., 2008) by the LR clonase reaction. L.

japonicus hairy root transformation was basically performed

with Rhizobium rhizogenes AR1193 as described previously

(Dı ́az et al., 2005). Seedlings removed roots by cutting

hypocotyls were co-cultured with R. rhizogenes harboring

either pUb-RINRK1-GFP or its empty vector for four days, and

then cultured on B5 ager plates for 13 days to generate hairy

roots. Seedlings that formed hairy roots were inoculated withM.

loti expressing DsRed (Maekawa et al., 2009) three days after

transferring to sterile vermiculite. The number of nodules and

infection threads formed in hairy roots displaying fluorescence

from the GFP selection marker were counted at 22 dpi and 7 dpi,

respectively, under an SZX16 stereomicroscope (Olympus).
Results and discussion

The LjERN1 mutation affected a number
of rhizobial infection-induced genes

To gain a deeper understanding of the function of LjERN1 in

the transcription network, we conducted an RNA-seq to

compare gene expression in WT plants and Ljern1-6 mutants,

a strong allele of Ljern1, during the early stages of nodulation. L.

japonicus wild type (WT; MG-20) and Ljern1-6 were inoculated

with Mesorhizobium loti MAFF 303099. Four time points were

selected; samples from 0 day post rhizobial infection (dpi) were

used as controls, while samples from 1, 2, and 3 dpi covered the

period from root hair deformation initiation to infection threads

and nodule primordia becoming visible. Three biological

replicates, each consisting of 20 plants, were utilized for the

sequencing. Reads were mapped to version 3.0 of the L.

japonicus MG-20 genome. According to the L. japonicus Gifu

genome recently released (Kamal et al., 2020), many gene IDs in

MG-20 may correspond to the same gene in Gifu. We thus

annotated corresponding Gifu gene IDs in Table S1.

A multidimensional scaling plot demonstrated the

separation of the WT and Ljern1-6 samples collected at 0 and

1−3 dpi (Figure 1A). After quality control and filtering, 47,232

genes were detected by RNA-seq. The expression of 3763 of
frontiersin.org

https://doi.org/10.3389/fpls.2022.995589
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.995589
these genes was up-regulated in response to rhizobial infection

[fold change (FC) > 1.5, false discovery rate (FDR) < 0.05; Table

S1]. We then subsequently grouped these 3,763 infection-

induced DEGs into 7 clusters based on a K-means method

(Figure S1). Genes in Cluster 2 and 7 showed lower transcript

levels in Ljern1-6 than in theWT. To achieve better separation of

genes affected by the LjERN1 mutation, we selected genes with

higher fold change in Ljern1-6 compared with theWT (FC > 1.5)

from Cluster 2 and 7 for further analyses. In total, 234 genes

were identified as DEGs, with decreased expression in Ljern1-6

(Figure 1B; Table S2). To verify the RNA-seq result, we selected a

few genes that were observed to change in expression by a large

amount and checked their expression levels using qRT-PCR;

NIN and LjEpr3 were used as positive controls. The fold changes
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indicated by qRT-PCR were comparable to those indicated by

RNA-seq (Figure S2A). We also selected several known

symbiosis genes from a recent review by Roy et al. (2019) and

further examined their expression levels in the WT and Ljern1-6

plants (Figure S2B). The expression of genes that are essential for

root nodule symbiosis, such as LjCCaMK, LjNSP1, and

LjCYCLOPS, were increased in the WT, further confirming the

result of RNA-seq. Notably, a few symbiosis genes have

exhibited reduced expression levels in the Ljern1-6 mutants,

including LjNPL, LONELY GUY4 (LjLOG4), Cytokinin oxidase/

dehydrogenase3 (LjCKX3), LjCHIT5, LjNIN, LjNF-YA1,

LjASL18, LjNOOT, LjCBS1, and LjRPG.

Gene Ontology (GO) analysis revealed that DEGs with

decreased expression in Ljern1-6 were enriched in a variety of
A B

C

FIGURE 1

DEGs detected by RNA-seq in wild-type L. japonicus (MG-20) and Ljern1-6 mutants. (A) Multidimensional scaling plot of the effect of rhizobial
infection on WT plants and Ljern1-6 mutants. (B) Proportional Venn diagram (Hulsen et al., 2008) shows the number of rhizobial infection-induced
genes in WT and DEGs with decreased expression in Ljern1-6 mutants. (C) Classification of DEGs with decreased expression in Ljern1-6 mutants.
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functions, including cell wall modification, signal transduction,

transcription, and response to phytohormones (Table S3). Based

on this result and BLASTP hits inM. truncatula and Arabidopsis

thaliana, we manually classified the functions of 234 DEGs with

decreased expression in Ljern1-6 into 17 categories (Figure 1C;

Table S4; genes without any annotation were removed).
DEGs with decreased expression and
high fold change in Ljern1-6 mutants
were associated with cell wall
modification

Root hair curling and subsequent infection thread formation

require the synthesis and degradation of the cell wall. Nodule

primordium development also necessitates the synthesis of new

cell walls (Brewin, 2004; Gage, 2004; Lohar et al., 2006).

Transcriptome analyses identified cell wall-associated genes

encoding expansin, peroxidases, and proteases that were

induced by rhizobial infection in both M. truncatula and

Glycine max (Breakspear et al., 2014). We found that LjERN1

mutation affected the expression of 13 genes encoding expansins,

pectinase (pectate and pectin lyase), PMEs, and PMEIs post

rhizobial infection (Figure 2A), suggesting that LjERN1 may be

involved in regulating cell wall-associated processes.

Among these cell wall-related genes, the expression level of

b-expansin2 (LjEXPB2) was highly decreased in Ljern1-6

mutants (Figure 2A; Figure S3). Expansins loosen the cellulose

microfibrils by disintegrating the polysaccharide network,

causing cell wall creep during cell growth (Figure 2B; Majda

and Robert, 2018; Mohanty et al., 2018). Three expansin-

encoding genes were induced by rhizobial infection in the WT,
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and LjEXPB2 expression was the most affected in Ljern1-6

mutants, especially at 1 dpi. LjEXPB2 may be involved in

promoting root hair growth and infection thread formation

through loosening of the cell wall at an early infection stage. It

has been speculated that expansin plays a role in root nodule

symbiosis. Previously, increased expression of EXP1 was

detected in infected roots and nodules in Melilotus albus

(Giordano and Hirsch, 2004). Immunoblotting showed that in

Pisum sativum EXP1 is localized to infection thread walls

(Sujkowska et al., 2006). Additionally, overexpression of

EXPB2 in G. max increased the number of root hairs,

infection threads, and root nodules (Li et al., 2015).

Pectins are embedded in the cellulose microfibrils of cell

walls, which enhance cell wall strength (Majda and Robert, 2018;

Figure 2B). The degradation of cell walls is necessary for the

continuous growth of infection threads therefore involves the

removal of pectins (Allan Downie and Xie, 2015). LjNPL

encodes a pectate lyase and is required for rhizobia to

penetrate root hair cell walls. In Ljnpl mutants, rhizobia are

entrapped in the root hair tip and cannot develop into infection

threads (Xie et al., 2012). The expression of one pectin lyase

gene, two pectate lyase genes, and LjNPL was decreased in

Ljern1-6 mutants (Figure 2A); Suppression of these genes may

interrupt cell wall degradation in Ljern1-6 mutants.

The Ljern1 mutation also strongly affected genes encoding

two cell wall-associated enzymes, PMEs, and their inhibitors,

PMEIs (Figure 2A). PMEs have been identified to modify the

crosslinks among different pectin domains through

demethylesterification, thus softening the cell wall (Majda and

Robert, 2018). This activity is negatively regulated by PMEIs

(Figure 2B). Among the six rhizobial infection-induced PME-

and PMEI-encoding genes, Lj3g3v3751920 and Lj0g3v0070749
A B

FIGURE 2

Cell wall-associated DEGs in WT plants and mutants. (A) Heatmap showing the expression levels of cell wall-associated DEGs in the WT and
mutants at different time points. Left grid, Z-scores of genes in the WT (MG-20) and Ljern1-6 mutants at 0, 1, 2, and 3 dpi; right grid, Z-scores of
genes in the WT (Gifu) and Ljnin-2 mutants at 0 and 1 dpi. (B) Illustration of the role of expansins, PEMs, PMEIs, and pectinases in the cell wall
modification process.
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showed the highest fold change in Ljern1-6 mutants at 1 dpi,

suggesting that PMEI may function during an early stage of

infection. In A. thaliana, AtPMEI2 interacts with AtPME1 to

regulate cell wall stability at the apex of the pollen tube.

Transient expression of AtPMEI2 was observed to increase the

pollen tube length in tobacco, suggesting a role of PMEI in

promoting polar cell growth (Röckel et al., 2008). In M.

truncatula, a PME gene, MtPER, was proposed to have been

recruited from the pollen tube elongation process to root nodule

symbiosis (Rodrıǵuez-Llorente et al., 2004), which suggests that

PME and PMEIs may share similar functions in pollen tube

growth and infection thread formation. The reduced expression

of LjPMEIs may disrupt the cell wall extensity of the Ljern1-6

root hair and lead to abnormal tip growth.

Because the expression of LjNIN was decreased in Ljern1-6

mutants (Figure S2; Liu et al., 2019b), we compared the

transcription profile of Ljern1-6 obtained from the present

RNA-seq analysis with DNA array data of the WT (Gifu) and

Ljnin-2 from the Lotus japonicus Gene Expression Atlas (Lotus

Base; Mun et al., 2016) to determine whether the reduced

expression of these cell wall-related genes was a secondary

effect of LjNIN. Of all DEGs with decreased expression in

Ljern1-6 mutants, corresponding probes of 128 were detected

in the DNA array. The expression of 32 genes was LjNIN-

dependent (FC of wild type/nin > 1.5 at 1 dpi) (Table S5), while

the remaining 32 genes were LjNIN-independent (Table S6). The

expression of pectinase-, PME- and PMEI-encoding genes was

reduced in Ljnin-2mutants, whereas the expansin genes showed

a comparable expression level in the wild type (Gifu)

(Figure 2A). The regulation of LjEXPB2 may be mainly

dependent on LjERN1, making LjEXPB2 a candidate LjERN1

target. We examined LjEXPB2 expression in MG-20-derived
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Ljern1-6 and Ljnin-9 roots using qRT-PCR and found that the

induction of LjEXPB2 expression in response to rhizobial

infection appeared to be LjERN1-dependent and LjNIN-

independent (Figure S3). Cell wall-associated genes such as

LjEXPB2 may contribute to cell wall loosening, degradation,

and reconstruction during infection thread formation and

nodule development. The reduced expression of LjEXPB2

could interrupt cell wall dynamics in Ljern1-6 mutants.
Expression of 9 protein kinase genes was
decreased in Ljern1-6 mutants

Nine protein kinase genes showed decreased expression in

Ljern1-6 mutants, including two well-studied receptor-like

kinase (RLK) genes, LjEpr3 and LjRINRK1 (Figure 3A; Figure

S3). LjEPR3 recognizes rhizobial exopolysaccharides and

regulates rhizobial passage through the host epidermal cell

layer (Kawaharada et al., 2015; Kawaharada et al., 2017b).

LjRINRK1 is likely involved in positive feedback with LjNIN

and amplifies the infection signal (Li et al., 2019). In order to

confirm whether ERN1 up-regulates the expression of RINRK1,

the transcript accumulation of RINRK1 was compared by qRT-

PCR in the background of MG-20 and Ljern1-6. In MG-20,

RINRK1 was significantly induced 1 dpi, and its expression was

further increased 3 dpi. On the other hand, the induction

decreased at about 1/5 to 1/7 of MG-20 in the Ljern1-6

background (Figure 4A). In addition, constitutive expression

of ERN1 tended to increase the expression of RINRK1 in Ljnin-2

mutants, under both uninfected and infected roots (Figure 4B).

On the other hand, UBp : NIN also induced RINRK1 expression

in uninfected and infected roots of Ljern1-1 (Figure S4). These
A B

FIGURE 3

Expression of differentially expressed kinase genes in WT and mutants. (A) Heatmap of changes in the expression of differentially expressed
kinase genes in the WT (MG-20) and Ljern1-6 mutants (left grid) and WT (Gifu) and Ljnin-2 mutants (right grid). (B) Receptor-like kinase
prediction. Extracellular, transmembrane, and kinase domains were predicted using SMART (Letunic et al., 2015; Letunic and Bork, 2018); LjEpr3
and LjRINRK1 were used as positive controls. Blue stands for S_TKc, Serine/Threonine protein kinases, catalytic domain while red stands for
STYKc, protein kinase; unclassified specificity.
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results suggest that transcriptional activation of RINRK1 is NIN-

and ERN1-dependent. Indeed, UBp : ERN1 failed to fully restore

RINRK1 expression in the nin-2 mutant, suggesting that both

NIN and ERN1 are required for full RINRK1 expression.

Then, to analyze the spatial expression pattern of RINRK1,

we constructed a GUS reporter carrying its promoter (2,976 bp),

and transformed to the hairy roots via R. rhizogenes. Infection

threads are visualized when infected with DsRED-labeled

rhizobia. RINRK1 was expressed in the region where the

infection threads were formed (Figure 4C), and then strongly

expressed in the divided cortical cells and nodule primordia

(Figures 4D, E). On the other hand, in the Ljern1-6 background,

no expression of GUS was observed even in the region where the
Frontiers in Plant Science 08
characteristic root hair deformation was observed after the

infection (Figure 4F). Subsequently, we investigated whether

the failure of the infectious process in Ljern1-6 could be

suppressed by constitutive expression of RINRK1. Prior to the

experiment, we confirmed that the efficiency of formation of

mature nodules was increased by introducing RINRK1 into the

alb1 mutant carrying a mutation in RINRK1 (Figure 4G). When

RINRK1 was overexpressed in the hairy roots of the Ljern1-6

mutant, nodule primordia and mature nodules tended to

increase slightly compared to the lines in which the empty

vector was introduced (Figure 4G). On the other hand, the

average numbers of ITs (± SD) was 1.40 ± 1.62 (n = 15) in

the Ljern1-1 hairy roots transfected with the empty vector, and
A B
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FIGURE 4

Positive regulation of RINRK1 by ERN1. (A) Relative expression levels of RINRK1 in WT and Ljern1-6. (B) Relative expression levels of RINRK1 in
Ljern1-1 and Ljnin-2. Roots transformed with an empty vector (gray bar) or UBp : ERN1 (stripe bar). Data are means of fold changes normalized
to Ubiquitin and displayed relative to the empty vector control of Ljern1-1 at 0 dpi (non-inoculation). Error bars indicate SE (n = 3, sample size =
12 plants). Statistical analysis was performed by ANOVA followed by Tukey's HSD test (P<0.05). GUS expression from RINRK promoter after
inoculation with DsRed-labeled M. loti. Roots of WT (C–E) or the Ljern1-6 mutants (F). Scale bars, 200mm. Arrow heads: balloon-shaped root
hairs. (G) Effects of overexpression of RINRK1 on nodulation in the hairy roots of the alb1 and Ljern1-1 mutants.
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1.47 ± 2.06 (n = 15) in the hairy roots transfected with the UBp :

RINRK1. Phenotypic suppression was not sufficient, suggesting

that host factors other than RINRK1 regulate downstream of

ERN1 also contributed significantly to the infection process.

In addition to these two kinases, the SMART analysis has

revealed that the predicted proteins of Lj2g3v1550330 and

Lj3g3v2888290 feature RLK structures (extracellular domain +

transmembrane domain + kinase domain; Figure 3B; Shiu and

Bleecker, 2001; Letunic et al., 2015; Letunic and Bork, 2018).

Lj0g3v0095039 did not contain typical RLK domains, but its best

BLASTP hit in A. thaliana was predicted to be RLKs (Shiu and

Bleecker, 2001). The prediction that these three DEGs encode

RLKs implies that they play a role in signal transduction. The

reduced expression of these kinase genes may inhibit the ability

of Ljern1-6 mutants to identify compatible rhizobia and

transduce signals to the nucleus. Similarly, in Mtern1 mutants,

the expression of 30 kinase genes was reduced (Liu et al., 2019a),

suggesting that ERN1 may have similar functions in signal

transduction in two species.
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LjERN1 mutation affected the expression
of four phytohormone-related genes

Previous studies have shown that Ljern1 alleles are deficient

in response to cytokinin and auxin signaling during root nodule

symbiosis (Kawaharada et al., 2017a; Nadzieja et al., 2018),

which implies a role of LjERN1 in phytohormone signaling. In

the present Ljern1-6 dataset, we found that four genes associated

with phytohormones showed decreased expression levels

(Figure 5). GIBBERELLIN 3 BETA-HYDROXYLASE1

(LjGA3ox1) encodes an enzyme that converts GA to a

bioactive form. GA negatively regulates root nodule symbiosis

through the degradation of DELLA proteins (Fonouni-Farde

et al., 2016; Jin et al., 2016). The decreased expression of

LjGA3ox1 in Ljern1-6 mutants may be a secondary effect of

decreased numbers of infection threads in these mutants.

Nadzieja et al. (2018) showed that auxin is necessary for

infection thread formation in L. japonicus. The expression of an

auxin-related genes, Gretchen Hagen3 (LjGH3), was reduced in
FIGURE 5

Phytohormone-associated DEGs in WT and mutants. Simplified GA, auxin, and cytokinin biosynthesis pathways were shown. Genes encoding
enzymes with red frames were significantly reduced in Ljern1-6 mutants. Heatmaps show the expression patterns of corresponding genes in WT
and mutants.
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Ljern1-6mutants in the present study. GH3 balances auxin levels

by catalyzing the conjugation of auxin. It is possible that LjERN1

is related to auxin homeostasis, which, in turn, affects root

nodule symbiosis.

Consistent with a previous report (Reid et al., 2017), we

found that LjLOG4, which encodes an enzyme catalyzing the

conversion of cytokinin precursors to a bioactive form, showed

decreased expression levels in Ljern1-6 mutants (Figure S3).

Subsequently, the expression level of LjCKX3, which was

involved in the breakdown of cytokinin, was also decreased

(Figure 5). Cytokinin has been identified to suppress infection

thread formation but promotes cortical cell division (Murray

et al., 2007; Tirichine et al., 2007; Miri et al., 2016). Although

LjERN1 is not essential for nodule organogenesis as all Ljern1

allele lines are able to produce root nodules, LjERN1 mediates

the formation of cytokinin-induced spontaneous root nodules

(Kawaharada et al., 2017a). The decreased expression of LjLOG4

and LjCKX3may explain the lack of spontaneous root nodules in

Ljern1 lines.

The expression levels of all four phytohormone-related

DEGs were increased in Ljern1-6 mutants to levels comparable

with those in the wild type after 2 dpi, suggesting that LjERN1

may be involved in their regulation at an early stage. LjGA3ox1

and LjGH3 have displayed decreased expression levels in Ljnin-2

lines, suggesting that their regulation may be dependent on both

LjERN1 and LjNIN. LjERN1 may be more involved in the

regulation of the cytokinin pathway, since LjLOG4 and

LjCKX3 expression was decreased in Ljern1-6 mutants but not

in Ljnin-2 mutants.
LjERN1 and the transcription network

To gain a better understanding of the transcription network

downstream of LjERN1, we also examined the expression of

transcription factor-encoding genes in WT plants and Ljern1-6
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mutants. Based on the classification of transcription factor

families and gene IDs from PlantTFDB (Jin et al., 2014; Jin

et al., 2015; Jin et al., 2017; Tian et al., 2020), we analyzed the

expression of 14 transcription factor genes that were decreased

in Ljern1-6 mutants (Figure 6). The reduced expression levels of

LjNIN and its target genes, such as LjNF-YA1, were consistent

with our previous findings (Liu et al., 2019b). The expression of

LjNF-YA1 and other LjNIN target genes may be solely

dependent on LjNIN or may require regulation by both

LjERN1 and LjNIN. Based on a combination of our RNA-seq

results and the DNA array data, it seemed that the expression of

the Myb transcription factor gene Lj5g3v2013880 was dependent

on LjERN1 but not NIN. It is possible that together with a few

other transcription factor genes in the Wox, WRKY, and bHLH

families, these transcription factors are involved in mediating the

regulation of LjNIN expression downstream of LjERN1.
Conclusion

In this present study, we transcriptionally compared gene

expression profiles between WT L. japonicus and Ljern1-6

mutants in response to rhizobial infection. LjERN1 affected

cell wall remodeling via expansin, pectinases, PMEs, and

PMEIs to affect infection thread formation and cortical cell

division. LjERN1 may also be involved in mediating signal

transduction through protein kinases, including LjEpr3.

During root nodule symbiosis, phytohormone signaling is

finely tuned, which may also require the involvement of

LjERN1. Many of the DEGs with decreased expression in

Ljern1-6 mutants have also showed decreased expression levels

in Ljnin-2 mutants, suggesting that they were also regulated by

LjNIN. This supports the theory that LjERN1 and LjNIN may

have a close relationship in the regulation of gene expression.

However, the present study did not determine whether the

multifunctional LjERN1 is involved in rhizobial infection,
FIGURE 6

Transcript response of transcription factor genes in WT and mutants Heatmap showing expression patterns of differentially expressed
transcription factor genes in WT (MG-20) and Ljern1-6 mutants (left grid) and WT (Gifu B-129) and Ljnin-2 mutants (right grid).
frontiersin.org

https://doi.org/10.3389/fpls.2022.995589
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.995589
nodule organogenesis, or both processes. Future work is needed

to resolve this concern.
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