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Fruit tree diseases are one of the major agricultural disasters in China. With

the popularity of smartphones, there is a trend to use mobile devices to

identify agricultural pests and diseases. In order to identify leaf diseases of

apples more easily and e�ciently, this paper proposes a cascade backbone

network-based (CBNet) disease identification method to detect leaf diseases

of apple trees in the field. The method first replaces traditional convolutional

blocks with MobileViT-based convolutional blocks particularly for feature

extraction. Compared with the traditional convolutional block, the MobileViT-

based convolutional block is able to mine feature information in the image

better. In order to refine the mined feature information, a feature refinement

module is proposed in this paper. At the same time, this paper proposes a

cascaded backbone network for e�ective fusion of features using a pyramidal

cascaded multiplication operation. The results conducted on field datasets

collected using mobile devices showed that the network proposed in this

paper can achieve 96.76% accuracy and 96.71% F1-score. To the best of

our knowledge, this paper is the first to introduce Transformer into apple leaf

disease identification, and the results are promising.

KEYWORDS

cascade decoder, cascade backbone network, Transformer, applet, disease

classification

1. Introduction

Fruits are indispensable in people’s lives, and apples have long been known as the

“king of fruits” because of their high yield, wide range of cultivation, and high survival

rate. In addition, apples do not compete with grains and cotton for land. Therefore,

it has very good economic benefits and is particularly suitable for large-scale planting.

However, apple anthracnose leaf blight (ALB), apple leaf rust (ALR), apple leaf melasma

(ALM), and apple leaf mosaic (AM) often cause harm to apples, and the spread,

development speed is very fast, usually in a few days to a few weeks to spread to the whole

leaf, the apple yield caused a great impact, which directly affects its economic benefits.
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Traditionally, the control of diseases in agricultural production

is usually detected by farmers based on their own experience or

expert’s help, which is time-consuming and labor-intensive, and

the vast majority of ordinary farmers do not receive guidance

from experts in time. In this context, how to identify the apple

diseases economically and effectively is an urgent question to

research. In this article, we will address this problem with the

help of the cascade backbone network with the mobile phone.

With the development of deep learning in recent years,

more and more researchers have employed deep learning in

the field of agriculture, and has made a great development

in the research of plant disease identification. Deep learning

techniques can automatically extract image features and classify

plant disease spots, eliminating a lot of work such as feature

extraction and manual design of classifiers in traditional image

recognition techniques, with end-to-end features. Grinblat et al.

(2016) firstly used deep learning methods to identify three kinds

of legume: white bean, red bean, and soybean from leaf vein

patterns via CNN. Ma J. et al. (2018) used deep convolutional

neural networks to classify cucumber leaves collected in the

field. Dandawate and Kokare (2015) proposed a convolutional

neural network-based plant disease detection system using 800

cucumber leaves collected in a real production environment for

four disease categories: anthracnose, downy mildew, powdery

mildew and target leaf spot, and prevented overfitting by data

enhancement, ultimately achieving an accuracy of 93.4%. K-

fold cross-validation was utilized to prevent over-fitting, and

an accuracy of 94.9% was finally achieved. Fuentes et al.

(2017) proposed a deep learning-based approach to detect nine

different tomato pests, combining VGG and ResNet networks

as a “deep learning meta-architecture,” using cameras of

different resolutions to capture images during data acquisition,

and then proposing a local and global class annotation and

data enhancement method to achieve an average mAP of

0.8306. Ferentinos (2018) used AlexNet, VGG networks, and

GoogLeNet to classify plant diseases in the dataset. The dataset

was trained using an open dataset (Hughes and Salathé, 2015)

that contained 87,848 images of 25 different plants (including

vigorous plants) from 58 different combinations of categories

(plants, diseases) and ended up with an accuracy of 99.53%.

Guo et al. (2022) used PlantScope images to extract spectral

features commonly used in disease, pest, and vegetation growth

monitoring as primary models, and used random forest and

back propagation neural networks based on feature space

optimization and the AdaBoost algorithm to construct a betel

nut yellow leaf classification monitoring model with a Kappa

coefficient of 0.765.

However, most deep learning-based methods are based on

CNN networks for feature extraction. But too few layers of the

network will lead to the inability to capture features at a distance

and its performance will be limited by the perceptual field.While

increasing the number of layers of the network will lead to

problems such as higher computational overhead and increased

resource consumption, and the pooling operation, which is often

used together with CNN, will lead to the discarding of some

of the location information, resulting in a loss of information,

which can affect the effectiveness of the model to some extent.

The commonly used attention mechanism is more dependent

on external information, which often leads the network to focus

on less important information.

In order to solve the problems caused by using only

convolutional neural networks, this paper introduces

Transformer. Transformer was first proposed by Vaswani

et al. (2017), which completely discarded recursion and

convolution and used only the self-attentive mechanism with

good results. It was also widely used in NLP, such as Bert (Devlin

et al., 2019), GPT (Radford et al., 2018, 2019; Brown et al., 2020)

series, and ByT5 (Xue et al., 2021), etc. Dosovitskiy et al. (2020)

first applied Transformer to the image domain and proposed

the Vision Transformer model. It pioneered the Transformer

in the field of vision, and many models were proposed on this

basis, which greatly promoted the development of the field

of computer vision. Mehta and Rastegari (2021) proposed

MobileViT, which combined CNN and Vision Transformer,

and used the advantages of these two models to successfully

build a lightweight, low latency network for mobile vision

tasks, lowering the threshold for using the Transformer. In this

paper, the CNN module is partially replaced by a MobileViT-

based convolutional block to extract information. A Feature

Refinement (FR) module is proposed in order to uncover

more connections between features. In order to better fuse the

extracted features, we propose a cascaded backbone network

that uses pyramidal concatenation to fuse the feature vectors.

The objectives of this study are (1) to extract features from

images of apple leaves collected in the field and to build an apple

leaf disease recognition module, (2) to validate the effectiveness

of our proposed cascade decoder, Feature Refinement (FR)

module, and Global Context-aware Block (GCB). The results of

this study can provide a reference for the real-time classification

of apple leaf diseases.

2. Materials and methods

2.1. Data collections

The main target of our study was leaf diseases of apples

and the source of the dataset for our study was an orchard in

Tai’an, Shandong Province, China. The total number of images

is 765, as shown in Figure 1. After collection, we asked relevant

experts to diagnose and annotate the apple leaf diseases. The

processing time for collecting, diagnosing, and labeling each

image was 3–5 min on average. By looking at the collected

leaves and diagnosing them, we were able to identify four apple

leaf diseases: Apple Anthracnose Leaf Blight (ALB), Apple Leaf

Rust (ALR) disease, Apple Leaf Melasma (ALM), and Apple
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FIGURE 1

Status and classification of the dataset.

Mosaic (AM). In addition to ALB, ALR, ALM, and AM, images

of healthy leaves were also collected. When selecting disease

samples, we only considered the external visual characteristics

of the disease.

ALB is a leaf blight of apples caused by the anthracnose

fungus. When in a hot and humid environment, the symptoms

are water loss in the form of scorched leaves, and the leaves

will fall off eventually. When environmental conditions are not

suitable, spots stop expanding and form dead spots in varying

sizes on the leaves. Those with petiole onset, orange-yellow,

slightly elevated, mostly fusiform, with small punctate sporangia

on the initial surface and hair-like rust sporangia around the

later spots, are ALR. ALM is usually manifested as the leaves

are pin-awn radially expanding outward, the spots are small

and many, the shape is not fixed, the spots have a lot of

elevated small black spots, the later leaves gradually yellow.

Similarly, leaves with a few yellow spots or bright yellow spots

with clear margins were sampled for AM. Apple leaves appear

larger blocks of dark green and light green discoloration, clear

edges, number, and amount of small, this leaf is usually apple

mosaic. Those lush leaves without any spots, were considered

as healthy. See Figure 1 for pictures of healthy apple leaves and

with diseases. Sixty-six pictures of healthy leaves, 435 pictures

of ALB, 228 pictures of ALR, 70 pictures of ALM, and 80

pictures of AM were derived from these samples. We used a

digital camera and a mobile phone to capture the apple leaves

in the orchard, and to prevent other factors from affecting

the quality of the acquired leaves, we used the default settings

on the mobile phone.The focal length was 4 mm, exposure

time was 1/60 s, ISO speed was 125, and the image size

was 3,456 * 4,608. Unlike other work where the experimental

dataset was obtained in a controlled environment indoors,

our experimental dataset was obtained in a real production

environment.

FIGURE 2

Schematic diagram of data enhancement. (A) Changing

contrast. (B) Adding Gaussian noise. (C) Local zoom. (D)

Mirroring operation. (E) Original image. (F) Random flip. (G)

Random crop, (H) Increasing brightness. (I) Decreasing

brightness.

2.2. Data pre-processing

Pre-processing includes normalization, image size setting

and data enhancement. Normalization is usually done by

compressing the image values to between 0 and 1 in order to

speed up the convergence of the training network. The image

size was set to a uniform 224*224. Data enhancement included

adjusting the contrast, adding a Gaussian noise, image mirror

flip operation, randomly flipping at an angle, random cropping

and changes in brightness (as shown in Figure 2). Before data

enhancement, we had a total of 459 training images and 153

tests and 153 validation images. The data enhancement was

implemented in the pytorch (Paszke et al., 2019) framework,

using the methods provided by OpenCV for enhancement.

The collected dataset we divided the training set, test set and

validation set in a ratio of 6:2:2.

2.3. Cascade backbone network

In order to make full use of the high level modal features

of the RGB images and extract more semantic information, we

divided the modal features of different levels into two groups:

the high level feature group and the low level feature group,

the low level feature group is F1= {Conv3×3, MobileNetV2,

MobileViT}, the high level feature group is F2 = {MobileNetV2,

MobileViT block, MobileNetV2}, with this grouping ensuring

that the high level and low level features are retained,

respectively.

To make more efficient use of these two grouped features,

our network uses a cascaded backbone network (Figure 3) which

first generates a bootstrap feature (IF) using F2 and then uses
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FIGURE 3

Architecture diagram of our proposed framework.

this generated bootstrap feature to guide the learning process of

F1. Using this network, our model is able to iteratively optimize

the detailed information of the low-level features. This is because

high-level features often contain rich global information, while

low-level features carry a large amount of detailed information

that facilitates the extraction of more feature information.

Specifically, we first extract feature information by

MobileViT, and then the extracted feature information is refined

by FR unit to obtain the refined modal features (Fri , i=1,2...6),

respectively. In the first stage, the three features,{Fr4,F
r
5,F

r
6} are

aggregated by the first cascade decoder, a process that can be

expressed as:

IF = T1
(

C1
(

Fr4, F
r
5, F

r
6

))

, (1)

Where IF represents the generated bootstrap features, C1

represents the first cascade decoder, and T1 represents the

convolutional layer, which is used to reduce the number of

channels. In the second stage, the bootstrap feature IF is used

to guide the feature learning of the hybrid modality, a process

that can be expressed as:

Fir
′
= Fir⊗ IF (2)

Where Fri
′(i=1,2,3) represents the optimized features, ⊗

represents the element multiplication operation, and then the

three optimized features are aggregated by another cascade

decoder, a process that can be expressed as:

LC = T2

(

C2

(

Fr
′

1 , F
r′

2 , F
r′

3

))

(3)

Where LC represents the learned features, T2 represents the

Cat operation and the convolution layer, and C2 represents the

second cascade decoder. We then process the features of these

two with an element sum operation with additional weights, a

process that can be expressed as:

Final = α× IF ⊕ β× LC, (4)

Here Final denotes the final fused features, ⊕ represents

element addition operations. The fused features are subjected to

a fully connected (FC) layers and then subjected to a sigmoid

function to output the predicted probabilities, a process that can

be expressed as:

Prediction = S(FC( Final )) (5)

Here Prediction represents the type of prediction of the final

output and S represents the Sigmoid activation function. Finally

we supervise the process using the following loss function:

L = 1ce( Prediction, G) (6)

Where, lce is the widely used binary cross-entropy loss

function and G represents the true label. lce is calculated as
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following:

lce =
1

N

∑

i

Li = −
1

N

∑

i

M
∑

c=1

yic log
(

pic
)

(7)

WhereM represents the number of categories, N represents

the number of samples, yic represents the sign function (0 or 1),

taking 1 if the category of sample i is equal to c and 0 otherwise,

and pic represents the predicted probability that the observed

sample i belongs to category c.

As shown in Figure 4, the input fRGBi represents the side

output features extracted from the RGB image, and we imported

each side output feature to a series of weighting layers that

consisted of two convolutional layers and two PReLU layers and

a dimensional attention layer, a process that can be expressed as:

Feature1 = CA
(

Conv3

(

PReLU
(

Conv3

(

PReLU
(

fRGBi

)))))

,

(8)

CA = Conv3
(

PReLU
(

Conv3
(

Pmax(F)
)))

⊕ F⊗ F, (9)

Where Feature1 represents the extracted features, Conv3

represents the 3 × 3 convolution operation, PReLU represents

the PReLU activation function, CA represents dimensional

attention, F represents the input feature vector and⊗ represents

the element multiplication operation, ⊕ represents the element

sum operation. After performing the above operations, we

obtain more useful feature information and then use the unit

of convolution plus PReLU to process the extracted feature

information. This process can be expressed as following:

Feature2 = Conv3 (PReLU (Feature1)) , (10)

Where Feature2 represents the processed feature, and then

the two parts are subjected to an elemental multiplication

operation via a residual join, a process that can be expressed as:

Feature3 = Feature2 ⊗
(

fRGBi ⊕ Feature1

)

, (11)

Where, ⊗ represents the element multiplication operation,

⊕ represents the element sum operation, Feature3 represents the

feature information after multiplication, and finally the number

of fused feature channels is adjusted by 1×1 convolution. This

process can be expressed as following:

Fused = Conv1
(

Feature3)
)

, (12)

Where Fused represents the final fused feature information

and Conv1 represents the 1× 1 convolution operation.

2.4. Cascade decoder

For the above processed RGB features fRGBi (i ǫ {1,2,3...,6})

from different layers of the network, we need to efficiently

exploit the multi-scale and multi-level information of the

features within each group to help our cascade optimization

strategy. As shown in Figure 5, our cascade decoder contains

three GCB and a simple feature aggregation block. The GCB

is an improvement on RFB-S (Ashqar and Abu-Naser, 2019),

which contains a branch to expand the sense field and a residual

connection to ensure that the original information is not lost.

Specifically, the GCB module consists of four branches. The

first step in the processing of all branches is to change their

dimensionality using a 1 × 1 convolution operation. Then for

the 2nd, 3rd, 4th, and 5th branches, a 1 × 1, 1 × 3, 3 × 1, and

3× 3 convolution operation are performed respectively, all with

an expansion rate of 1. Then for the 3rd, 4th and 5th branches, a

3× 3 convolution operation is performedwith an expansion rate

of 3, 3, and 5. The aim here is to obtain more global information.

Next, the four branches are stitched together and the number

of channels is reduced by a 1 × 1 convolution layer. The final

FIGURE 4

The proposed Feature Refinement (FR) module.
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FIGURE 5

The proposed Global Context-aware Block (GCB) module.

stitched features are concatenated with the residuals of the input

features.

To further explore the associations between features, we

use a pyramid-like multiplication and splicing operation for

the features output from GCB. For each optimized feature,

the parameters are updated by element-wise multiplication of

features higher than it. Once the updates were completed, we

subjected them to a splicing operation and then changed the

number of channels by a 1 × 1 convolution operation. Finally,

the feature vectors obtained in steps T1 and T2 were element-

wise summed with additional weights. Here we took into

account the different importance of the information contained

in the features obtained from the high-level feature group F2 and

the low-level feature group F1, for which we added a weight to

each of the two different features, a process that can be expressed

as follows:

Final = γ×T1 + δ×T2 (13)

Where Final represents the features of T1 and T2 fusion,

γ and δ represent their weights respectively. Final is then

subjected to a full concatenation operation, followed by a

sigmoid function,and finally the prediction type is output.

2.5. Applet for real-time leaf disease
detection

In order to detect apple disease leaves in real time, we

developed a WeChat applet for use by fruit farmers to facilitate

photo detection anytime and anywhere. In order to deploy

the model of the algorithm to a smart phone, we stored

the trained weight file as a .tar file, and then loaded this

weight file and the front and back end of the program into

the smart phone separately. The home page of the applet

allows you to upload the photos that need to be identified,

either by taking photos in real time or by selecting images

from a folder (as shown in Figure 6A). The catalog page

Figure 6B records pictures of different disease types, which

can be displayed by clicking on them, making it easy for

users to make preliminary comparisons. Select the image to

be recognized in the selection page (Figure 6C), the results of

the detection and the control method will be displayed after

uploading Figure 6D.

3. Results and discussions

To evaluate the effectiveness of our proposed network,

we compared several baseline networks in terms of different

aspects. Our program implementation is based on PyTorch,

using a Nvidia 2080Ti for training acceleration. To ensure

the fairness of the experimental results, all comparison

experiments were conducted according to the parameters

in their text, using the same server and other parameter

settings. All networks were trained with stochastic gradient

descent (SGD), the learning rate was set to 0.1, and the

weight decay was set to 4e-5 to mitigate overfitting problems.

The maximum training generation for all models was 40,

and the Dropout (Hinton et al., 2012) scale was set to

0.5.
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FIGURE 6

Introduction to the applet. From left to right, the main interface (A), the catalog page (B), the image selection page (C), and the recognition

results display and prevention suggestions (D).

3.1. Classification of the apple leaf
dataset

To test the performance of our network in apple leaf

classification, we used three metrics, accuracy, weighted F1-

score and top-1, to measure the effectiveness of our models.

Figure 7 shows a line graph of the loss and accuracy of ourmodel

during the training process. As can be seen, the model is slightly

overfitted at the 3rd, 4th, 6th, and 7th epochs, but gradually

returns to normal as the training progresses: from the 8th epoch

onwards, the loss becomes smaller and tends to equalize, and

the accuracy becomes larger and more stable. The best accuracy

occurs at the 36th epoch, and then as the accuracy of the training

set increases, the accuracy of the test set begins to decrease, at

which point the model begins to overfit.

3.2. Comparison with other methods

3.2.1. Baselines

We compare CBNet with the following baselines, which

consists of three categories: basic CNN architecture, lightweight

CNN architecture, and simple CNN architecture.

1). Basic CNN architecture. We chose the classic VGG-16

(Simonyan and Zisserman, 2015) model.

• VGG16: It uses several consecutive 3*3 convolutional

kernels instead of larger ones, and the convolutional kernels

all use the same convolutional kernel parameters. The

model is composed of several convolutional and pooling

layers stacked in such a way that it is easier to form a

relatively deep structure.

2). Lightweight CNN architecture. We have selected several

lightweight frameworks designed to simplify deep convolutional

neural networks: MobileNet (Howard et al., 2017; Sandler et al.,

2019) model and ShuffleNet (Ma N. et al., 2018; Zhang et al.,

2018).

• MobileNet: MobileNet uses deeply separable convolution

to significantly reduce the number of parameters and

computation, allowing complex networks to be simplified

into lightweight networks that can be deployed on mobile.

• ShuffleNet: To solve the drawbacks brought by group

convolution, ShuffleNet proposes the method of using

shuffle for different channels, which ensures the

information exchange between the feature maps of

different groups after group convolution.

3). Simple CNN architecture. We have chosen two

simpler convolutional neural networks designed based on the

characteristics of agricultural datasets with small sample sizes.

• DCNN:A deep convolutional neural network (DCNN, Ma

J. et al., 2018) is proposed for symptom recognition of four

cucumber diseases. Symptom images were segmented from

cucumber leaf images collected under field conditions.
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FIGURE 7

Accuracy of the network vs. loss function line graph.

• CNN: Based on the characteristics of the image datasets

they collect, several very simple methods (NIN-16, SENet-

16, and WDenseNet, Xing et al., 2019) are proposed for the

identification of citrus fruit diseases in terms of parameter

efficiency.

• CNN: The authors trained a convolutional neural network

(CNN, Ashqar and Abu-Naser, 2019) and collected a

large number of tomato disease and health images under

controlled conditions to achieve the identification of

five tomato diseases using smartphone assisted disease

surveillance.

• SSCNN: The authors collected smartphone-based citrus

leaf disease dataset indoors, then designed a simple

convolutional neural network SSCNN (Barman et al., 2020)

based on the characteristics of the dataset and developed a

cell phone software for real-time classification of citrus leaf

disease.

3.2.2. Results and analysis

Table 1 and Figure 8 show the quantitative metrics of

our model and the other methods on the three quantitative

measures, from which it can be seen that our model performs

the best on all three metrics.

To demonstrate the advantages of our method applied on

cell phones, we added two metrics, model parameters and

average processing time per image [here we use Frames Per

Second (FPS)]. As shown in Table 2, The basic rule of the

number of parameters and the accuracy and inference time is

that as the number of parameters increases, the accuracy of the

model gradually increases and the inference time also increases

accordingly. However, locally, some networks do not follow

TABLE 1 Comparison of the classification results of our model and

other models (bold represents the model with the best results).

Models Accuracy (%) F1-score Top-1

CNN (Ashqar and Abu-Naser,

2019)

80.6 81.2 80.6

MobileNetV1 (Howard et al.,

2017)

63.43 64.2 63.43

MobileNetV2 (Sandler et al.,

2019)

85.64 85.62 85.64

ShuffleNetV1 (Zhang et al.,

2018)

91.05 90.89 91.05

ShuffleNetV2 (Ma N. et al.,

2018)

64.93 64.88 64.93

SENet-16 (Xing et al., 2019) 91.04 91.02 91.04

VGG-16 (Simonyan and

Zisserman, 2015)

96.27 96.54 96.27

NIN-16 (Xing et al., 2019) 85.07 85.06 85.07

WDenseNet (Xing et al.,

2019)

89.55 89.24 89.55

SSCNN (Barman et al., 2020) 88.06 87.98 88.06

DCNN (Ma J. et al., 2018) 73.88 73.75 73.88

CBNet 96.76 96.71 96.76

this pattern, such as MobileNetV1 and MobileNetV2, where

the model inference speed becomes faster and the accuracy

rate decreases as the number of parameters increases, which

confirms that the classification ability of the model is not always

positively correlated with the amount of model parameters.

Because of the complex environment in apple orchards and the

high timeliness of apple disease recognition, our program needs

to maintain high accuracy and fast recognition time despite

strong interference, and since the model is mounted on a cell
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FIGURE 8

Histogram comparing CBNet with other methods.

TABLE 2 Comparison of the classification results of our model and

other models (bold represents the model with the best results).

Models Params/M FPS/ms

CNN (Ashqar and Abu-Naser,

2019)

2.6 18.16

MobileNetV2 (Sandler et al.,

2019)

8.5 13.55

MobileNetV1 (Howard et al.,

2017)

12.25 10.6

ShuffleNetV1 (Zhang et al.,

2018)

20.79 17.43

ShuffleNetV2 (Ma N. et al.,

2018)

25.82 6.78

SENet-16 (Xing et al., 2019) 31.01 8.2

SSCNN (Barman et al., 2020) 34.2 14.1

DCNN (Ma J. et al., 2018) 34.46 33.59

WDenseNet (Xing et al.,

2019)

62.7 15.08

NIN-16 (Xing et al., 2019) 68.32 16.68

VGG-16 (Simonyan and

Zisserman, 2015)

512.21 61.09

CBNet 10.78 12.18

phone, themodel cannot be too large. Ourmodel can achieve the

best classification accuracy (over 95%), but the parameters are

only 2.1% of VGG16, which is close to the number of parameters

of MobileNet, but the classification effect is 14.2% higher than

the better-performing MobileNetV2, and the inference speed

is also comparable to MobileNet, which fully demonstrates the

efficiency and lightness of our model.

We also used confusion matrix plots to evaluate our

proposed model, as shown in Figure 9 (the types of diseases

corresponding to the labels are shown in Figure 1). In the

validation set, 64 images of healthy apple leaves were correctly

classified, 2 were not correctly classified, 1 of which were

misclassified as ALB and one was misclassified as AM. For

an ALB, 421 images were correctly classified, but four was

misidentified as a healthy apple leaf, while the other 10 were

identified as ALR, AM and ALM. As for ALR, several apple

diseases that have been almost misclassified as others. Next,

ALR, 2 was misidentified as healthy, ALB or AM. Finally, for

AM, a total of 77 were correctly classified, 2 were misidentified

as ALB and ALR. As can be seen from the trials in the confusion

matrix in Figure 9, ALB and ALR are often misclassified as each

other’s type, also because the two diseases have relatively similar

appearance characteristics and they can be easily confused after

the model extracts the features.

3.3. Ablation experiments

As shown in Table 3 and Figure 10, the effectiveness of each

module of our proposed model is analyzed. Where baseline

refers to the standard convolution, pooling, and fully connected

layer, i.e., using only convolution for feature extraction,

followed by pooling to reduce redundant information, feature

compression, and finally through a fully connected layer to

output the predicted values. The +Transformer represents the
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FIGURE 9

Confusion matrix diagram for CBNet.

TABLE 3 Comparison of the e�ectiveness of each module of CBNet

(bold represents the model with the best results).

Models Accuracy (%) F1-score Top-1

Baseline 95.1 95.3 95.1

+Transformer 95.6 95.6 95.6

+FR 95.9 96.1 95.9

+GCB 96.3 96.2 96.3

+Cascaded 96.76 96.71 96.76

replacement of the normal convolution operation of extracting

feature values with our proposed feature extraction operation

using MobileViT. +FR means that our proposed FR is added

after feature extraction. +GCB means adding our proposed

GCB module. +Cascaded means adding our proposed cascaded

decoder module. As can be seen, each of these modules

we propose improves the performance of our network to

varying degrees, and the performance of our network on

these three metrics confirms the effectiveness of the proposed

modules.

4. Conclusions

In this paper, we propose a CBNet for a mobile collection

device-based apple leaf disease classification system in the

field, to the best of our knowledge, we are the first to use

Transformer on the apple leaf disease classification task. To

better mine the extracted features, we design a FR module

that can extract more features from RGB images. To better

combine the extracted features, we propose a cascade decoder

and use a GCBmodule to more efficiently exploit the multi-scale

FIGURE 10

Line graph of the validity analysis of the proposed model

modules on the three quantitative indicators.

and multi-level information within the feature set, and use a

pyramidal concatenation operation for fusion between features

to improve feature representability. Results indicate that our

proposed network is very effective. This architecture is helpful

for disease detection in apple leaves and provides new ideas for

disease identification and classification of crops.
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