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The United Nations predicts that by 2050, the world’s total population

will increase to 9.15 billion, but the per capita cropland will drop to

0.151◦hm2. The acceleration of urbanization often comes at the expense

of the encroachment of cropland, the unplanned expansion of urban area

has adversely affected cultivation. Therefore, the automatic extraction of

buildings, which are the main carriers of urban population activities, in

remote sensing images has become a more meaningful cropland observation

task. To solve the shortcomings of traditional building extraction methods

such as insufficient utilization of image information, relying on manual

characterization, etc. A U-Net based deep learning building extraction model

is proposed and named AttsegGAN. This study proposes an adversarial

loss based on the Generative Adversarial Network in terms of training

strategy, and the additionally trained learnable discriminator is used as a

distance measurer for the two probability distributions of ground truth Pdata
and prediction Pg. In addition, for the sharpness of the building edge,

the Sobel edge loss based on the Sobel operator is weighted and jointly

participated in the training. In WHU building dataset, this study applies the

components and strategies step by step, and verifies their effectiveness.

Furthermore, the addition of the attention module is also subjected to ablation

experiments and the final framework is determined. Compared with the

original, AttsegGAN improved by 0.0062, 0.0027, and 0.0055 on Acc, F1,

and IoU respectively after adopting all improvements. In the comparative

experiment. AttsegGAN is compared with state-of-the-arts including U-Net,

DeeplabV3+, PSPNet, and DANet on both WHU and Massachusetts building

dataset. In WHU dataset, AttsegGAN achieved 0.9875, 0.9435, and 0.8907

on Acc, F1, and IoU, surpassed U-Net by 0.0260, 0.1183, and 0.1883,

respectively, demonstrated the effectiveness of the proposed components

in a similar hourglass structure. In Massachusetts dataset, AttsegGAN also
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surpassed state-of-the-arts, achieved 0.9395, 0.8328, and 0.7130 on Acc, F1,

and IoU, respectively, it improved IoU by 0.0412 over the second-ranked

PSPNet, and it was 0.0025 and 0.0101 higher than the second place in Acc

and F1.

KEYWORDS

UAV, cropland observation, building extraction,WHUbuilding dataset, Massachusetts
building dataset, multi-loss, dual attention, Sobel edge loss

Introduction

Since 1990, the trend of population migration to cities
has become more pronounced, which has resulted in cities
becoming the main carriers for modern human economic
and social activities (Buhaug and Urdal, 2013). Statistics show
that the average global cropland area loss between 1992
and 2004 was about 30,000 km2yr−1, of which 34.3% was
converted to settlements, and that cropland loss was particularly
pronounced in Asia in the following decade (Tan and Li, 2019).
Especially in China where, even though the illegal occupation
of planting land has been written into the criminal law, the
occupation of cropland is still common (Xing, 2016). Due to
the rapid urbanization process, the occupation of cropland is
often reflected in the expansion of building areas (as shown
in Figure 1), which has become a common phenomenon
(McKittrick, 2013). Therefore, the automatic detection of
buildings is crucial to the protection of cropland. On the other
hand, for automated agricultural intelligent devices such as
robots and UAVs, accurate identification of buildings will also
provide effective reference information for their path planning
and obstacle avoidance tasks.

Buildings are one of the most widely distributed and most
important types of man-made objects and could be extracted
by satellite or UAV (Unmanned Aerial Vehicle) remote sensing
images understanding (Alshehhi et al., 2017). Currently, with
the development of remote sensing technology, such as SPOT
6 of France, ZY-3, Gaofen-1 and Gaofen-2 of China, and
WorldView-3 of the United States can already use meters or
submeters as its spatial resolution measurement unit, and it has
reached or approached the quality of aerial photography (Chen
W. et al., 2017; Ghimire et al., 2020). Compared with medium
and low resolution, higher resolution remote sensing images
have the following characteristics:

(1) The spectral features of the ground objects are more
obvious, the spectral difference between the same type of ground
objects becomes larger, and the spectral difference between
different types of ground objects becomes smaller;

(2) Higher spatial resolution makes the data volume of a
single image larger;

(3) A single pixel often corresponds to only one type of
ground object;

(4) There is more detailed information of ground objects,
such as shape, brightness, texture, etc;

(5) The background of ground objects is more
complex and diverse.

These distinctive features also present higher requirements
for building extraction. In order to meet these various
requirements of new application areas, identifying buildings
in high-resolution remote sensing images is the core
challenge.

Traditional remote sensing image building extraction
methods mainly include knowledge-based methods using
geometric knowledge and context knowledge, along with object-
based image analysis (OBIA)-based methods and machine-
learning-based methods using image segmentation and target
classification (Cheng and Han, 2016). In these traditional
methods, the extraction task often requires experts to judge
and design according to the spectrum, texture, shape, spatial
relationship, and other information of the building, which
relies heavily on abundant human imagination, ingenuity, and
experience for the design of the features. Fortunately, Hinton
and Salakhutdinov (2006) demonstrated the powerful feature
representation capability of deep learning models in computer
vision applications. They showed that the features will be
automatically obtained from the existing data by the neural
network through sampling, and the more abstract features
beyond human imagination can be effectively obtained by
increasing the depth of the network. The burden of feature
design can be shifted to model design, which is relatively simple
(Ubbens and Stavness, 2017).

However, in remote sensing images, due to the increasing
complexity of buildings and their backgrounds caused by
progressively higher resolution, the application of deep learning
to building extraction still has problems (Jun et al., 2016), such
as insufficient extraction of multi-scale targets, insufficient use
of image information, model overfitting, and ambiguous edges
in prediction, etc. Therefore, there are still challenges with
regard to accurately segmenting and characterizing buildings.
In this article, to solve these deficiencies, a deep-learning-based
building extraction method is proposed. The contributions of
this paper can be listed as follows:

(1) The dual-attention mechanism is used, which enhances
the information utilization of remote sensing imagery within
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FIGURE 1

Encroachment by buildings on cropland.

both feature maps and channels, and dedicates computing
resources to more critical areas.

(2) In view of the multi-scale features of modern buildings,
the ASPP (atrous spatial pyramid pooling) module is added
to the model, which reduces the amount of computation
and parameters while increasing the receptive field of the
model, enhancing its ability to extract buildings with multiple
sizes and shapes.

(3) In terms of model training, to make the prediction more
artificial, a learnable discriminator and adversarial loss based
on the idea of generative adversarial networks are proposed,
and the authenticity of the prediction is used as an auxiliary
reference to guide the learning process of the model by weighted
adversarial loss.

(4) In terms of loss design, an edge loss based on
the Sobel operator was proposed to solve the problem of
the edges of buildings being susceptible to approximate
background interference.

The following sections are arranged as follows: the relevant
foundations involved in this study are presented in Section
“Related works”; the components, WHU dataset, multi-
losses design, evaluation indexes, etc., are detailed in Section
“Materials and methods”; ablation experiments and comparative
experiments are presented and discussed in Section “Results

and discussion”; and in Section “Conclusion,” a summary of the
full paper is given.

Related works

Image segmentation and semantic
segmentation

The principle of building extraction is to use a building’s
characteristics to achieve target recognition and accurately
distinguish it from the background. Previous researchers tended
to identify buildings in the order of image segmentation, and
then artificial characterization (Khan, 2014). The traditional
image segmentation method divides an image into several
regions and realizes the feature similarity within the region and
the feature difference between regions.

The main methods are: (1) the threshold-based
segmentation method; (2) the edge-based segmentation
method; (3) the region-based segmentation method; (4) the
graph-based segmentation method; and (5) the energy-based
segmentation method.

However, the above methods that utilize the low-level
semantics do not fully utilize the high-level semantics of remote
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sensing images to qualitatively analyze the segmented regions.
In practical application, especially when processing high-
resolution images, the characteristics of targets will be relatively
complex, and the differences between the same kinds of targets
are relatively large; therefore, algorithms that only rely on low-
level content information such as color, brightness, texture,
etc., are insufficient to achieve a reasonable segmentation.
Different from these traditional methods, the deep-learning-
based semantic segmentation method can not only realize the
image segmentation function, but can also achieve qualitative
analysis and automatic classification for the area after clustering
the pixels. In this process, abstract high-level semantic features
will be fully utilized to achieve more accurate predictions.

The appearance of “semantic segmentation” as a noun can
be traced back to the 1970s. Ohta et al. (1978) proposed the
concept of semantic segmentation and emphasized assigning
a label to each pixel in the image, thereby emphasizing
the semantic meaning of the segmented region. Semantic
segmentation belongs to the pixel-level scene understanding
task in computer image processing, which enables a dense
prediction of the input image and a label assignment for each
pixel. Therefore, deep-learning-based semantic segmentation
is not an isolated task, it involves image classification, target
detection, target boundary division, etc., (Garcia-Garcia et al.,
2017), which means it is a prediction task with high demands on
image understanding.

The most meaningful models for the building extraction
task in this study are fully convolutional networks (FCNs) and
U-Net. In terms of task implementation, this study refers to the
end-to-end idea of FCN. After the CNN (convolutional neural
network) was proposed, researchers tried to apply its excellent
learning performance to semantic segmentation tasks, for which
the pioneering work is the FCN proposed by Long et al.
(2015). FCN utilizes the powerful feature extraction capabilities
of CNN to achieve end-to-end, pixel-to-pixel segmentation
prediction and replaces traditional fully connected layers
with convolutional layers. FCN also adapts classic network
structures, such as AlexNet, VGG16, and GoogLeNet, to
fully convolutional models and verifies their performance in
semantic segmentation. In addition, FCN can accept input
images of an arbitrary size with a fixed number and size of
convolutional layers, and performs pixel-wise predictions on the
input images through learnable deconvolution in terms of up-
sampling.

After the performance of FCN is proved, more enlightening
semantic segmentation models are proposed. Similar to U-Net
in structure, PSPNet uses global pyramid pooling and deeply
supervised loss as improvements, enhancing the ability of
feature extraction. DenseASPP is proposed and used to solve
the problem of insufficient feature resolution in the scale-
axis. DANet proposes a dual-attention module that makes
full use of image information and shows its performance in
multi-class semantic segmentation. OCNet address the semantic

segmentation task with a context aggregation scheme which
focuses on enhancing the role of object information.

In this research, U-Net was referred to in the framework
design. In U-Net, the contracting path performs the role of
down-sampling, and the expansive path performs the role of
up-sampling. It is worth noting that four connection channels
were added, respectively concatenating the feature maps of four
different resolutions in the down-sampling process with the
corresponding layers in the up-sampling process. This operation
avoids the loss of details in the down-sampling process, so
that the shallow features extracted by the convolutional neural
network can directly participate in the prediction.

In the process of down-sampling, the convolution
calculation combined with the ReLU activation function
plays a role in increasing the nonlinear relationship between
pixels, and the image is shrunk by a 2 × 2 max pooling
operation with a stride of two. After each contraction, the
number of channels is doubled by a 3 × 3 convolution. After
four contractions, U-Net starts to use a 2 × 2 convolution for
expansion, and the number of channels will be reduced to half
of the original through a 1 × 1 convolution and concatenated
with the feature maps in contraction. Then, the number of
channels of the output will be reduced by a 3 × 3 convolution
with the ReLU function. It is worth noting that edge pixels will
be lost after the convolution operation, so the corresponding
feature map from the shrinking unit needs to be cropped before
concatenation. Finally, U-Net will output the segmentation map
according to the set size (Ronneberger et al., 2015).

Generative adversarial networks

Before the proposal of GANs (generative adversarial
networks), the deep learning model often included only a
generative model or a discriminative model (Goodfellow et al.,
2014). The former uses a large amount of neural network
parameters and their ability to fit the dataset to generate
new data that does not exist in the training set, while the
latter directly fits the discriminant function. Different from the
traditional model, GAN, as an implicit density generative model,
includes both the generative model and the discriminative
model in one framework. A generative model can be likened
to a counterfeiter, while a discriminative model can be likened
to a policeman. The former hopes that their forgery ability is
as superb as possible, so that the fake data is as similar as
possible to the real data, thus the police cannot make accurate
judgments. The police, on the other hand, are expected to
judge the authenticity of the data as accurately as possible,
and the training process is more like a competition where the
competitors are alternately leading. Assuming that Pdata (x) is
the distribution probability of the real data and Pg (x) is the
distribution probability of the generated data, when the system
is in Nash equilibrium, a “smartest” generator can be obtained
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to achieve more accurate fitting between Pg (x) and Pdata (x)
(Jabbar et al., 2021).

The advantage of GAN is that there are fewer constraints
in the design, it does not need such a complex artificial
qualification as that in the Markov chain or the variational
boundary, but uses a learnable discriminator as an auxiliary
training method to constrain the feature distribution of the
generator output, which is more convenient. Moreover, the
discriminator will act as a distance measurer between Pg (x) and
Pdata (x).

The generative adversarial networks can be expressed by the
following object function:

min
G

max
D

V (D,G) = Ex∼Pdata(x)
[
log D (x)

]
+ Ez∼Pz(z)

[
log (1− D (G (z)))

]
(1)

where D represents the discriminator, G is the generator,
Pdata (x) stands for the probability distribution of the real data,
Pz (z) denotes the probability distribution of random noise z,
D (x) represents the discrimination result on real data x, and
D (G (z)) signifies the discrimination result of D on sample G (z)
generated by generator G through random noise z.

In terms of GAN training, according to the above principles,
to obtain the optimal discriminator, it is necessary to let the
output of D (x) be 1, and let the output of D (G (z)) be 0, then
the optimal discriminator can be expressed as:

max
D

V (D,G) = Ex∼Pdata(x)
[
log D (x)

]
+Ez∼Pz(z)

[
log (1− D (G (z)))

]
(2)

To obtain the optimal generator, it is necessary to let G (z)
generate data as real as possible to disturb the judgment of the
discriminator D. Since this process is independent of the first
half of Formula (2), the optimal generator can be expressed as:

min
G

V (D,G) = Ez∼Pz(z)
[
log (1− D (G (z)))

]
(3)

To provide more accurate data for the subsequent city-
related evaluation tasks, the building extraction has high
requirements with regard to accuracy, and researchers hope
the intensive prediction performance of the model can be as
close as possible to human experts. Therefore, in this study,
the training of the prediction model will be aided by weighted
adversarial loss.

Materials and methods

Depthwise separable convolution and
atrous spatial pyramid pooling

In recent years, the difference in shape and size between
different buildings has become more pronounced; therefore, in

remote sensing imaging, the identification and extraction of
multi-scale objects has always been a challenge (Vakalopoulou
et al., 2015). In a traditional convolution-based model,
to increase the receptive field, reducing the amount of
computation, pooling, or convolution with a stride greater than
1 will be used, but this will reduce the spatial resolution. In this
study, ResNet-50 is used in the encoder; therefore, the depth
of the model is relatively deep and the amount of parameters
will be large (He et al., 2016). To ensure the resolution while
expanding the receptive field, ASPP (atrous spatial pyramid
pooling) and a depthwise separable convolution are used to
obtain multi-scale information flexibly by setting the dilation
rate without introducing additional parameters, so as to better
obtain multi-size buildings.

Atrous spatial pyramid pooling was formally proposed
in DeepLabv2. When deep convolutional neural networks
are used in semantic segmentation tasks, the input remote
sensing image usually needs to undergo a down-/up-sampling
process in a convolutional encoder–decoder structure. Although
convolutional neural networks have a receptive field mechanism
that can be used to extract multi-scale target features, its scale
will be limited by the size of the convolution kernel (Chen L.
C. et al., 2017). An atrous convolution can be used to cheaply
increase the receptive field of output units without increasing
the kernel size, which is especially effective when multiple atrous
convolutions are stacked one after the other (Dai et al., 2021).
Assuming that the input feature map size is Rin × Rin , the
output feature map size is Rout × Rout , and the convolution
kernel size is K × K. In a traditional convolution, the receptive
field range is equal to the size of the convolution kernel, which is
K × K. In an atrous convolution, assuming that the dilated rate
is D, its receptive field will be K ′ = K + (K − 1)(d − 1).

Loss function design

In this study, the overall loss is divided into three parts,
namely BCE (binary cross-entropy) loss Lbce responsible for
segmentation prediction, adversarial loss responsible for the
auxiliary training of model prediction authenticity, and edge
loss responsible for optimizing the accuracy of building edge
prediction. The overall loss is defined as:

Lsum = Lseg + LEdge + Ladv (4)

In the first item, the predicted segmentation map ŷ and the
label map y are compared at the pixel level. For a single pixel
in a remote sensing image, the building extraction task belongs
to the binary classification task; therefore, this study uses binary
cross-entropy as the loss, which can be expressed as:

Lseg = Lbce
(
ŷ, y

)
= −

1
n

n∑
i

zi log ẑi + (1− zi) (5)
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where zi and ẑi denote the label value in y and the predicted
value in ŷ at the same location, respectively.

In the second item, considering that buildings often have
straight boundaries with the background, in this study, a Sobel-
operator-based loss was designed and added to highlight the
edges. By implementing the Sobel operator in both horizontal
and vertical directions, and then using it as a filter to perform
convolution operations on the image to be processed, the
horizontal and vertical edges on the image can be extracted. The
Sobel template in the horizontal direction is:

fh =

−1 0 +1
−2 0 +2
−1 0 +1

 (6)

Meanwhile, in the vertical direction, it is:

fv =

−1 −2 −1
0 0 0
+1 +2 +1

 (7)

Specifically, two convolutional layers using the above
templates are defined, and their weights are not involved
in backpropagation. After the building extraction results are
obtained in the forward propagation, the prediction results and
the original labels are input into the two designed layers for
calculation, and two dual-channel gradient maps of the edge
are obtained, the values of which are between 0 and 1. Then,
the mean square error (MSE) between the two gradient maps is
calculated to obtain the edge loss:

LEdge = Lmse
(
fh(y), fh(ŷ)

)
+ Lmse

(
fv(y), fv(ŷ)

)
(8)

In the third item, to ensure that the model prediction
ability is closer to that of the experts, the idea of GAN is
applied, and the extraction task is still carried out by the
generator; meanwhile, an additional discriminator is trained
synchronously to determine the authenticity of the pixel-level
prediction results. Hence, the discriminator acts as a learnable
constraint and participates in the overall training of the model
by virtue of the adversarial loss, the training of which can be
represented by the following function:

Ladv = Lbce
(
D
(
x, y

)
, 1
)
+ Lbce (D (x,G (x)) , 0) (9)

where G (x) = ŷ, G is the generator, and D represents the
discriminator. In alternate iterative training of generative
adversarial networks, the generator loss can be expressed as:

LG = Lbce
(
ŷ, y

)
+ LEdge − Lbce (D (x,G (x)) , 0) (10)

Here, a maximized Lbce (D (x,G(x)) , 0) can be equivalent to a
minimized Lbce (D (x,G(x)) , 1); furthermore, weights are added
to the loss of each item, so it is easy to obtain:

LG = w1Lbce
(
ŷ, y

)
+ w2LEdge + w3Lbce (D (x,G(x)) , 1) (11)

Dual-attention module

The aim of the attention mechanism is to obtain
the difference in importance between feature maps and
feature values. To realize reassignment, it causes the
neural network to devote more computing resources to
more important areas (Mi et al., 2020). In this building
extraction task, the importance of different objects is
distinct; therefore, introducing an attention module can
provide more tractable and more relevant information for
high-level perceptual reasoning and more complex visual
processing tasks.

Generally, attention mechanisms can be divided into item-
wise and location-wise, both of which can be subdivided
into soft attention (differentiable), and hard attention (non-
differentiable). Among them, the location-wise soft attention
with feature map as an input can participate in gradient descent
together with the neural network and update the weights
through backpropagation (Niu et al., 2021), which is more
suitable for the application scenario of deep learning, so it is also
applied to this study.

In the process of building extraction, the spatial relationship
between each pixel and its nearby pixels is significantly higher
than the relationship with pixels far away from it; therefore, this
study refers to DANet using a dual-attention module to fully
capture the semantic dependencies in the spatial and channel
dimensions (Fu et al., 2019).

In terms of implementation, the dual-attention module
includes the position attention module [shown in Figure 2(A)]
and the channel attention module [shown in Figure 2(B)],
and calculates the attention matrices S and X for them,
respectively.

First, the output A of the last layer after down-sampling is
copied into four parts, in which B, C, and D are obtained after
one convolution layer, and their size is {B,C,D} ∈ RC∗H∗W .
Subsequently, flattening is performed within the channel, and
the new dimension is {B,C,D} ∈ RC∗N , where N = H ∗W.
The reshaped matrix can be expressed as:

Breshape = Creshape = Dreshape

=



M1
11 M1

12

M2
11 M2

11
· · ·

M1
i j−1 M1

i j

M2
i j−1 M2

i j
...

. . .
...

Mc−1
11 Mc−1

12

Mc
11 Mc

12
· · ·

Mc−1
i j−1 Mc−1

i j

Mc
i j−1 Mc

i j


(12)

The matrix B is then transposed to get BTreshape , BTreshape and
C are multiplied by a matrix, and an attention matrix pam is
formed with a size of N ∗ N through the SoftMax, as shown in
the following formula:

Spam = softmax
(
BTreshape ⊗ Creshape

)
(13)
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FIGURE 2

(A) Framework of position attention module; (B) framework of channel attention module.

It is then transposed, so that pamT and Dreshape are
multiplied, and the output is then reorganized in the array
dimension to make it the same as the input A ∈ RC∗H∗W , which
can be expressed as:

output = Dreshape
⊗

STpam =


M1

11S11 + . . . + M1
i jS1n · · · M1

11Sn1 + . . . + M1
i jSn n

...
. . .

...

Mc
11S11 + . . . + Mc

i jS1n · · · Mc
11Sn1 + . . . + Mc

i jSn n


(14)

In the output ∈ RC∗H∗W with an updated weight, each
pixel in the original matrix is associated with the remaining
pixels in the feature map (after being given new weight). Finally,
output and A are added to get E, and it is used as the output of
the spatial attention module.

In terms of the specific implementation of the channel
attention module, the input A ∈ RC∗H∗W is first restructured
into A ∈ RC∗N (where N = H ∗W), and Areshape is multiplied
by its transposed AT

reshape , then a SoftMax operation is
performed on the result, and the channel attention map Xcam

can be obtained, as shown in the formula below:

Xcam = softmax
(
Areshape ⊗ AT

reshape

)

=



S11 S12

S21 S22
· · ·

S1c−1 S1 c

S2 c−1 S2 c
...

. . .
...

Sc−1 1 Sc−1 2

Sc 1 Sc 2
· · ·

Sc−1 c−1 Sc−1 c

Sc c−1 Sc c


(15)

Next, the attention map X is transposed to obtain XT
cam

, the transposed matrix is multiplied with Areshape [as shown
in Formula (16)], and the result is then reorganized into
output ∈ RC∗H∗W .

output = XT
cam

⊗
Areshape =


S11M1

11 + . . . + Sc 1Mc
11 · · · S11M1

i j + . . . + Sc 1Mc
i j

...
. . .

...

S1 cM1
11 + . . . + Sc cMc

11 · · · S1 cM1
i j + . . . + Sc cMc

i j


(16)

It is then added to input A to get output E. It can be seen
from Formula (16) that the weights have been reassigned, and

Frontiers in Plant Science 07 frontiersin.org

https://doi.org/10.3389/fpls.2022.993961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-993961 August 30, 2022 Time: 15:31 # 8

Wang et al. 10.3389/fpls.2022.993961

the new values are related to the values in the same position in
all feature maps.

Evaluation indexes

To evaluate the predictive ability of the model
comprehensively and objectively, a confusion matrix is
introduced in this study, which is used to summarize
the predictive performance of classification models in
machine learning.

Accuracy is used to find the portion of correctly classified
values, and the formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

where TP is True Positive, FP is False Positive, FN is False
Negative, and TN is True Negative. Precision is used to calculate
the model’s ability to classify positive values correctly, and the
formula is as follows:

Precision =
TP

TP + FP
(18)

Recall is used to determine the model’s ability to predict
positive value, and the formula is as follows:

Recall =
TP

TP + FN
(19)

The F1 score is a comprehensive analysis of whether the
TP is large enough from two perspectives, predicted and actual.
The F1 score is the harmonic mean of precision and recall.
According to the formula of harmonic mean, it can be obtained

by the following formula:

F1 =

(
Precision−1

+ Recall−1

2

)−1

(20)

The formula for calculating IoU (intersection over union) is
as follows:

IoU =
TP

TP + FP + FN
(21)

The model framework

In the framework design of the building extraction
model, a convolutional encoder–decoder structure with
skip connections was designed, as referred to U-Net
and ResNet-50. In the down-sampling process, two
slightly different bottlenecks are used, as shown in
Figure 3, with the difference being that Bottleneck
1 contains a 1 × 1 convolutional and a BN in the
shortcut connection.

In the convolutional encoder, the input image goes through
four bottleneck blocks, and then enters ASPP. As shown in
Figure 4, the ASPP module is divided into four parts, one of
which is a normal 1 × 1 convolutional layer, and the remaining
three set the dilation rate D to 6, 12, and 18, respectively.
The output of the four parts is then concatenated and used
as the final output after a 3×3 Conv+BN+ReLU operation.
In the subsequent attention module, the input is reassigned
according to the attention map and used as the input of
the decoder. In the decoder, up-sampling is conducted using
bilinear interpolation with convolutional layers, generating a
prediction for building extraction.

FIGURE 3

Framework of two types of bottlenecks. (A) Bottleneck 1. (B) Bottleneck 2.
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FIGURE 4

Framework of segmentation model and atrous spatial pyramid pooling.

In terms of the discriminator structure, there are two
different combinations of input: the first is the original image
and the prediction, and the second is the combination of
the original image and the ground truth. In this study,
a Markovian discriminator (also known as PatchGAN) was

designed with reference to Pix2Pix (Isola et al., 2017). The
output of the discriminator is not a simple 1 or 0, but
a discriminant matrix that gives a separate discrimination
for each part of a grided image. To better judge the
high-resolution remote sensing images with dense ground
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FIGURE 5

Markovian discriminator and gradient descent.

objects, the output size of the discriminator was set to
8 × 8 × 1, which is expected to output an all-zero
matrix when judging the first combination, and an all-
one matrix when judging the second combination. Figure 5
displays the Markovian discriminator and the process of
gradient descent.

Building datasets

To verify the performance of the proposed model,
two open-source building dataset was selected. WHU
building dataset contains a total of 8,189 images, including
4,736 for training (containing 130,000 buildings), 1,036
for validation (containing 14,500 buildings), and 2,416
for testing (containing 42,000 buildings). This aerial
dataset consists of more than 220,000 independent
buildings extracted from aerial images with a 0.075◦m
spatial resolution covering 450◦km2 in Christchurch,
New Zealand. The area is divided into 8,189 blocks with
a resolution of 512◦×◦512 each (shown in Figure 6).
The WHU dataset contains a variety of scene types,
such as countryside, residential, cultural, etc. The size,
purpose, and color of the buildings are also diverse, which
is suitable for the training of building extraction models
(Ji et al., 2018).

The Massachusetts building dataset (shown in Figure 6)
has a total of 137 remote sensing images, including 137
in the training set, four in the validation set, and 10
in the test set. The dataset covers buildings of different
scales in cities and suburbs, the image size is 1,500◦×◦1,500
and the area is 2.25 square kilometers, the dataset covers
about 340 square kilometers in total (Saito et al., 2016).

Training details

The model was built in Pytorch v1.7.1, CUDA v11.1.
The training equipment utilized was GeForce RTX 3090ti
24G, Adam was used as the optimizer, the learning rate
was set to 0.001, and the momentum parameters were
set to 0.9 and 0.999. The weights in the overall loss
were set to w1 : w2 : w3 = 1 : 1 : 0.3. In the comparative
experiments, each comparative model was trained for
200 epochs. It is worth highlighting that, to prevent the
segmentation model from being excessively disturbed by
the meaningless discrimination generated by the random
initialized discriminator in the initial stage, AttsegGAN chose
to freeze the discriminator first, and let the segmentation
model train separately in the training set for 1,000 iterations
with a batch size of 1. The segmentation model was
then frozen, letting the discriminator train separately for
800 iterations of the combined input method described
above. Then, the alternate iterative training strategy of
the generative adversarial network was used to complete
the subsequent training. The models used for comparison
were trained according to the environmental parameters
provided by the authors.

Results and discussion

Ablation experiments

To improve the prediction ability of the building
extraction model, this study proposes four strategies
based on an “hourglass” structure: U-Net (namely ASPP),
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FIGURE 6

Images and labels in the WHU building dataset. (A) Original images in WHU dataset, (B) labels of WHU dataset, (C) original images in
Massachusetts dataset, and (D) labels of Massachusetts dataset.

TABLE 1 Component and training strategy ablation experiments in WHU building dataset.

Version 5 (proposed) Version 4 Version 3 Version 2 Version 1

Sobel edge loss �

Adversarial loss � �

ASPP � � �

Attention � � � �

Acc 0.9875 0.9871 0.9867 0.9872 0.9813

F1 0.9435 0.9421 0.9400 0.9402 0.9408

IoU 0.8907 0.8905 0.8874 0.8862 0.8852

Bold values mean the best performing data.
The underlined value means the second best performing data.

attention mechanism, Sobel edge loss, and adversarial
loss. To verify their effectiveness, this part of the
experiment carried out ablation experiments in a step-by-
step manner in WHU building dataset, and conducted
objective evaluations through three evaluation indexes:
Acc, F1, and IoU.

As shown in Table 1, after adopting the components
and training strategies step by step, the prediction ability of
the model was improved. Among them, the most significant

improvement indicators were Acc and IoU; after adding
all the improvement schemes, these two indicators were
improved by 0.0062 and 0.0055, respectively, compared with
the original version. The most obvious improvements to
the model were adversarial loss and Sobel edge loss. After
using the former, the IoU of the model was increased
by 0.0038 and the F1 was increased by 0.0021, which
means that the model could better predict positive values.
The proposal of Sobel edge loss significantly improved
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the prediction ability, with an improvement of 0.0002 to
0.0021 in the evaluation indicators other than SP, and
achieving the best results in the notable Acc, F1, and IoU,
reaching 0.9875, 0.9435, and 0.8907, respectively. The
improvement brought by the dual-attention mechanism
was more significant in Acc, with an increase of 0.0059,
indicating that the performance improved after the allocation of
computing resources was adjusted through the attention
map. Although the overall improvement brought by
ASPP was relatively insignificant, it increased by 0.0012
to 0.8874 on IoU.

Figure 7 shows the intuitive improvement brought
by Sobel edge loss. It may not be able to improve the
extraction of specific small-sized buildings, but it can
make the lines of the extracted buildings clearer, making
them closer to a straight line and to the ground truth.
Although ASPP improved the extraction performance of
the model in multi-size buildings while the evaluation
indicators improved, it was also found that the edges of
the buildings in the predicted segmentation map were
obviously jagged due to the setting of the validation rate.
Since semantic segmentation achieves pixel-level dense
predictions, this phenomenon is not conducive to the
prediction-accuracy-oriented task. However, Sobel edge
loss used in conjunction with ASPP has been proven to
effectively alleviate edge jaggedness.

Attention mechanism ablation
experiments

According to our statistics, each time an attention module
is added to the prediction model, approximately 227,000
parameters are added. Therefore, when the addition cannot
effectively promote the capacity of prediction, it will increase
the training cost and the risk of overfitting. In this section, the
addition strategy of the attention mechanism is investigated and
verified, and we propose several versions of the framework, as
shown in Figure 8.

To explore the relationship between the attention module
and the overfitting phenomenon, we performed the four
versions on the WHU dataset and made statistics, as shown in
Table 2.

From the performance on the test set, the predictive ability
does not increase with the addition of the attention module, but
decreases. Therefore, it is not advisable for this component to
be added to the other connection channels; it works best when
added only after the last down-sampling layer.

From Table 2, it can be found that Acc, F1, and IoU
perform the best in the training set, indicating that after
200 epochs of training, the model can already learn enough
and complete the prediction. Conversely, the indicators show
a downward trend in the remaining two sets, and there
is a large difference from the training set, indicating that

FIGURE 7

Building extraction results: (A) original remote sensing image; (B) ground truth; (C) prediction with atrous spatial pyramid pooling; (D) prediction
with ASPP and Sobel edge loss.
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FIGURE 8

Attention mechanism ablation experiments. (A) Version 1 (proposed), (B) Version 2, (C) Version 3, and (D) Version 4.

TABLE 2 Statistics for the evaluation indicators of the three sets.

Acc F1 IoU
Training set
Version 1 0.9869 0.9586 0.9107
Version 2 0.9873 0.9537 0.9119
Version 3 0.9870 0.9504 0.9039
Version 4 0.9878 0.9569 0.9153
Validation set
Version 1 0.9883 0.8366 0.7889
Version 2 0.9879 0.8362 0.7870
Version 3 0.9889 0.8426 0.7898
Version 4 0.9883 0.8399 0.7903
Test set
Version 1 0.9875 0.9435 0.8907

Version 2 0.9873 0.9436 0.8893
Version 3 0.9869 0.9421 0.8870
Version 4 0.9852 0.9397 0.8869

Bold values mean the best performing data.

these four versions have a certain degree of overfitting.
This phenomenon is most obvious in Version 4, which
has the largest number of parameters. Compared with

the training set, the Acc, F1, and IoU of the model
in the test set decreased by 0.0026, 0.0172, and 0.0284,
respectively. Thus, although the attention mechanism has been
proven to be an effective component, the improvement in
predictive ability is not proportional to the number, and
will lead to an aggravation of the overfitting, and thus
performance degradation.

Comparison with state-of-the-arts on
WHU building dataset

In this section, we selected four classic semantic
segmentation algorithms based on deep learning that have been
proven in various open-source datasets: U-Net, DeepLabv3+,
DANet, and PSPNet.

As shown in Table 3, AttsegGAN is 0.1883 higher than
U-Net in IoU, and 0.0260 higher in Acc, which indicates that
the addition of effective components can improve the predictive
ability of building extraction models in the case of similar
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TABLE 3 Statistics of comparative experiment results on WHU
building dataset.

Acc F1 IoU

U-Net 0.9615 0.8252 0.7024

DeepLabv3+ (ResNet-101) 0.9776 0.9028 0.8228

PSPNet (ResNet-101) 0.9586 0.7734 0.6434

DANet (ResNet-101) 0.9851 0.9327 0.8738

AttsegGAN 0.9875 0.9435 0.8907

Bold values mean the best performing data.
The underlined value means the second best performing data.

deep learning frameworks. In comparison with DeepLabv3+
and DANet, AttsegGAN also has obvious improvement in
indicators: 0.0099 and 0.0024, respectively, in ACC; and 0.0697
and 0.0169 in IoU, which proves that, even if the model uses
components with similar principles, the rational framework and
training strategy can also significantly improve the predictive
ability of the building extraction model. The visual and
intuitive results are shown in Figure 9, and the predicted

segmentation results are objectively represented by rendering
(images are randomly selected from the test set of the WHU
building dataset).

Comparison with state-of-the-arts on
massachusetts building dataset

To further demonstrate the predictive ability of the
proposed AttsegGAN on pixel-level binary classification task,
we trained and validated it on another remote sensing image
based dataset, the Massachusetts building dataset. In this
section, DANet, Deeplabv3+, PSPNet, and UNet were selected
to compare with AttsegGAN.

From the statistics in Table 4, it can be seen that the
performance of the models on the Massachusetts building
dataset is lower than that on the WHU, but still reflects the
difference between the prediction ability. In the evaluation
indicators, AttsegGAN is higher than other algorithms in
Acc, F1, and IoU. Among them, IoU is the most obvious,

FIGURE 9

Building extraction results: (A) original remote sensing image; (B) prediction of U-Net; (C) prediction of DeepLabv3+; (D) prediction of PSPNet;
(E) prediction of DANet; (F) prediction of AttsegGAN (ours). Green: true positive (tp) pixels; transparent: true negative (tn) pixels; red: false
positive (fp) pixels; blue: false negative (fn) pixels.
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TABLE 4 Statistics of comparative experiment results on
Massachusetts building dataset.

Acc F1 IoU

U-Net 0.9370 0.8125 0.6930

DeepLabv3+ (ResNet-101) 0.8921 0.6929 0.5301

PSPNet (ResNet-101) 0.9317 0.8227 0.6988

DANet (ResNet-101) 0.9236 0.7989 0.6652

AttsegGAN 0.9395 0.8328 0.7130

Bold values mean the best performing data.
The underlined value means the second best performing data.

which is 0.0412 higher than the second-ranked PSPNet, this
means that the predicted region fits the ground truth better.
Meanwhile, AttsegGAN is also 0.0025 and 0.0101 higher than
the second place in Acc and F1, respectively. It can be found
that U-Net and AttsegGAN perform more prominently on
Acc. As an earlier designed model, U-Net can outperform

the newly proposed algorithm in binary classification task,
indicating that the feature fusion brought by the skip connection
mechanism can still effectively promote the prediction accuracy.
The visual and intuitive results are shown in Figure 10, and the
predicted segmentation results are objectively represented by
rendering (images are randomly selected from the test set of the
Massachusetts building dataset). In terms of running efficiency,
when the input is a remote sensing image of size 512×512, the
processing time of AttsegGAN is 0.09822s per image.

Detecting buildings in cropland

Recognition and background separation of buildings
near planting land is a meaningful remote sensing image
understanding task, which can provide significant reference
information for planting land protection and path planning
of unmanned equipment. In Figure 11, the processing
performance of the proposed AttsegGAN on this task is
visually displayed.

FIGURE 10

Building extraction results: (A) original remote sensing image; (B) prediction of U-Net; (C) prediction of DeepLabv3+; (D) prediction of PSPNet;
(E) prediction of DANet; (F) prediction of AttsegGAN (ours). Green: true positive (tp) pixels; transparent: true negative (tn) pixels; red: false
positive (fp) pixels; blue: false negative (fn) pixels.
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FIGURE 11

Building extraction results: (A) original remote sensing image; (B) prediction of AttsegGAN; (C) original remote sensing image; (D) prediction of
AttsegGAN.

Conclusion

Aiming to provide more accurate reference information for
arable land monitoring tasks, AttsegGAN is proposed in this
study. AttsegGAN is a deep-learning-based building extraction
model that can automatically segment and characterize
buildings from high-resolution remote sensing images. This
study proposes four improvements based on the U-Net
structure, namely ASPP and a dual-attention mechanism with
regard to model components, and adversarial loss and Sobel
edge loss with regard to training strategy, with experimentation
carried out on the WHU building dataset. In the ablation
experiments, the improvements were added one by one, and the

effectiveness was proven on the test set using three evaluation
indicators, Acc, F1, and IoU, with the results showing that the
improvements brought by the two losses is more obvious. In
the ablation experiments for the attention module, the results
show that the model prediction ability is not positively related
to the number of components, but leads to overfitting. In
the comparison between the final version of AttsegGAN and
state-of-the-arts, AttsegGAN performed the best in comparison
with U-Net, DeepLabv3+, PSPNet, and DANet, achieving
0.9875, 0.9435, and 0.8907 for Acc, F1, and IoU in the WHU
test set, respectively. Meanwhile, AttsegGAN also achieved
the best results on the Massachusetts test set, achieving
0.9395, 0.8328, and 0.7130 for Acc, F1, and IoU. The results
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show that the proposed model could accurately complete
building extraction and provide more reliable reference
information for remote sensing observation tasks
related to cropland.
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