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reveals important genomic
regions controlling root
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and potassium stress in
rapeseed (Brassica napus L.)
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of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China, 2Hubei
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Plants rely on root systems for nutrient uptake from soils. Marker-assisted

selection helps breeders to select desirable root traits for effective nutrient

uptake. Here, 12 root and biomass traits were investigated at the seedling

stage under low nitrogen (LN), low phosphorus (LP), and low potassium

(LK) conditions, respectively, in a recombinant inbred line (RIL) population,

which was generated from Brassica napus L. Zhongshuang11 and 4D122

with significant differences in root traits and nutrient efficiency. Significant

differences for all the investigated traits were observed among RILs, with

high heritabilities (0.43–0.74) and high correlations between the different

treatments. Quantitative trait loci (QTL) mapping identified 57, 27, and 36

loci, explaining 4.1–10.9, 4.6–10.8, and 4.9–17.4% phenotypic variances under

LN, LP, and LK, respectively. Through QTL-meta analysis, these loci were

integrated into 18 significant QTL clusters. Four major QTL clusters involved

25 QTLs that could be repeatedly detected and explained more than 10%

phenotypic variances, including two NPK-common and two specific QTL

clusters (K and NK-specific), indicating their critical role in cooperative

nutrients uptake of N, P, and K. Moreover, 264 genes within the four major QTL

clusters having high expressions in roots and SNP/InDel variations between

two parents were identified as potential candidate genes. Thirty-eight of them

have been reported to be associated with root growth and development

and/or nutrient stress tolerance. These key loci and candidate genes lay the

foundation for deeper dissection of the NPK starvation response mechanisms

in B. napus.
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Introduction

In agricultural systems, nitrogen (N), phosphorus (P), and
potassium (K) are the three most important minerals that limit
plant growth. A considerable amount of fertilizer has been
utilized to meet N, P, and K requirements to enhance crop
production. As a result, improper practices have led to serious
environmental issues, low fertilizer utilization efficiency, and
excessive annual energy usage (Jiao et al., 2016). For example,
globally, P resources are expected to be depleted by the end
of the century (Mensah et al., 2020). Therefore, it is critical to
breed crop varieties that efficiently use nutrients (mainly N, P,
and K) (Stahl et al., 2019). These new cultivars should provide
a more cost-effective approach than relying solely on fertilizer
application (Tian et al., 2016).

Roots are responsible for water absorption, nutrient uptake,
and anchoring the plant in the soil and thus substantially impact
crop growth and yield formation (Atkinson et al., 2019; Chen
et al., 2020). Root growth regulation has been the subject of
extensive research and practice to boost grain yields (Thorup-
Kristensen and Kirkegaard, 2016; Calleja-Cabrera et al., 2020).
Enhancing root absorption and uptake of nutrients and water
is encouraged to increase agricultural output and nutrient and
water usage efficiency and minimize groundwater pollution
(Hatfield and Dold, 2019). Plant root systems are dynamic
structures that influence overall architecture by changing root
branching, root angle, and root development rates. An effective
root system is critical for nutrient uptake in plants. For
example, in most elite cultivars, increasing the root-to-shoot
ratio facilitates the uptake of P from deep soil and promotes
the growth of longer root hairs to better utilize soil spatial
features in order to store nutrients in shoots (Guo and Xu,
2012; Wang et al., 2019). Therefore, optimizing root and
biomass-related traits such as root length, root width, root
tips, root diameter, root, and shoot biomass at the seedling
stage may thus provide a feasible route for understanding early
variations linked with high nutrient-uptake. Moreover, it has
been determined that genetic diversity of root-related traits is
necessary to increase grain yield under different nutritional
conditions (Carvalho et al., 2014; Liu et al., 2017). Hence,
improving nutrient uptake through useful variation in seedling
root and biomass traits under different growth conditions may
be a sustainable long-term strategy for developing superior
cultivars (Lynch, 2019).

An effective strategy for enhancing yield production
under abiotic stress conditions requires genetic assessment of
quantitative traits that determine crop adaptation to adverse
conditions (Li et al., 2014). It is important to note that
crop performance is the consequence of thousands of gene
interactions, as well as environmental and cultural practices
(Collins, 2008); it is obvious that assessing quantitative trait loci
(QTLs) is a powerful tool for dissecting complex quantitative

traits that have been widely studied in various crops such
as in wheat (Ren et al., 2017), rice (Jewel et al., 2019),
maize (Sun et al., 2021), and rapeseed (Wang et al., 2017;
Dun et al., 2019; Ibrahim et al., 2021; Li et al., 2021). As QTLs
were identified to be linked with phenotypic variance, the
corresponding loci may be amplified and thus could be used
for phenotypic improvement (Liu et al., 2021; Ma et al.,
2021; Peltier et al., 2021). Understanding the genetic basis
for nutrient acquisition related to root development is crucial
in plant breeding (Wissuwa et al., 2016). Although extensive
advances have been made in understanding how plants respond
to nutrition stress, many genetic bases for nutrient tolerance
remain still unclear in rapeseed (Congreves et al., 2021).
Only a few studies have been conducted on QTLs that allow
plants to adapt to varying N, P, and K levels under uniform
conditions (Guo and Xu, 2012; Wang et al., 2012a; Shen et al.,
2019).

Rapeseed (Brassica napus L.), a globally grown Brassica
genus crop, is an essential vegetable oil source that humans have
consumed. Understanding the molecular processes influencing
root development is critical for evaluating root system
architecture (RSA), nutrient efficiency, and rapeseed yield
potential (McGrail et al., 2020). A panel of 236 rapeseed
recombinant inbred lines (RILs) was used in this study to
explore root and biomass-related traits of seedling plants
in hydroponics under low Nitrogen (LN), low phosphorous
(LP), and low potassium (LK) conditions. The study’s ultimate
objectives were as follows to (i) ascertain QTLs for root and
biomass-related traits under LN, LP, and LK conditions (ii)
detect major QTL clusters and determine their consistency
across environments and different NPK nutritional routines to
locate places with breeding prospects (iii) determine sequence
variation in the crucial candidate genes (iv) find crucial
candidate genes in the major QTL clusters.

Materials and methods

Plant materials

A cross of “Zhongshuang 11 (ZS11)” and “4D122” generated
the RIL population (F2:6) generation used in this experiment.
The F1 generation plants were self-pollinated to obtain F2

generation seeds, and the F2 generation was continuously
selfed by the single seed descent method. F2:6 seeds were
obtained as the recombined inbred line population, and 236
lines were randomly selected from the (F2:6) generation and
used for this experiment (Kuang et al., 2022). The two parents
were used for the pilot experiment first to find the suitable
concentration of nitrogen, phosphorus and potassium, the
results of which were used for low-NPK treatment for screening
the RIL population.
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Experimental design and hydroponic
culture condition

The two parents were grown hydroponically and analyzed
in two independent trials with a completely random design
at the Chinese Academy of Agricultural Sciences’ Oil Crops
Research Institute in Wuhan, China. The seeds germinated
in the greenhouse for 6 days, with 2 days of darkness and
4 days of light, before being transplanted into smaller blue
plastic basins (34 cm × 26 cm × 12 cm) with a quarter-
strength nutritional solution. A standard Hoagland’s solution
(Hoagland and Arnon, 1950), with consistent concentrations
of other elements, and seven nitrogen, eight phosphorus, nine
potassium concentrations were used, including 15, 3.5, 1.0,
0.75, 0.5, 0.375, 0.3 mMN+, 1, 0.1, 0.05, 0.025, 0.01, 0.007,
0.005, 0.003 mMP+ and 6, 0.6, 0.3, 0.15, 0.075, 0.05, 0.025,
0.01, and 0.005 mMK+, respectively. The full-strength modified
Hoagland’s solution contained 5 mmol L−1 Ca (NO3)2.4H2O,
5 mmol L−1 KNO3, 2 mmol L−1 MgSO4.7H2O, 1 mmol
L−1 KH2PO4, 0.05 µM EDTA-Fe, 46 µM H3BO3, 14 µM
MnCl2.4H2O, 0.77 µM ZnSO4.7H2O, 0.32 µM CuSO4, and
0.44 µM Na2MoO4.2H2O. Quarter strength, half strength, and
full-strength nutritional solutions were utilized in that order
for the first, second, and third weeks. Weekly, the nutrient
solution was changed. Seedlings were grown under a 16/8 h
light-dark cycle, a daily light intensity of 180 µmol photons
m−2 s−1, a day and night temperature of 26/21◦C, and relative
air humidity of 50–70%.

The nutrient stress of 236 “ZS11/4D122” RILs was then
evaluated in the hydroponic culture at three-macronutrient
stress concentrations, low N with 0.5 mM N, low P with
0.01 mM P, and low K with 0.001 mM K, respectively, under
the same concentration of other elements. Three trials were
repeated three times for each stress (LN1, LN2, LN3, LP1, LP2,
LP3, LK1, LK2, and LK3). Six seedlings were grown for each
genotype, and the nutrient solution was changed regularly as
descried for pilot experiment.

Trait measurements

Three individual plants from each genotype were collected
to conduct phenotypic identification, and each plant was divided
into root and shoot sections. Five root morphology traits (RMT)
viz. total root length (TRL), total root surface area (TSA), total
root volume (TRV), total number of roots (TNR) were captured
through images using a scanner (EPSON V700, Japan) and
further analyzed by WinRHIZO software (Pro 2012b, Canada),
while primary root length (PRL) was measured manually using
a ruler. Seven biomass traits (BT), including root fresh weight
(RFW), shoot fresh weight (SFW), were measured manually
using a weighing balance. Root dry weight (RDW) and shoot
dry weight (SDW) was measured after oven drying at 80◦C until
a constant weight was reached. Total dry weight (TDW) and

total fresh weight (TFW) were estimated as SDW + RDW and
SFW + RFW, respectively. The root to shoot fresh weight ratio
(RSR) was calculated as the ratio between RFW and SFW.

Phenotypic data analysis and
quantitative trait loci mapping

For phenotypic and QTL analysis, all 12 investigated traits
were represented by the best linear unbiased estimation (BLUE)
value of three plants per genotype under NPK-stress only
since the results of QTL mapping under normal conditions
were shown in the previous study (Kuang et al., 2022). The
“PerformanceAnalytics” package in R software was used to
calculate Pearson correlation at a significance level of P < 0.05.
For all traits under stress treatments, analysis of variance
(ANOVA) and broad-sense heritability (h2) were performed
with QRL IciMapping 4.11 with the ANOVA function. A total
of three phenotypic datasets (LN-BLUE, LP-BLUE, and LK-
BLUE) of each trial were used to map QTLs based on the
construction of a genetic linkage map of the RIL population
using a Brassica 50K SNP Chip (Kuang et al., 2022). QTL
mapping was performed with the help of the software Windows
QTL Cartographer 2.5, using the composite interval mapping
(CIM) approach (Wang et al., 2012b). A permutation test was
performed 1,000 times with a walking speed of 1 cM at a
significance level of P < 0.05 to reduce the type-I experimental
error rate (Churchill and Doerge, 1994).

The approach suggested by Wang et al. (2016) was used
for QTL integration and nomenclature. To distinguish loci
identified under LN from those identified under LP and LK,
“LN” was added to the QTL name. Stoll et al. (2000) defined a
QTL cluster as the two markers that are closest to each other
and have an overlapping confidence interval (CI). Accordingly,
a QTL cluster was defined as two or more significant QTLs with
overlapping CI, expressed as a map distance (LOD ≥ 2.5), and
labeled “qc.”

Mining of candidate genes and protein
interaction analysis for major
quantitative trait loci clusters

In accordance with Cai et al. (2015), candidate genes were
identified. All SNPs in the genetic map were used to confirm
the alignment of the physical and genetic maps. Illumina
Inc. created 50 K probe sequences to locate homologous loci
using the NCBI local blastn program against the Darmor-
bzh reference genome for B. napus (Rotmistrovsky et al.,
2004; Chao et al., 2017). QTL regions were defined as genomic
regions aligned with QTL’s confidence interval, and genes

1 https://isbreedingen.caas.cn/software/qtllcimapping/294607.htm
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found within the QTL were classified as candidate genes
for the QTL (Chao et al., 2017). SNP/insertion-deletion
(InDel) variants of potential genes were examined using
the two parents’ re-sequencing data (PRJNA868428). To
explore the functional interactions between the genes, we
used the STRING database2 to build a protein interaction
network using 264 potential candidate genes. We used the
Arabidopsis thaliana homologous genes to find protein-protein
interaction network.

Results

Phenotypic variations of investigated
traits under NPK stress conditions

A total of 12 traits, five root morphology traits (RMT)
viz. PRL, TRL, TSA, TRV, TNR, and seven biomass traits
(BT), RFW, SFW, RDW, SDW, TDW, TFW, and RSR,
were investigated for both the parents and RIL population
planted in three hydroponics trails under LN, LP, and LK
treatments, respectively. Parents “ZS11 and 4D122” exhibited
obvious phenotypic differences under CK/LN/LP/LK conditions
(Figure 1A). The parent Zhongshuang11 (ZS11), showed

2 https://string-db.org/cgi/

significant advantages for most of the investigated traits
under either CK or NPK treatment over that of another
parent, 4D122 (Figure 1B). These extensive genetic variations
between the two parents indicated different genetic effects on
the studied traits.

ANOVA revealed that genotypes, treatments, and
genotype × treatment interactions significantly affected
nine traits (PRL, RFW, SFW, TRL, TSA, TRV, TNR, RSR, and
TFW) (Supplementary Table 1). The phenotypic performance
and broad-sense heritability (h2) for the examined traits in
the RIL population are displayed (Table 1). Among the RIL
population, higher and lower values than those in two parents
were found under NPK-stress, implying the possibility of
transgressive variation and the presence of negative and positive
alleles in both parents (Table 1). The estimated h2 for the
studied traits under LN/LP/LK ranged from 0.55 to 0.74,
0.43–0.73, and 0.47–0.70, respectively. High h2 values indicated
that the genetic analysis of investigated traits in this study
was reliable and suitable for QTL mapping. The coefficients
of variation (CV) for different root and biomass traits under
LN/LP/LK ranged from 10.9 to 21.3, 9.6–39.1, and 12.4–34.7%,
respectively. The absolute skewness and kurtosis values for
some of the investigated traits were less than 1.0 (Table 1
and Supplementary Table 2). All the studied traits exhibited
normal or skewed normal distribution under LN/LP/LK
(Figure 2A). These suggested that multiple genes controlled the
corresponding traits.

FIGURE 1

(A) Phenotype of the rapeseed parental lines ZS11 and 4D122 after 3 weeks under hydroponic conditions. (B) Comparison of parents (ZS11 and
4D122) for the investigated traits under LN/LP/LK. ∗∗ and ∗ Significant at 1 and 5% levels of probability, respectively.
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Correlation analysis among the
investigated traits

Significant and strong correlations were observed among
the investigated traits under LN/LP/LK conditions (Figure 2A).
Consistent with the correlations under the control condition
(Kuang et al., 2022), RFW revealed significant and positive
correlations with the other six BT, SFW (r = 0.66, 0.62, and
0.65, P < 0.01), SDW (r = 0.64, 0.50, 0.55, P < 0.01), RDW
(r = 0.74, 0.76, 0.45, P < 0.01), TDW (r = 0.67, 0.59, 0.68,
P < 0.01), and TFW (r = 0.75, 0.78, 0.75, P < 0.01), as well

as the four RMT, TRL (r = 0.60, 0.79 and 0.65, P < 0.01),
TSA (r = 0.73, 0.87, 0.72, P < 0.01), TRV (r = 0.72, 0.79,
0.68., P < 0.01), TNR (r = 0.37, 0.17, 0.35, P < 0.01), under
LN/LP/LK conditions, respectively. SFW also displayed positive
and significant correlation with the four RMT, TRL (r = 0.30,
0.51, 0.41, P < 0.01), TSA (r = 0.44, 0.58, 0.49, P < 0.01),
TRV (r = 0.50, 0.53, 0.48, P < 0.01), TNR (r = 0.28, 0.13,
0.33, P < 0.01). Other root and biomass traits also revealed a
significant and positive correlation with each other. RSR showed
significant and negative correlations with SFW, SDW, TFW, and
TDW. In addition, under four different treatment conditions,

TABLE 1 Descriptive statistics for investigated traits under NPK-stress in the recombinant inbred line (RIL) population.

Traits Treata Mean Minb Maxc SDd CVe (%) Skewness Kurtosis fh2

PRL (cm) LN 26.2 18.7 35.1 2.85 10.9 0.33 0.23 0.58

LP 23.8 18.2 31.7 2.28 9.6 0.34 0.52 0.49

LK 22.6 15.0 29.9 2.81 12.4 −0.11 −0.18 0.61

RFW (g) LN 0.687 0.451 1.074 0.11 16.2 0.56 0.55 0.70

LP 0.629 0.418 0.893 0.09 14.2 0.43 0.41 0.61

LK 0.474 0.268 0.835 0.08 17.6 0.38 0.97 0.70

SFW (g) LN 1.827 1.284 2.464 0.23 12.8 0.06 −0.30 0.73

LP 1.574 1.027 2.420 0.24 15.2 0.60 0.77 0.73

LK 2.607 1.363 4.388 0.40 15.4 0.36 1.53 0.62

TRL (cm) LN 1061.6 719.6 1536.0 154.60 14.6 0.56 0.21 0.65

LP 976.3 639.0 1530.7 138.34 14.2 0.74 1.44 0.60

LK 568.2 357.8 874.0 93.85 16.5 0.26 −0.01 0.56

TSA (cm2) LN 77.7 51.0 113.7 11.17 14.4 0.40 0.16 0.63

LP 73.1 44.4 111.9 10.58 14.5 0.64 0.71 0.58

LK 49.2 28.6 72.5 8.42 17.1 0.08 −0.15 0.49

TRV (cm3) LN 0.465 0.279 0.713 0.08 16.8 0.32 0.24 0.59

LP 0.448 0.213 0.711 0.08 18.1 0.54 0.36 0.58

LK 0.349 0.166 0.558 0.07 20.4 0.15 −0.10 0.47

TNR LN 1471 816 2601 313.40 21.3 0.65 0.58 0.55

LP 1295 688 3549 506.60 39.1 2.16 5.10 0.43

LK 850 390 1996 295.20 34.7 1.15 1.20 0.52

RSR LN 0.389 0.251 0.611 0.05 12.4 0.53 1.85 0.62

LP 0.415 0.287 0.657 0.05 13.2 0.68 1.29 0.58

LK 0.185 0.124 0.262 0.03 14.3 0.48 0.45 0.68

TFW (g) LN 2.514 1.773 3.442 0.32 12.7 0.11 −0.26 0.74

LP 2.202 1.490 3.288 0.30 13.7 0.57 0.95 0.72

LK 3.081 1.700 5.224 0.46 14.9 0.34 1.86 0.63

RDW (g) LN 0.100 0.056 0.153 0.02 15.8 0.20 0.45 –

LP 0.086 0.055 0.138 0.01 16.1 0.40 0.48 –

LK 0.071 0.033 0.138 0.02 21.1 1.10 2.73 –

SDW (g) LN 0.556 0.372 0.807 0.08 14.3 0.23 0.24 –

LP 0.456 0.328 0.683 0.07 14.7 0.48 0.06 –

LK 0.136 0.073 0.188 0.02 17.6 −0.26 −0.37 –

TDW (g) LN 0.656 0.442 0.951 0.09 13.7 0.23 0.31 –

LP 0.542 0.387 0.794 0.07 13.8 0.44 0.18 –

LK 0.208 0.113 0.283 0.03 14.0 −0.24 0.05 –

aTreat, treatment; bMin, minimum; cMax, maximum; dSD, standard deviation; eCV, coefficient of variation; fh2 , heritability.
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FIGURE 2

Correlation, frequency distribution and scatter plot analysis of the investigated root and biomass traits. (A) Correlations of captured traits under
LN/LP/LK. (B) Correlations of each captured trait among the four treatment conditions (CK/LN/LP/LK). **, * Significant at 1 and 5% levels of
probability, respectively.

CK/LN/LP/LK, significant and positive correlations were found
among the studied traits (Figure 2B). For examples, correlation
coefficients for PRL ranged from 0.37 to 0.56, RFW (0.48–0.61),
SFW (0.46–0.71), TRL (0.42–0.62), TSA (0.40–0.58), TRV (0.36–
0.57), RSR (0.26–0.50), RDW (0.16–0.57), SDW (0.36–0.68),
TDW (0.49–0.69), and TFW (0.49–0.69). TNR showed a weak
correlation (0.18–0.25) under different treatments. These results
indicated the genetic stability of these traits across different
stress conditions. Moreover, high correlations proves common
genetic factors controlling the studied traits under all of the CK,
LN, LP, and LK treatments.

Quantitative trait loci mapping

Quantitative trait loci detected for root and
biomass traits under low nitrogen-stress
condition

Using a high-density SNP linkage mapping, a total of 57
loci associated with 12 root and biomass traits, were detected
on 15 linkage groups (A01: 2, A02: 2, A03: 1, A04: 1, A05:
2, A08: 11, A09: 9, A10: 5, C01: 6, C02: 5, C03: 1, C04: 3,
C06: 2, C07: 1, and C08: 6) under the LN condition in this
RIL population, explaining 4.1–10.9% phenotypic variance (R2)
(Figure 3A and Supplementary Table 3). Among these, 20 loci
for RMT (including “PRL: 8, TRL: 3, TSA: 3, TRV: 4, and TNR:
2”) and 37 loci for BT (“RFW: 8, SFW: 10, RSR: 1, RDW: 4,
SDW: 6, and TDW: 8”) were observed under the LN condition.

High phenotypic variance (PVE) were explained by these loci
for RMT and BT (“PRL: 50.6%, TRL: 18.8%, TSA: 17.9%, TRV:
30.9%, TNR: 13.1%, RFW: 45.6%, SFW: 69.9%, RDW: 23.6%,
SDW: 39.1%, TDW: 54.6%, and RSR: 7.2%”). 53% (30 loci), and
47% (27 loci) were identified with positive and negative additive
effects, indicating the importance of both parents toward the
investigated traits.

Quantitative trait loci detected for root and
biomass traits under low phosphorous-stress
condition

A total of 27 loci were detected on seven linkage groups
(A05: 1, A07: 1, A08: 4, A09: 10, C02: 8, C03: 1, and C08:
2), explaining 4.6–10.8% phenotypic variation under the LP
condition (Figure 3B and Supplementary Table 4). These loci
explained high PVE for different RMT and BT; i.e., PRL: 15.1%,
TRL: 6.0%, RFW: 5.1%, SFW: 33.3%, RDW: 4.9%, SDW: 61.5%,
TDW: 59.6%, and RSR: 5.1%. Among these, three loci for RMT
(“PRL: 2, TRL: 1) and 24 loci for BT (RFW: 1, SFW: 5, RSR: 1,
RDW: 1, SDW: 8, and TDW: 8”). Maximum loci (63%, 17 loci)
showed a negative additive effect, indicating the contribution of
parent ZS11 toward these traits.

Quantitative trait loci detected for root and
biomass traits under low potassium-stress
condition

A total of 36 loci on 10 linkage groups (A01: 3, A02: 2, A07:
8, A09: 9, C01: 4, C02: 1, C03: 1, C06: 3, C07: 3, and C08: 2)
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FIGURE 3

Information of loci detected for RMT and BT under LN/LP/LK conditions. (A) Distribution of loci on 19 linkage groups for RMT and BT under
LN-stress conditions. (B) Distribution of loci on 19 linkage groups for RMT and BT under LP-stress conditions. (C) Distribution of loci on 19
linkage groups for RMT and BT under LK-stress conditions. Different colors shows the investigated traits.

were detected under the LK-stress condition (Figure 3C and
Supplementary Table 5). These detected loci explained 4.9–
17.4% of the total phenotypic variation. These 36 loci explained
high phenotypic variance for the investigated RMT and BT
(TRL: 15.9%, TSA: 35.2%, TRV: 19.5%, RFW: 22.8%, SFW:
20.7%, RDW: 6.0%, SDW: 17.9%, TDW: 32.7%, TFW: 24.1%,
and RSR: 57.0%). Among 36 loci under LK-stress condition,
11 loci for RMT (“TRL: 3, TSA: 5, and TRV: 3”), while 25
loci for BT (“RFW: 4, SFW: 3, RSR: 5, RDW: 1, SDW: 3,
TDW: 5, and TFW: 4) were detected. Most detected loci showed
negative effects (75%, 27 loci), consistent with those under LN
and LP conditions.

Identification of specific and common
quantitative trait loci clusters under NPK-stress

The genomic region associated with many traits is
biologically intriguing because it may harbor important
regulators. It signifies the existence of a single gene with a
pleiotropic effect or closely linked loci controlling two or more
traits (Goto et al., 2021). The shared genomic region in this
study is referred to as the QTL hotspot or QTL cluster. Based
on the overlapping confidence intervals, 97 out of 120 loci
were integrated through QTL-meta analysis into 18 unique
pleiotropic QTL clusters under NPK-stress conditions (Table 2,
Figure 4, and Supplementary Table 6). These QTL clusters
explained 4.6–12.8% of the total phenotypic variance. Genetic
regions of these QTL clusters were detected on 12 linkage
groups; A01, A07–A10, C01–04, and C06–C08. Out of 18
QTL clusters, 12 QTL clusters exhibited a negative additive
effect, indicating the significant contribution of ZS11 toward the
investigated traits. We then divided the detected QTL clusters
into common and specific clusters (Kim et al., 2021). Based on
this, we detected two NPK-common clusters, three K-specific
clusters, four N-specific clusters, four PK-specific clusters, three
NK-specific clusters, and two NP-specific clusters (Table 2 and

Figure 4), suggesting that key loci associated with these traits
under multiple environments or treatments.

Quantitative trait loci clusters that explain more than 10%
of phenotypic variance (R2) and could be repeatedly detected
under different environments or repetitions are referred to as
major QTL clusters. Consequently, we detected four major QTL
clusters associated with NPK-stress (Table 3 and Figure 4).
Two NPK-common and two specific QTL clusters (K and NK-
specific) were found among the identified major QTL clusters.
Further, these QTL clusters may be used to predict candidate
genes and conduct marker-assisted selection (MAS).

Candidate gene prediction and protein
interaction analysis in the major quantitative
trait loci clusters

All the annotated genes within the four major QTL clusters
were retrieved according to the genome sequence of Darmor. As
a result, 1,655 annotated gene models were found, with a gene
number ranging from 168 to 631 in each major QTL cluster
(Supplementary Table 7). Based on the annotation data of the
retrieved genes as well as functions defined for their homologs
in A. thaliana, the corresponding gene function was predicted
(Supplementary Table 7). Furthermore, the corresponding gene
information of the 1655 annotated genes in the ZS11 genome
were checked. Among these, genes having high expressions in
roots using the BnTIR database3 and having SNPs (missense
variant) or indels effect (disruptive inframe deletion/insertion)
between the two parents using the re-sequence data of 4D122
and the deno-genome sequence of ZS11 were selected. As a
result, we found 264 potential candidate genes (Supplementary
Tables 8–10) that were capable of fulfilling these two criteria.
Among these, some were also found to be highly expressed

3 http://yanglab.hzau.edu.cn/BnTIR
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TABLE 2 Summary of quantitative trait loci (QTL) clusters detected under NPK-stress in the recombinant inbred line (RIL) population.

QTL
clusters

Type Chr. Traits Treatment Peak position
(cM)

C.Ia Max
LOD

Max R2

(%)b
Addc

qc.A01-1 K-specific A01 RFW, RSR LK-BLUE 65.21 61.9–67.7 8.9 12.8 (–)

qc.A07-1 PK-specific A07 TRV, TRL LK/LP-BLUE 53.41 37.0–56.2 3.8 6 (–)

qc.A07-2 K-specific A07 SFW, TFW, TDW, TRL,
TSA

LK-BLUE 71.31 59.6–81.4 6.2 9.2 (–)

qc.A08-1 N-specific A08 RFW, SFW LN-BLUE 22.81 17.3–24.6 4.6 6.3 (–)

qc.A08-2 NP-specific A08 SFW, SDW, TDW, TRV,
RFW, RDW

LN/LP-BLUE 38.61 24.9–40.5 7.2 9.4 (–)

qc.A09-1 N-specific A09 TDW, SDW LN-BLUE 4.51 0.0–8.1 5.2 7.3 (–)

qc.A09-2 NPK-common A09 TDW, TSA, SFW, SDW LN/LP//LK-BLUE 17.41 6.2–20.7 7.8 10.9 (–)

qc.A09-3 PK-specific A09 TRV, SFW, SDW LP/LK-BLUE 33.51 21.6–37.0 4.9 7.0 (–)

qc.A09-4 NPK-common A09 SDW, TDW, RFW, SFW LN/LP//LK-BLUE 112.21 89.2–117.0 8.2 10.9 (–)

qc.A10-1 N-specific A10 TDW, RDW, RFW, TRL LN-BLUE 22.71 11.5–26.5 4.2 6.5 (+)

qc.C01-1 NK-specific C01 SFW, RDW, TFW, RFW,
TSA, TRV, TDW

LN/LK-BLUE 55.61 44.8–60.0 5.3 7.3 (+)

qc.C02-1 PK-specific C02 SFW, SDW, TDW LP/LK-BLUE 13.41 0.0–16.6 6.2 8.5 (+)

qc.C03-1 PK-specific C03 TDW, TRL LP/LK-BLUE 114.71 101.1–127.7 3.6 5.0 (–)

qc.C04-1 N-specific C04 TSA, TRV LN-BLUE 139.01 135.9–144.7 5.8 8.0 (–)

qc.C06-1 NK-specific C06 RFW, RSR LN/LK-BLUE 28.21 24.7–30.9 8.6 11.9 (+)

qc.C07-1 K-specific C07 SDW, TDW LK-BLUE 2.01 0.0–4.2 5.0 7.6 (–)

qc.C08-1 NK-specific C08 TRL, RFW, TSA LK-BLUE 40.41 34.0–44.0 3.7 5.4 (+)

qc.C08-2 NP-specific C08 PRL, RDW, TSA, TRV LN/LP-BLUE 93.31 83.0–98.3 5.1 7.7 (+)

aC.I, confidence interval; bR2 , phenotypic variance; cAdd, additive gene effect.

FIGURE 4

Information of quantitative trait loci (QTL) clusters in recombinant inbred line (RIL) population under LN/LP/LK conditions.

in the root, stem, cotyledon, silique, silique wall, leaf, seed,
and bud, implying that they are involved in plant growth and
development (Figure 5A).

In living organisms, protein–protein interactions (PPIs) play
a role in almost all biological processes (Rao et al., 2014);

therefore, a protein interaction analysis was performed using
the STRING database (Szklarczyk et al., 2021) (see footnote 2)
to explore the candidate genes’ functional interactions further.
Out of 264 potential candidate genes, the Arabidopsis orthologs
of 262 were found that exhibit strong protein interaction with
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TABLE 3 Information of major quantitative trait loci (QTL) clusters with their physical position detected under NPK-stress in the recombinant
inbred line (RIL) population.

Major QTL
clusters

Type Chr. Traits Treat Peak
position-cM

(Mb)

C.Ia Physical
position
(Mb)

Max
LOD

Maxb
R2(%)

Addc

qc.A01-1 K-specific A01 RFW, RSR LK-BLUE 65.21 (15.59) 61.9–67.7 14.63–16.41 8.9 12.8 (–)

qc.A09-2 NPK-common A09 TDW, TSA,
SFW, SDW

LN/LP//LK-BLUE 17.41 (2.52) 6.2–20.7 0.73–3.02 7.8 10.9 (–)

qc.A09-4 NPK-common A09 SDW, TDW,
RFW, SFW

LN/LP//LK-BLUE 112.21 (28.42) 89.2–117.0 25.77–29.06 8.2 10.9 (–)

qc.C06-1 NK-specific C06 RFW, RSR LN/LK-BLUE 28.21 (14.64) 24.7–30.9 12.04–16.69 8.6 11.9 (+)

FIGURE 5

Heat map and protein interaction network analysis for the candidate genes within the major quantitative trait loci (QTL) clusters. (A) Expression
profiles of candidate genes in eight distinct tissues; Heat map is based on the log2 (TPM+1) values. (B) Protein interaction network analysis.

each other (Supplementary Table 10 and Figure 5B). According
to previous studies, we found 38 out of 264 candidate genes,
three from qcA01-1, 18 from qcA09-2, 13 and 4 from qcA09-
4, and qcC06-1, known to be involved in root growth and
development or nutrient utilization (Table 4). According to the
protein interaction network analysis, the predicted genes were
strongly interconnected and may play a major role in NPK stress
tolerance through their interactions with other associated genes.
These findings imply that these genes should be explored in
greater detail to better understand their putative functions in the
protein interaction network.

Discussion

Correlation studies help breeders in identifying the
fundamental traits for which selection can be based on
population improvement (Jewel et al., 2019). Significant and

strong positive correlations were observed among most of the
studied traits under NPK-stress conditions (Figure 2A). At the
same time, RSR exhibited a significant negative correlation with
SFW, SDW, TDW, and TFW stress conditions. Here, we want
to highlight that RSR may be a key phenotypic trait due to
its sensitivity to nutritional stress; these findings are congruent
with those for rapeseed (Dun et al., 2019). Highly correlated
traits with a shared genetic basis were identified, demonstrating
that these 12 root and biomass traits could be used to assess
NPK-deficiency tolerance in RILs at the seedling stage (Liu
et al., 2017). Heritability for RDW, SDW, and TDW has not
been included because these dry weights were measured as
sum of three plants. Root and biomass traits had significant
heritabilities and genetic variations, suggesting that they might
be used as primary selection criteria for optimizing nutrient
use efficiency and uncovering underlying genetics (Hawkesford
and Griffiths, 2019; Jewel et al., 2019). These findings confirmed
prior studies by emphasizing the role of root development
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TABLE 4 Important candidate genes within the major quantitative trait loci (QTL) clusters related to root development/nutrient utilization.

Gene ID in
Darmor

QTL cluster Distance to
Peak

position
(Mb)

Homologs
in At.

Function annotation References

BnaA01g22670D qc.A01-1 0.57 AT1G61660.1 PFA4, enhance stress tolerance and governs
the competence of pericycle cells to initiate
lateral root primordium formation

Woo et al., 2012

BnaA01g23190D qc.A01-1 0.00 AT3G24300.1 AMT1:3, Involved in lateral root formation
and branching and ammonium homeostasis

Vega et al., 2021

BnaA01g23390D qc.A01-1 −0.18 AT3G24160.1 PMP, Encodes a putative Type 1 membrane
protein

Colinas and
Fitzpatrick, 2016

BnaA09g01390D qc.A09-2 1.78 AT4G03210.1 XTH9, Plant-type secondary cell wall
biogenesis

Xu and Cai,
2019

BnaA09g01850D qc.A09-2 1.57 AT3G27000.1 ARP2, Involved in cell morphogenesis Chin et al., 2021;
García-González

and van
Gelderen, 2021

BnaA09g01890D qc.A09-2 1.56 AT3G27090.1 NRP2, involved in regulation of the protein
catabolic process

Wu et al., 2022

BnaA09g01910D qc.A09-2 1.55 AT3G27160.1 GHS1, Required for photosynthesis and C/N
balance

Dong and Duan,
2020

BnaA09g02000D qc.A09-2 1.52 AT5G40650.1 SDH2-2, Involved in mitochondrial electron
transport

Samuilov et al.,
2018

BnaA09g02560D qc.A09-2 1.21 AT5G39510.1 VTI11, Involved in protein trafficking to lytic
vacuoles

Larson et al.,
2014

BnaA09g02590D qc.A09-2 1.19 AT3G29350.1 AHP2, Involved in cytokinin-activated
signaling pathway

Justamante et al.,
2019; Islam
et al., 2022

BnaA09g02880D qc.A09-2 1.06 AT5G48230.2 AAT1, Sterol metabolic process Coleto et al.,
2019

BnaA09g03020D qc.A09-2 0.98 AT5G48430.1 NLP7, nitrate signaling Zhao et al., 2018

BnaA09g03170D qc.A09-2 0.92 AT5G48870.1 LSM5, response to abscisic acid and root hair
growth

Marzol et al.,
2022

BnaA09g03270D qc.A09-2 0.86 AT5G49270.1 COBL9, Involved in root epidermal cell
differentiation

Canales et al.,
2014; Janes et al.,

2018

BnaA09g03540D qc.A09-2 0.72 AT5G29000.2 PHL1, PHL1 acts redundantly with PHR1 to
regulate responses to Pi starvation.

Fan et al., 2021

BnaA09g03700D qc.A09-2 0.67 AT5G27380.1 GHS2, Involved in glutathione synthetases Podg et al., 2018;
Trujillo-

Hernandez et al.,
2020

BnaA09g03720D qc.A09-2 0.65 AT5G27420.1 ATL31, Involved in Carbon/Nitrogen response
for growth phase transition

Li et al., 2020

BnaA09g04490D qc.A09-2 0.31 AT5G25760.2 PEX4, Involved in sucrose-dependent seedling
development and reduced lateral root
production

Ehrary et al.,
2020

BnaA09g04520D qc.A09-2 0.29 AT5G25610.1 RD22, responsive to dehydration 22 (RD22)
mediated by ABA and lateral root elongation

Lee et al., 2021

BnaA09g05080D qc.A09-2 0.02 AT5G23950.1 Calcium-dependent lipid-binding Bouain et al.,
2019

BnaA09g05110D qc.A09-2 0.01 AT5G23900.1 RPLD13, Ribosomal protein L13e family
protein

Wang et al.,
2013

BnaA09g35820D qc.A09-4 2.34 AT3G56370.1 IRK, Inflorescence and root apices receptor
kinase

Xun and Gou,
2020

BnaA09g39530D qc.A09-4 0.40 AT3G61960.1 ATG1A, Serine/threonine-protein kinase Bedu et al., 2020

(Continued)
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TABLE 4 (Continued)

Gene ID in
Darmor

QTL cluster Distance to
Peak

position
(Mb)

Homologs
in At.

Function annotation References

BnaA09g40130D qc.A09-4 0.16 AT3G62770.1 ATG18A, Required for autophagosome
formation during nutrient deprivation and
senescence

Zhen et al., 2019;
Huo et al., 2020

BnaA09g40340D qc.A09-4 0.09 AT3G62980.1 TIR1, Encodes an auxin receptor that mediates
auxin-regulated transcription

Yang et al., 2022

BnaA09g40370D qc.A09-4 0.00 AT3G63390.1 Nutrients signaling Armengaud
et al., 2010

BnaA09g40440D qc.A09-4 −0.04 AT2G26540.1 Encodes a uroporphyrinogen-III synthase
involved in tetrapyrrole biosynthesis

Kuang et al.,
2017

BnaA09g40600D qc.A09-4 −0.11 AT2G26300.1 GPA1, Encodes an alpha subunit of a
heterotrimeric GTP-binding protein

Sahito et al.,
2020

BnaA09g40680D qc.A09-4 −0.14 AT2G26060.1 CIA1, Encodes a homolog of the yeast
Cytosolic Iron-sulfur protein

Lešková et al.,
2020

BnaA09g40690D qc.A09-4 −0.15 AT2G26040.1 PYL2, Mediate ABA-dependent regulation of
protein phosphatase

Zeng et al., 2021

BnaA09g40850D qc.A09-4 −0.20 AT2G25570.3 ISE3, SEL1-like repeat protein involved in
plasmodesmata-mediated intercellular
transport

Vijayakumar
et al., 2016

BnaA09g40900D qc.A09-4 −0.23 AT4G32400.1 BT1, Encodes a plastidial nucleotide uniport
carrier protein required to export newly
synthesized adenylates into the cytosol

Araus et al.,
2016;

Rossdeutsch
et al., 2021

BnaA09g40940D qc.A09-4 −0.24 AT5G52560.1 UPS, sugar pyrophosphorylase Velinov et al.,
2020

BnaA09g41320D qc.A09-4 −0.48 AT2G24540.1 AFR, F-box protein Rath et al., 2020

BnaC06g10870D qc.C06-1 1.72 AT5G51060.1 RHD2, Involved in normal root hair
elongation

Mase and
Tsukagoshi,

2021

BnaC06g12200D qc.C06-1 0.10 AT4G30160.1 VLN4, Encodes a major actin filament
bundling protein that is involved in root hair
growth

García-González
and van

Gelderen, 2021

BnaC06g13300D qc.C06-1 −1.40 AT5G40890.1 CLC-A, Encodes a member of the
voltage-dependent chloride channel

Alcock et al.,
2018

BnaC06g13430D qc.C06-1 −1.51 AT5G41080.1 GDPD2, Encodes a member of the
glycerophosphodiester phosphodiesterase

Das et al., 2022

in improving N, P, and K efficiency under low N, P, and K
conditions (Wang et al., 2017, Wang et al., 2019; Dun et al.,
2019; Li et al., 2021). These kinds of variations in population for
intricate root behavior may be critical for the genetic dissection
of valuable loci (Danakumara et al., 2021; Sandhu et al., 2021).

Significant genetic variation among genotypes allowed
researchers to investigate genetic loci linked with the observed
traits (Kang et al., 2021; Roy et al., 2021). In the current
study, the RIL population was phenotyped, QTL analysis
was performed under LN/LP/LK treatments, and 57, 27, and
36 loci under LN, LP, and LK, respectively, that controlled
nutrient deficiency were identified (Supplementary Tables 3–
5). Multiple QTLs were detected for each trait, with varying
contributions from both parents, revealing the possibility of
epistatic interactions across both parental genomes, in which

alleles from both parents act together to express these traits.
This finding supports the pyramiding of QTLs for several
different traits acting same time in a specific cultivar (Dormatey
et al., 2020; Mei et al., 2020). The co-localization of QTLs
for many traits can be attributed to the pleiotropic effect of a
single gene or a network of interrelated genes, each of which
affects one trait (Amoah et al., 2020; Ibrahim et al., 2021;
Prakash et al., 2021). The co-localization of 18 QTL clusters
in this study suggested that this genomic region could help
with breeding NPK efficiency-related root and biomass traits.
Among these identified QTL clusters, seven clusters (qcA09-
1, qcA09-4, qcC03-1, qcC04-1, qcC06-1, qcC08-1, and qcC08-2)
have been reported recently under control condition (Kuang
et al., 2022). These QTLs may be in selecting a specific or
common nutrient efficiency, as direct selection for one will
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result in indirect selection for the other. Furthermore, QTL
clusters suggest that employing many QTLs to improve root and
biomass traits is easier than using single QTLs (Hina et al., 2020).
We found four major QTL clusters (two NPK-common and
two K/NK-specific) that explained (R2 > 10%) among these 18
co-localized QTL clusters, demonstrating the reliability of QTL
mapping. Our study’s extensive QTL cluster analysis implies that
breeding programs intending to improve root and biomass traits
with improved nutrient uptake efficiency should concentrate on
major QTL clusters and choose loci with these regions.

Identifying potential candidate genes underlying the QTL
region is extremely important for breeding programs (Wang
et al., 2020; Garcia et al., 2021; Soriano et al., 2021). The
sequencing and annotation of the B. napus genome and
expression databases would contribute to the development
of molecular markers and the knowledge of gene function,
regulation, and expression (Lu et al., 2019). Based on gene
annotations and available literature, the current experiment
identified potential candidate genes influencing root and
biomass traits under NPK-stress in rapeseed that underpin the
four designated “QTL hotspots/major QTL clusters.” Most of
these potential candidate genes were significantly expressed in
root and stem tissue (Figure 5A). Many genes orthologous to
A. thaliana were associated with root development or nutrient
utilization based on functional annotation of candidate genes.
For example, BnaA01g22670D was located at a distance of
583 Kb from the peak position of the major QTL cluster
qcA01-1 associated with root and biomass traits under LK-
stress and orthologous to AtPFA4, which has a potential role
in phosphorus starvation in A. thaliana (Woo et al., 2012).
Another potential candidate gene (BnaA01g23190D, AtAMT1;3)
encoding an ammonium transporter has been reported that
promotes primary and lateral root growth in response to nitrate
(Vega et al., 2021).

Similarly, BnaA01g23390D was identified at a distance of
184 Kb from the peak position of the major QTL cluster
qcA01-1, associated with root and biomass traits under LK-
stress and orthologous to AtPMP, which has a crucial role in
nitrogen metabolism (Colinas and Fitzpatrick, 2016). In the
major QTL cluster qcA09-2, some potential candidates were
also detected. For example, BnaA09g04490D is located at a
distance of 317 Kb from the peak position of qcA09-2 and
is associated with root and biomass traits under NPK-stress.
An orthologous BnaA09g04490D (AtPEX4) has been reported
to regulate primary nitrate response, potentially by interfering
with the TGA1 and TGA4 transcription factors (Ehrary et al.,
2020). Another gene (BnaA09g04520D, AtRD22) located at 296
Kb from the peak position of major QTL cluster qcA09-2 has
been demonstrated to play a key role in nitrogen use efficiency
and nitrate assimilation (Lee et al., 2021). Two important genes
(BnaA09g05080D and BnaA09g05110D) located at a distance
of 20 and 10 Kb from the peak position of the major QTL
cluster qcA09-2, respectively, have been reported that play a key

role in root growth and development under phosphorus stress
condition (Wang et al., 2013; Bouain et al., 2019). Several crucial
candidate genes were also identified in the major QTL cluster
qcA09-4. For example (BnaA09g40130D, AtATG18A), located at
a distance of 163 Kb, has been reported to regulate nitrogen
use efficiency (Zhen et al., 2019; Huo et al., 2020). Another
gene (BnaA09g40340D, AtTIR1) found at a distance of 92 Kb
from the peak position and has been reported recently that
regulate root growth and thus can enhance crop production
(Yang et al., 2022). BnaA09g40370D encoding a hypothetical
protein and has been reported to regulate root growth and
development in response to potassium deficiency (Armengaud
et al., 2010). Another gene (BnaA09g40440D) located at 40 Kb
upstream from the peak position of the major QTL cluster
qcA09-4 associated with root and biomass traits and has been
reported that regulation nitrogen assimilation and utilization
(Kuang et al., 2017). Similarly, some important candidate genes
were identified in the major QTL cluster qcC06-1. For example,
a gene (BnaC06g12200D, AtVLN4) has been detected at a
distance of 102 Kb from the peak position and reported to
regulate root growth and development under different abiotic
stresses (García-González and van Gelderen, 2021). These
potential candidate genes were found in strong interaction with
other genes in the protein interaction network (Figure 5B).
As discussed in Supplementary Table 10, these interacting
genes have a potential role in root growth and development,
hormone signaling pathways, and nutrient utilization. Finally,
we hypothesized that the genes that were found to be
orthologous to nutrient stress/tolerance genes in A. thaliana
might be highly related to nutrient stress/tolerance in B. napus.
Further research and validation of these genes may be carried
out to confirm their role in nutrient stress/tolerance in B. napus.
These key loci and candidate genes lay the foundation for
deeper dissection of the NPK starvation response mechanisms
in B. napus.

Conclusion

Rapeseed oil is not only widely consumed in the human
diet but also the world’s second-leading source of biodiesel.
In many plant-breeding programs, developing crop varieties
with stronger RSA is viewed as a way to reduce the use
of NPK fertilizers by enhancing nutrient use efficiency and
thereby increasing yield productivity. In the current study, the
recombinant inbred line population originated from ZS11, the
donor parent, and 4D122, the recipient parent, enabled us to
uncover a large number of loci (120 QTLs) associated with
root and biomass traits under NPK-deficiency. Among them,
we detected 97 loci for different root and biomass traits that
were integrated into 18 QTL clusters (NPK-specific and NPK-
common). Four identified QTL clusters were further classified
as major QTL clusters, comprised of several loci associated
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with different root and biomass architectural traits under NPK-
deficiency conditions. Two of these major QTL clusters were
expressed in all three stress conditions, indicating an underlying
uniform basis of genetic mechanisms, contributing to the
tolerance of these traits. The list of detected loci and refined
clusters will facilitate further validation in systematic breeding
for specific adaptability under low-input conditions and suggest
that the genomic regions could be used as targets to understand
the RSA mechanism better and improve nutrient use efficiency
in rapeseed. In the future, the detected promising harbor QTLs
will lead to the fine-mapping and molecular cloning of key
loci that can be used to improve grain yield and quality under
low-input fertilizer management conditions.
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