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Arsenic perception and
signaling: The yet unexplored
world

Cristina Navarro†, Micaela A. Navarro† and Antonio Leyva*

Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de

Investigaciones Científicas, Madrid, Spain

Arsenic is one of the most potent carcinogens in the biosphere, jeopardizing

the health of millions of people due to its entrance into the human food

chain through arsenic-contaminated waters and staple crops, particularly rice.

Although the mechanisms of arsenic sensing are widely known in yeast and

bacteria, scientific evidence concerning arsenic sensors or components of

early arsenic signaling in plants is still in its infancy. However, in recent years,

we have gained understanding of the mechanisms involved in arsenic uptake

and detoxification in di�erent plant species and started to get insights into

arsenic perception and signaling, which allows us to glimpse the possibility

to design e�ective strategies to prevent arsenic accumulation in edible crops

or to increase plant arsenic extraction for phytoremediation purposes. In this

context, it has been recently described a mechanism according to which

arsenite, the reduced form of arsenic, regulates the arsenate/phosphate

transporter, consistent with the idea that arsenite functions as a selective

signal that coordinates arsenate uptake with detoxification mechanisms.

Additionally, several transcriptional and post-translational regulators, miRNAs

and phytohormones involved in arsenic signaling and tolerance have been

identified. On the other hand, studies concerning the developmental programs

triggered to adapt root architecture in order to cope with arsenic toxicity are

just starting to be disclosed. In this review, we compile and analyze the latest

advances toward understanding howplants perceive arsenic and coordinate its

acquisitionwith detoxificationmechanisms and root developmental programs.

KEYWORDS

arsenic signaling, abiotic stress, heavy metal contamination, phytoremediation, food

safety, transporters, root growth

Introduction

Plants are constantly scouting their surrounding environment in the search for

nutrients and water. However, soils containmultiple toxic metals andmetalloids, some of

them essential for plant growth in low amounts. Therefore, plants must display a battery

of tightly regulated perception mechanisms that allow them to distinguish between

beneficial or harmful elements, finely tuning their nutrient intake and metabolism or

detoxifying through sequestering or extrusion. Roots are the first organs to sense soil

composition and texture and consequently plants are constantly adapting root growth

to the prevailing environment, reshaping its architecture to address a highly efficient
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nutrient capture mode but in parallel controlling the entry

of toxic elements (Baligar et al., 1998; Lynch, 2021; Yadav

et al., 2021). This is particularly delicate when nutrients and

toxic compounds share the same transporter. Consequently,

plants must be endowed with a precise control mechanism

that senses toxic elements and activates a rapid and meticulous

response to restrict or coordinate the entry of the toxic element

to be metabolized, transported into the vacuole or extruded

outside the cell. This response is extremely important in the

case of arsenic detoxification. This metalloid is one of the

most carcinogenic elements present in soils and waters used

for human consumption or crop irrigation (IARC Working

Group on the Evaluation of Carcinogenic Risks to Humans,

2012; Naujokas et al., 2013). Arsenic has been a persistent

ancient stress for plants since the origin of life on Earth due

to volcanic emissions, compromising plant growth and fitness

(Zhu et al., 2014). This particularly affects rice, because it

accumulates more arsenic in grain than any other grain crop

(Zavala and Duxbury, 2008; Hojsak et al., 2015). This situation

is extremely important in Asia where rice is the staple food of

the majority of the population, and where people have been

exposed to arsenic-contaminated waters for decades, what has

been considered as the largest mass poisoning ever suffered

by humanity in history (Sen and Biswas, 2013; Chakraborti

et al., 2015). Furthermore, it has been predicted that the rise

in temperatures due to climate change will double inorganic

arsenic accumulation in rice grain, which will dangerously

enhance the dietary exposure of millions of human beings

to arsenic (Muehe et al., 2019). This extreme situation has

raised interest in the design of new strategies to cope with

arsenic contamination. Thus, understanding how plants sense

and regulate the arsenic response not only would be crucial

for phytoremediation strategies, but also to generate new plant

varieties that show reduced arsenic accumulation in edible parts,

sustaining crop production in contaminated soils.

The most abundant arsenic chemical species present in

soils and groundwaters are arsenate [As(V)] and the reduced

chemical form, arsenite [As(III)]. Among these two chemical

species, the presence of As(III) in soils and subterranean waters

is a global environmental problem. That is particularly serious

in rice, being the most important gateway for arsenic to the

human food chain (Zhao et al., 2010). This is due to the fact that

rice is cultivated by flooding, which promotes the partitioning

of arsenic from soil solids to pore-water, stimulating the

breakup of As-bearing Fe(III) hydroxides leading to increased

As(III) availability. As(III) is then rapidly incorporated into

the vascular cells through symplastic intracellular transporters

and rapidly accumulated in rice kernels. Recently, the study

of the accumulation in plants of arsenic methylated forms

produced by soil microorganisms (Lomax et al., 2012; Di et al.,

2019), particularly the highly toxic dimethyl monothioarsenate

(DMMTA), has raised research interest (Colina Blanco et al.,

2021; Dai et al., 2021, 2022; Zhao et al., 2021; Pischke et al., 2022).

However, the molecular mechanisms involved in uptake and

translocation of these methylated arsenic species remain mostly

unknown (Kerl et al., 2019).

Arsenic is extremely toxic to all living forms, causing

the inactivation of multiple biological processes essential for

life (Hughes, 2002; Finnegan and Chen, 2012; Shen et al.,

2013) and therefore it can be predicted that all organisms

must have evolved fast and efficient sensing mechanisms that

coordinate the arsenic response. Essentially, both in prokaryotes

and eukaryotes arsenic tolerance consists in a combination

of arsenic uptake, extrusion or sequestration. In fact, the

molecular components of arsenic uptake and detoxification

in bacteria, yeast and plants have been characterized and

extensively reviewed (Rosen, 1999, 2002; Tripathi et al., 2007;

Zhao et al., 2010, 2021; Abbas et al., 2018; Yan et al., 2018;

Garbinski et al., 2019; Bali and Sidhu, 2021; Mondal et al., 2022).

Similarly, the mechanisms involved in arsenic detoxification in

humans and other higher organisms are well known (Kumagai

and Sumi, 2007). In bacteria, yeast and plants arsenic uptake

and detoxification mechanisms are essentially similar. As(V), is

structurally similar to phosphate (Pi) and therefore its uptake

occurs through Pi-transporters these organisms (Rosenberg

et al., 1977; Willsky and Malamy, 1980; Bun-ya et al., 1996;

Yompakdee et al., 1996; Shin et al., 2004; Catarecha et al.,

2007; Shen et al., 2012; Castrillo et al., 2013; Jiang et al.,

2014). Once inside the cells, As(V) is quickly reduced to

As(III) by the action of arsenate reductases (Mukhopadhyay and

Rosen, 2002; Chao et al., 2014; Sánchez-Bermejo et al., 2014;

Shi et al., 2016) and then rapidly extruded outside the cells

by plasma membrane transporters (reviewed by Rosen, 2002;

Garbinski et al., 2019; Zhao et al., 2021). In addition, As(III)

can be sequestered by thiol-rich proteins, metallothioneins and

phytochelatins, all of which display an extraordinary affinity for

As(III). In yeast and plants, phytochelatins bind As(III) and

these complexes are rapidly sequestered into the vacuole by the

action of ABCC transporters (Ghosh et al., 1999; Ha et al., 1999;

Schmöger et al., 2000; Mendoza-Cózatl et al., 2010; Song et al.,

2010).

It is somewhat surprising that As(V) tolerance depends

on its reduction to As(III), despite the fact that As(III) is

more toxic than As(V). One possible explanation is that at the

beginning of the history of Earth, As(III) was the prevalent

chemical species in a reducing atmosphere which forced all

living organisms to evolve strategies to cope with this chemical

species. However, when the great oxygenation event occurred,

As(V) became the most prevalent form in the biosphere

(Oremland et al., 2009; Fru et al., 2019). In this context, it

seems plausible that the detoxification of As(V) would take

advantage of the preexisting As(III) detoxification system rather

than generating a completely new detoxification system. In fact,

a single enzymatic reaction catalyzed by an arsenate reductase

converts As(V) into As(III) (Mukhopadhyay and Rosen, 2002;

Rosen, 2002).
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In addition to its reduction to As(III), it has been shown

that some bacterial strains, isolated from highly arsenic-

contaminated waters, exhibit increased preferential affinity for

phosphate than for As(V) (Elias et al., 2012), suggesting that the

affinity of the Pi/As(V) transporters could also be modulated as

a strategy to cope with As(V). Changes in the Pi/As(V) affinity

have been reported in the arsenic hyperaccumulator fern, Pteris

vittata. In contrast to bacterial strains, in Pteris, the Pi/As(V)

transporter shows higher affinity for As(V) than for Pi, leading

to increased As(V) uptake and contributing to the extraordinary

capacity of this fern to accumulate arsenic (Poynton et al., 2004;

DiTusa et al., 2015).

Root architecture is an essential element in soil resource

acquisition and, therefore, it is a primary determinant to prevent

arsenic uptake. Arsenic exposure triggers specific developmental

responses, being a major factor for plant survival to arsenic

(Bahmani et al., 2016; Kumar et al., 2020; Yadav et al., 2021).

Toward this, it is essential for plants to exhibit finely tuned

regulatory circuits that integrate arsenic uptake, extrusion

or sequestering with plant growth developmental programs,

particularly in roots. However, sensing and signaling pathways

that coordinate root growth plasticity with the presence of

arsenic are mostly unknown. Here, we provide a comprehensive

overview of the current understanding of arsenic signaling

and the regulatory mechanisms in plants compared with those

described in other organisms, in particular, bacteria and yeast.

Arsenic perception

The identification of the primary arsenic sensor, if that

exists, is one of the most important unresolved issues for the

comprehension of the arsenic perception mechanisms in plants.

Sensing is the first committed step in signaling pathways. Its

understanding involves the identification of the sensor, as well

as the signal perceived by the sensor. While the identification

of the arsenic sensor in plants has remained elusive, we

recently provide evidence toward the identification of the arsenic

signaling molecule. Indeed, we have shown that As(III) is

a key regulatory signal that regulates the arsenic response,

even controlling the expression of the Pi/As(V) transporter in

response to arsenic (Navarro et al., 2021). Notably, in line with

the case in plants, in bacteria As(V) detoxification mechanisms

are regulated by As(III), and likewise in yeast, As(III) is the

arsenic signal as well (Xu et al., 1998; Di and Tamas, 2007;

Kumar et al., 2015). However, As(III) and As(V) have similar

geometries and therefore we cannot exclude the possibility that

As(V) or other alternative mechanisms may also be involved

in the activation of the arsenic response. Nonetheless, the

fact that the first step in As(V) detoxification is reduction to

As(III) by arsenate reductases, allowed bacteria, yeast and plants

to conserve their arsenic detoxification mechanisms under

As(III) regulation. Therefore, the existence in plants of a sensor

specialized in As(III) perception is a seducing hypothesis that

would allow plants to keep the arsenic response under control

of As(III). In addition, As(III) provides higher selectivity than

As(V) in arsenic signaling vs. Pi signaling, as As(V) displays high

chemical similarity to Pi, and this is not the case with As(III).

In plants, several metal sensors have been described, mostly

nutrient transporters, named “transceptors,” that sense their

substrates (Ho et al., 2009; Dubeaux et al., 2018; Podar and

Maathuis, 2022). Related to arsenic, the sulfur transporter

SULTR1;2 has been proposed to act as a sulfur sensor

conferring arsenic tolerance (Zheng et al., 2014; El-Zohri

et al., 2015; Nishida et al., 2016), which is mediated by

the metabolic activation of cysteine biosynthesis, resulting in

increased thiol protein content, and consequently enhanced

As(III) sequestration. Therefore, although we cannot exclude the

possibility that As(III) transporters may also act as bona fide

As(III)-transceptors, the potential nature of the arsenic sensor in

plants can only be speculated based on the information obtained

from other organisms, specially bacteria and yeast.

In bacteria, the sensor is the ArsR repressor protein

that negatively regulates the ars operon involved in arsenic

detoxification. ArsR is a small protein that contains a helix- turn-

helix domain. It has been proposed that the binding of As(III)

to ArsR triggers a conformational change in the DNA-binding

site of the repressor that results in the dissociation from the ars

promoters, allowing the transcription of the operon (Xu et al.,

1998). Therefore, ArsR is considered a trans-acting repressor

which senses As(III). Recently, a sophisticated modification of

the ArsR sensor in the primitive bacteria Paracoccus sp. has been

described (Chen et al., 2022). In this bacterial species the arsenic

repressor AsR is translationally fused to the arsenate reductase

ArsC. Therefore, the reduction of As(V) to As(III) occurs in the

same protein that encodes ArsR and, as a result, the efficiency

of ArsR binding to As(III) is significantly higher as it is more

independent of diffusion barriers. Thus, the ars operon from

this bacteria can be activated at lower As(III) concentrations,

improving the sensitivity of the arsenic sensor to perceive the

amount of arsenic inside the cell.

In yeast, the transcriptional activator Yap8 is a key regulatory

protein of arsenic detoxification responses. Yap8 is a bZIP

protein that in the absence of arsenic is constantly being

degraded by the ubiquitin proteasome pathway (Di and Tamas,

2007; Kumar et al., 2015). In the presence of arsenic, Yap8

binds As(III), which results in the stabilization of the protein,

leading to transcriptional up-regulation of the arsenic tolerance

genes, specifically the genes coding for the arsenate reductase

ACR2 and the As(III) extrusion pump ACR3 (Ilina et al., 2008).

Interestingly, another member of this family of TFs is YAP1,

which is considered the master regulator of the oxidative stress

response and it also has a role in the detoxification of arsenic.

However, there is no evidence of a direct interaction of YAP1

with As(III) (Menezes et al., 2008; Rodrigues-Pousada et al.,

2010). In line with the findings described for yeast and bacteria,
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transcription factors emerge as candidates for As(III) sensors

in plants (Figure 1). Further research work must be done to

identify the bona fide arsenic sensor or some other molecular

mechanisms involved in arsenic sensing in plants.

Arsenic signaling mechanisms

Plant response to arsenic requires a tight coordination

of several strategies implying a complex regulatory network

inextricably intertwined with regulatory pathways involved in

coping with other abiotic stresses. This considerable complexity

is further increased due to the interconnection between different

toxic elements and nutrients. For instance, selenium (Se)

competes with sulfur (S), As(V) with Pi, or As(III) with

silicon (Si) (Korshunova et al., 1999; Thomine et al., 2000;

Shin et al., 2004; Sors et al., 2005; Ma et al., 2008; Zhao

et al., 2010; Himeno et al., 2019). Furthermore, bidirectional

transporters of several micronutrients like boron (B) and

trace elements like Si, antimony (Sb) and Se (Pommerrenig

et al., 2015) are also involved in arsenite extrusion. Therefore,

plants have evolved sophisticated and promiscuous mechanisms

to deal with toxic compounds in the presence of nutrients,

hindering the identification of the specific signal transduction

pathways participating in the arsenic response. In any case,

there have been several reports describing transcriptional and

post-transcriptional regulators in arsenic signaling. Nonetheless,

master regulatory components of the transcriptional response to

arsenic have not been unearthed.

Transcriptional regulation

The first transcription factor involved in arsenic signaling

has been WRKY6 (Castrillo et al., 2013). Due to its high

chemical similarity with Pi, As(V) uses the Pi transporters to

enter into the plant cell. To cope with this, once plants perceive

As(V), the transcription of the Pi-transporter PHT1;1 is rapidly

repressed, to impede the entry of the metalloid and Pi inside

the cell (Castrillo et al., 2013). Similarly to As(V), high Pi

also represses the Pi transporter, which is also mediated by

WRKY6, suggesting that there are some overlapping signaling

components of the As(V) and Pi response. However, WRKY6 is

regulated by degradation in response to low Pi (Chen et al., 2009;

Ye et al., 2018) while it is transcriptionally regulated by As(III) in

response to arsenic, providing an As(V)/Pi-independent arsenic

regulation of the Pi transporter. The activation of WRKY6 by

As(III) and its degradation by low Pi provides a fine-tuned

regulatory loop to modulate As(V) uptake, maintaining the

regulatory machinery ready to activate the expression of the

Pi-transporter as soon as As(V) disappears from the medium.

As(III) binds thiol groups of proteins, inhibiting their

enzymatic activities, which provokes the generation of reactive

oxygen species (Nahar et al., 2022). Oxidative stress damages

various cellular structures, leading to a general unfolded

protein response. In this context, glutathione plays a central

role in protecting plants from oxidative stress, providing an

adequate redox environment for enzyme activity and membrane

stability (García-Giménez et al., 2013; Diaz-Vivancos et al.,

2015; Dorion et al., 2021). In addition, glutathione itself, or

as a precursor of phytochelatins, is also essential for As(III)

sequestering into the vacuole and therefore plants exposed

to arsenic are particularly sensitive to oxidative stress (Ha

et al., 1999; Schmöger et al., 2000). Consequently, transcription

factors such as SLIM1, a master regulator involved in sulfur

uptake (Maruyama-Nakashita et al., 2006), are critical for

arsenic tolerance, since sulfur is a constituent of cysteine

and therefore of glutathione (Jobe et al., 2021). Similarly,

other transcription factors involved in arsenic tolerance are

also essential for plants to handle other stresses such as

drought or temperature, both associated with oxidative stress.

Accordingly, drought stress, which increases abscisic acid

(ABA) concentration, controls arsenic and cadmium (Cd)

accumulation (Fan et al., 2014; Abdel-Haliem et al., 2017; Saha

et al., 2021). Interestingly, both toxic elements are sequestered

into the vacuole complexed with glutathione and phytochelatins,

suggesting a clear overlap of some regulatory elements of the

Cd and As(III) response. The prevention of Cd accumulation

in response to ABA is known to be mediated by the interaction

of the ABA-signaling transcription factor ABI5 with MYB49,

another transcription factor that upregulates the expression of

transcriptional activators of the IRT1 transporter involved in Cd

uptake (Zhang et al., 2019). The formation of the heterodimer

ABI5-MYB49 inhibits the binding of MYB49 to the promoter

region of its target genes, leading to the repression of the Cd

transporter. However, in the context of As(III) uptake and

signaling, ABA seems to operate through a different mechanism.

In rice, ABA negatively regulates the expression of OsARM1, a

repressor of Lsi1 and Lsi2 transporters, responsible for As(III)

uptake through the exodermis and endodermis (Wang et al.,

2017; Hu et al., 2020). Consequently, knockout of OsARM1

enhances arsenic accumulation in the above ground tissue.

Furthermore, some studies hint that ABA upregulates the

expression of the Pi-transporter repressor WRKY6, which in

turn may lead to the suppression of As(V) uptake (Huang

et al., 2016; Song et al., 2016). The mechanism involved in

OsARM1 transcriptional repression mediated by ABA remains

largely unclear.

A recent study has identified an arsenic-inducible myb

transcription factor, MYB40 as an important regulator

conferring arsenic resistance in Arabidopsis (Chen et al.,

2021). myb40 mutant alleles showed a constitutive activation

of the Pi/As(V) transporter PHT1;1, similar to wrky6 mutants

(Castrillo et al., 2013). In addition, the transcriptional

upregulation in response to arsenic of phytochelatin synthases

and ABCC transporters involved in As(III) transport into
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FIGURE 1

Overview of arsenic perception in bacteria, yeasts and plants. As(V) uptake is mediated by phosphate transport systems, Pst in bacteria, PHO84

in yeast and PHT1 in plants. Once inside the cells, As(V) is rapidly reduced to As(III); the latter is the key regulatory signal conserved among these

kingdoms. The bacterial arsenic resistance (ars) operon is controlled by the repressor ArsR, which acts as the As(III) sensor protein. As(III) binding

to ArsR triggers a conformational change that causes the repressor to dissociate from the promoter, enabling the transcription of the ars

operon, activating the expression of ArsB—an As(III)-carrier protein—and ArsC—an arsenate reductase—. In yeast, Yap8 is the As(III) sensor

protein. In the absence of arsenic, Yap8 is constantly being ubiquitinated (Ub) for proteasome-mediated degradation. However, Yap8-As(III)

interaction results in the stabilization of Yap8, which leads to the activation of the expression of arsenic resistance genes, specifically, genes

coding for the arsenate reductase ACR2 and the As(III)-extrusion pump ACR3. As(III) can also be conjugated with glutathione (GSH) and then

sequestered into the vacuole of yeasts. Considering these findings in bacteria and yeast, it can be speculated that transcription factors could be

the As(III)-sensor proteins in plants. The existence of a transcriptional repressor (TR) or activator (TA) of the arsenic response in plants and its

stabilization by As(III) still needs to be explored. Similar to bacteria and yeast, the mechanisms of arsenic detoxification in plants involve As(V)

reduction to As(III), mediated by arsenate reductases, specifically ARQ1/HAC1, and the consequent extrusion of As(III) through NIP/PIN2/Lsi

transporters, as well as the conjugation of As(III) with phytochelatins (PCs) to form As(III)-cysteine-rich conjugates that can be transported and

sequestered into vacuoles. Created with BioRender.com.

the vacuole was significantly increased in the myb40 mutants

(Chen et al., 2021). Further experiments will be required

to determine whether or not MYB40 is a key regulatory

factor involved in arsenic sensing and signaling of the arsenic

detoxification mechanisms.

Also recently, genome wide approaches have proven useful

to identify key regulatory proteins involved in arsenic signaling.

For instance, using a library of artificial microRNAs (amiRNAs)

targeting diverse genes, several CBF transcription factors have

been identified as negative regulators of arsenic tolerance,

probably through direct regulation of Pi transporters, (Xie et al.,

2021). Likewise, transcriptomic analyses of two Arabidopsis

accessions with differential response to arsenic treatment

provided several candidate genes, including transcription factors

from the B-box (BBX), NAC or MYB families (Khare et al.,

2022). The candidate genes identified in these studies should

be further characterized in order to assess their putative role in

the regulation of the response to arsenic. Nevertheless, genome-

wide association studies using an Arabidopsis collection of

accessions proved to be essential tools for the identification

of key regulatory factors involved in the arsenic response.

Therefore, arsenic tolerance is controlled by a collection of key

regulatory proteins that contribute to achieve the most efficient

arsenic tolerance phenotype. However, we must consider the

possibility that a master regulator of the arsenic response may

exist as it has been previously described in yeast and bacteria (Xu

et al., 1998; Kumar et al., 2015). Further analysis will determine

whether or not some of these regulatory proteins act as master

regulators, coordinating the responses that contribute to attain

the final arsenic tolerance.

Post-transcriptional regulation

The control of protein homeostasis and post-translational

modifications (PTM) are also essential components for stress

survival across different species (Zhang et al., 2015; Kosová

et al., 2021). Strikingly, there is growing evidence that state

changes of key regulatory proteins are associated with more

dramatic functional alterations for the cell than protein

abundance (Needham et al., 2019; Ochoa et al., 2019; Mehnert
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et al., 2020; Grossbach et al., 2022). Actually, several specific

phosphorylation states have been correlated to a number of

stress resistance traits in the context of a novel high-quality

multi-omics QTL study in yeast, showing, for the first time at a

global scale, the central importance of protein phosphorylation

to adapt stress responses in living organisms (Grossbach et al.,

2022). However, the study of protein state changes in response to

arsenic, including PTMs, is poorly developed, although there are

some examples pointing to their relevance in arsenic signaling.

Thus, it has been shown that MAPKs are activated in response

to As(III), suggesting their implication in arsenic signaling

(Rao et al., 2011). Additionally, recent reports indicate that

PTMs modulate arsenic transport (Tang and Zhao, 2021). The

activity of PHO1, a transporter involved in As(V) xylem loading,

and INT2/4, inositol transporters also permeable to As(III)

for phloem loading may be modulated by phosphorylation.

Moreover, PHT1 and PHO1 transporters also undergo several

regulatory PTMs during their intracellular trafficking to the

plasma membrane and Golgi/trans-Golgi network, respectively,

including ubiquitination and phosphorylation (reviewed by Pan

et al., 2019). For instance, the C-terminus phosphorylation of

the PHT1;1 and PHT1;4 transporters, involved in Pi/As(V)

transport, by casein kinase CK2 keeps them anchored to the

ER under Pi-sufficient conditions (Bayle et al., 2011; Chen

et al., 2015). This additional level of control for the activity of

PHT1 proteins could also be used to regulate PHT1-mediated

As(V) uptake. Similarly, it has been shown that the activity

of the As(III) transporter NIP1;1 can be positively regulated

through phosphorylation by the Ca-dependent protein kinase

by CPK31 (Ji et al., 2017), pointing to the importance of PTMs

to modulate As(III) arsenic uptake. As we mentioned above,

the transcriptional repressor OsARM1, involved in the control

of the As(III) transporters Lsi1 and Lsi2, is regulated by ABA.

Similarly, Cd uptake is also regulated by ABA which is mediated

by phosphorylation-dephosphorylation of the ABA-responsive

transcription factor ABI5 (Fujii et al., 2009; Zhang et al., 2019).

A similar strategy could also be operating to control OsARM1

transcriptional expression, limiting arsenic accumulation in

plants. However, changes in the phosphorylation status of

OsARM1 are currently unknown and the role of ABI5 in

OsARM1 expression requires further investigation.

Ubiquitin and SUMO conjugations are also major post-

translational modifiers controlling protein homeostasis in

response to stress (Vierstra, 2012). However, there are still no

reports regarding the implication of sumoylation in the arsenic

response. Interestingly, two studies uncovered the participation

of F-boxes in arsenic responses suggesting that ubiquitination

is involved in arsenic signaling. One study comprised a GWA

analysis of Arabidopsis ecotypes, leading to the identification

of ASRF, a F-box protein involved in maintaining phosphate

homeostasis under As(V) stress (Peña-Garcia et al., 2021).

In this case, the asrf mutant showed an arsenic-sensitive

phenotype linked to a higher activation of Pi/As(V) transporters

compared to the wildtype, highlighting the importance of

F-box proteins-mediated ubiquitination for dealing with arsenic

toxicity. Therefore, it can be hypothesized that in response to

arsenic, ASRF mediates the degradation of transcription factors

involved in the activation of Pi/As(V) transporters, leading to

the suppression of As(V) uptake. In addition, a second study

showed that another F-box, named PHIF1, targets PHR1, the

key activator of Pi/As(V) transporters, for ubiquitination and

subsequent degradation in response to arsenic (Navarro et al.,

2021).

Small non-coding RNAs, including microRNAs (miRNAs)

have an emerging role as regulatory components, post-

transcriptionally modulating gene activity to cope with heavy

metal stress (Ding et al., 2020). In this sense, the innovation

in next-generation sequencing platforms has allowed the

identification of a number of heavy metal-regulated miRNAs

as essential regulatory components for plant tolerance to As,

Cd, mercury (Hg), aluminum (Al) and lead (Pb) (Chen et al.,

2011; Liu and Zhang, 2012; Han et al., 2016; Shen et al., 2017;

Ding et al., 2018; Wu et al., 2018; Gao et al., 2019). In the

context of arsenic, microarray profilings of miRNAs performed

in B. juncea, and in natural rice accessions exposed to As(V) or

As(III) species, led to the identification of tens of differentially-

expressed miRNA (Srivastava et al., 2012; Sharma et al., 2015).

Among them, it is worth mentioning miR399 and miR528.

miR399 is known to be induced in Pi-starvation conditions,

acting as a repressor of PHO2 (an E2 ubiquitin conjugase), which

modulates the degradation of the Pi/As(V) transporters PHO1

and PHT1 (Aung et al., 2006; Bari et al., 2006; Liu and Zhang,

2012). Interestingly, in the same study they found that miR528

overexpressing lines exhibit As(III)-sensitivity as a consequence

of an overall impairment of As(III) uptake, translocation and

tolerance mechanisms probably through targeting Lsi2 As(III)

transporter (Liu et al., 2015). Thereby, most of the arsenic

stress-responsive miRNAs described so far have not been fully

characterized for their molecular function in arsenic tolerance.

Hormones, root architecture, and
arsenic response

The presence of arsenic exerts a profound effect on

root architecture that should be tightly coordinated with the

detoxification machinery. It is known that arsenic reshapes the

spatial configuration of roots mostly due to repression of root

hair elongation and root growth arrest, particularly of the main

root, altering the boundaries of meristematic and elongation

zones (Catarecha et al., 2007; Fattorini et al., 2017; Tu et al.,

2021). Indeed, root apical meristem is the major absorption area

involved in As(III) uptake (Ashraf et al., 2019). It is somehow

surprising that, in contrast to our results (Catarecha et al., 2007),

in two independent studies, it was found that arsenic induces

root hair elongation (Bahmani et al., 2016; Kumar et al., 2020).
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FIGURE 2

Role of plant hormones in the alleviation of arsenic toxicity and root plasticity. Exogenous application of abscisic acid (ABA), ethylene,

brassinosteroids (BRs), strigolactones (SLs), gibberellins (GAs), salicylic acid (SA) and jasmonic acid (JA) enhances plant resistance to arsenic

stress through the mitigation of reactive oxygen species (ROS). ABA, cytokinins (CKs) and auxins are more directly implicated in arsenic

detoxification and tolerance mechanisms by the regulation of arsenic transport and accumulation together with the modulation of root

architecture. ABA increases arsenic tolerance mainly by increasing glutathione (GSH) and phytochelatins (PCs), which in turn promotes the

accumulation of arsenic in the vacuole. In rice, ABA may also be involved in the activation of Lsi transporters, leading to As(III) translocation into

the aerial part. Similarly, CKs also contribute to increase GSH and PCs synthesis, enhancing vacuolar sequestration of arsenic. In addition to this,

it has been shown that CKs contribute to the repression of Pi/As(V) transporters (PHT1) in response to arsenic in order to limit As(V) uptake and

this mechanism is coordinated with the suppression of primary root growth. On the other hand, arsenic most probably interferes with auxin

transport and biosynthesis, due to the fact that As(III) is extruded by the auxin transporters PIN2, reshaping root architecture. Created with

BioRender.com.

In both studies the experimental conditions were different from

those used in Catarecha et al. (2007) and it could be possible

that in these conditions arsenic availability was lower, allowing

the plant to detoxify the arsenic, increasing its accumulation and

consequently releasing the suppression of root hair elongation.

In line with this, some arsenic-tolerant accessions of Arabidopsis

and Holcus lanatus reduced As(V) uptake due to a suppression

of the high-affinity Pi uptake system, but displayed increased

arsenic accumulation (Meharg and Macnair, 1990, 1991, 1992;

Bleeker et al., 2002; Meharg and Hartley-Whitaker, 2002;

Catarecha et al., 2007; Castrillo et al., 2013). These observations

indicate that arsenic detoxificationmechanisms and root growth

responses are intimately intertwined.

Hormone distribution along roots could be a critical

factor in the integration of arsenic perception with root

architecture. Different hormones, like jasmonic acid, salicylic

acid, brassinosteroids, ethylene, gibberellins, and strigolactones

have been involved in arsenic tolerance, although their effect is

mostly due to their capability to control oxidative stress (Surgun-

Acar and Zemheri-Navruz, 2019; Coelho et al., 2020; Kaya et al.,

2020; Mostofa et al., 2021a,b; Samanta et al., 2021; Singh et al.,

2021). However, several experiments point out that ABA, auxin

and cytokinins have a specific role in root growth adaptation to

arsenic toxicity besides oxidative stress mitigation.

ABA modulates root developmental programs

independently of stress conditions through the control of

long-distance transport of the hormone (Zhang et al., 2021).

Arsenic treatment increases ABA accumulation by unknown

mechanisms and consequently upregulates genes involved

in ABA biosynthesis and signaling (Huang et al., 2012; Yu

et al., 2012; Hu et al., 2020). Interestingly, upregulation of

ABA-responsive genes in response to arsenic only occurs in

ecotypes that show an arsenic-tolerant phenotype but not in

those exhibiting arsenic sensitivity (Fu et al., 2014), strongly

supporting that ABA mediates arsenic tolerance. Accordingly,

ABA also increases hyperaccumulation of glutathione and

phytochelatins (Stroiński et al., 2010; Song et al., 2016; Shi

et al., 2019). Furthermore, as we mentioned above, ABA

negatively regulates the expression of OsARM1, a repressor

of Lsi transporters involved in As(III) transport throughout

the endodermis, increasing arsenic accumulation in the above

ground tissue, further supporting its role in arsenic tolerance
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(Wang et al., 2017). Another facet of ABA action is that this

phytohormone has been recently found to be involved in the

formation of the endodermis barriers and therefore may alter

arsenic translocation into the aerial part (Brookbank et al.,

2021). In summary, all these observations support that ABA

could be involved in the control of root architecture in response

to arsenic, being a major factor in the integration of root

development with arsenic uptake and translocation.

Cytokinins, which are intimately linked to root growth

inhibition, are involved in the repression of the Pi/As(V)

transporters, probably coordinating As(V) uptake with root

elongation, being a major factor in the coordination of arsenic

uptake and detoxification with uptake (Mohan et al., 2016).

Indeed, cytokinins content is associated with increased arsenic

content in the arsenic hyperaccumulator Pteris cretica var.

nervosa, so that an increase in bioactive cytokinins and a

decrease of inactive forms of these hormone correlates with

the accumulation of arsenic (Zhang et al., 2017). However,

this correlation was not found in the non-hyperaccumulator

Pteris ensiformis. Therefore, it appears that the cytokinin-

arsenic interplay has been rewired during evolution and

supports that these hormones are important for tolerating high

intracellular arsenic content, having a significant impact on

plant growth.

Auxin is also essential for root growth plasticity in

response to arsenic (Tu et al., 2021). Furthermore, the

polar auxin transporter PIN2 has been involved in As(III)

extrusion (Ashraf et al., 2019), suggesting that the presence

of arsenic may somehow modulate auxin distribution and

therefore root architecture. Accordingly, arsenic exposure

reduces auxin levels in adventitious and lateral roots in

Arabidopsis and rice, affecting biosynthesis and transport of this

hormone, ultimately giving rise to a modified root architecture

(Krishnamurthy and Rathinasabapathi, 2013; Fattorini et al.,

2017; Tripathi et al., 2021). Interestingly, the amount of

auxin in roots is altered in sulfur-starvation conditions

where phytochelatin biosynthesis is arrested suggesting that

sulfur may act as a key regulator that integrates root

architecture with arsenic detoxification due to changes in

auxin gradients.

In this context, an exciting field of interest is the contribution

of arsenic-resistant plant growth-promoting rhizobacteria

(PGPR) and other rhizospheric microorganisms to attenuate

arsenic phytotoxicity and promote root development. Indeed,

these microorganisms promote nutrient (Pi, N, Fe) uptake,

and modulate arsenic bioavailability and phytohormone

levels. Indeed, they increase auxin levels by the production of

indole-3-acetic acid (IAA), and reduce ethylene content by

the production of 1-aminocyclopropane-1-carboxylate (ACC)

deaminase, thus resulting in increased root growth (reviewed by

Upadhyay et al., 2018; Mondal et al., 2021; Kumar et al., 2022).

Further experiments will be required in order to determine

whether these bacteria are able to activate the arsenic signal

transduction pathway.

In summary, hormones, particularly ABA, cytokinins and

auxin, play an essential functional role in the adaptation of

root architecture to arsenic uptake rate and detoxification

capacity (Figure 2). Further experimental work will be required

to determine the underlying molecular mechanisms in order to

understand how plants integrate the presence of arsenic with

root growth developmental programs mediated by hormones.

Conclusion

Arsenic contamination in edible crops urgently needs

a profound understanding of the molecular mechanisms

underlying arsenic perception and signaling. However, arsenic

response comprises a complex regulatory network intertwined

with other stresses and developmental programs that makes the

identification of key regulatory factors and sensor proteins an

arduous task.

The identification of As(III) as a key signal that controls

transcriptional regulation of the arsenic response prepares the

ground for the identification of sensors and regulatory factors

involved in arsenic perception and signaling. In addition, an

important aspect of arsenic tolerance response that must be

approached is the characterization of root growth adaptation

to the presence of the metalloid. Roots are the first organs to

sense arsenic, which may be present in different concentration

gradients, leading to the activation of local and systemic arsenic

responses in the root that must be characterized. Therefore,

it is an urgent matter to study how roots transduce arsenic

perception into root morphological responses integrated with

tolerance mechanisms. In addition, further characterization of

the root microbiota that modulates arsenic bioavailability and

root growth adaptation to the presence of arsenic will be crucial

to develop arsenic resistant crops and to aid phytoremediation

strategies. Moreover, due to climate change prediction, it is

also imperative to characterize the effect of light intensity,

temperature, drought and salt, as essential factors that will have a

dramatic impact on plant arsenic accumulation. All these actions

will provide an integral overview of plant arsenic tolerance.

In conclusion, the characterization of the mechanisms

involved in arsenic sensing and signaling is currently in a

very preliminary stage and further in-depth studies are needed.

However, the new genome-wide techniques for transcriptome

and proteome profiling and gene editing techniques allow the

exploitation of natural variation at an unprecedented scale,

thereby predicting a thriving future in the comprehension of the

molecular basis underpinning arsenic response in plants.
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