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Acylsugars are secondary metabolites that are produced in the trichomes

of some solanaceous species and can help control several herbivorous

insect pests. Previously, knockout mutations (asat2 mutants) were shown to

significantly reduce the acylsugar content of Nicotiana benthamiana, and

significantly improve the fitness of six generalist insect herbivores. The current

study compared the significant mortality and fitness costs in Spodoptera

litura conferred by acylsugar protection of N. benthamiana (wild-type plants)

compared to S. litura strains reared in acylsugar-deficient plants with depleted

acylsugar biosynthesis. Acylsugar protection prolonged the developmental

duration and decreased viability in the larval stages. Further, the fecundity of

females and the hatching rate of eggs significantly decreased under acylsugar

protection. For F1 o�spring, acylsugar protection still exerted significant

negative e�ects on larval survival rate and fecundity per female. The net

reproductive rate and relative fitness of the S. litura strain were strongly

a�ected by acylsugar. Altogether, these results indicate that acylsugar could

contribute to plant protection due to toxicity to pests, di�used availability, and

low environmental persistence. This could represent a complementary and

alternative strategy to control populations of insect pests.

KEYWORDS

acylsugar, Nicotiana benthamiana, chemical defenses, Spodoptera litura, toxicity,
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Introduction

Plants generate molecules with low-molecular mass that are considered secondary

metabolites, and they show various mechanisms of defense against different herbivores

(Schuman and Baldwin, 2016). In addition to physical characteristics such as low

digestibility, spines, and leaf toughness, it has been reported that, in plants, many

published metabolites could be used to control insect pests (Bérdy, 2005). However,

many insect pests display the ability to resist the defensive traits from metabolites

in their preferred species of plants which could be against by more sporadically
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distributed chemical defenses. For example, the extensively

investigated Brassicaceae provides outstanding instances of

plants that generate extra chemical defenses beyond the

canonical glucosinolates characteristic of this plant family

(Fahey et al., 2001). Two lineages of Barbarea vulgaris,

glabrous (G-type) and pubescent (P-type), display different

content of triterpenoid saponins, and show distinct levels of

resistance against Plutella xylostella (Agerbirk et al., 2003).

Erysimum contains cardiac glycosides which negatively affect

feeding behavior and oviposition of Pieris rapae (Sachdev-Gupta

et al., 1990, 1993). Other cases of chemical defenses, such

as cucurbitacins in Iberis umbellate, alliarinoside in Alliaria

petiolate, and tropane alkaloids in Cochlearia officinalis have

been demonstrated previously (Nielsen et al., 1977; Haribal

et al., 2001; Brock et al., 2006). These kinds of deterrent or

toxic metabolites from various plants can be utilized to enhance

resistance to insect pests in crops if reasonable and rational

strategies are established with current biotechnologies (Zhou

and Jander, 2021).

Acylsugars are insect-deterrent metabolites generated by the

family Solanaceae, and are produced and exuded from glandular

trichomes of the plants (Goffreda et al., 1988, 1989; Wagner,

1991), resulting in significant negative effects like antibiosis

or insect-repellent on various tomato herbivores (Hawthorne

et al., 1992; Rodriguez et al., 1993; Juvik et al., 1994; Leckie

et al., 2012; Ben-Mahmoud et al., 2018). Similarly, although

Nicotiana benthamiana has been extensively utilized in the

study of plant–microbe interactions (Goodin et al., 2008; Bally

et al., 2018), it may not be the most appropriate host plant

for studying herbivore–plant interactions (Hagimori et al.,

1993; Simón et al., 2003) and the undesirable performance

of herbivores on N. benthamiana could be partially ascribed

to acylsugars (Feng et al., 2021). Specifically, the Nicotiana

species showing resistance to aphids contained acylsugars, yet

acylsugars cannot be measured in the more susceptible species

of the genus (Hagimori et al., 1993). Similarly, compared with

Solanum lycopersicum, the cultivated tomatoes, acylsugars could

be detected in the wild tomato species S. pennellii, which

displayed higher resistance to the pest species Bemisia tabaci

and Myzus persicae (Rodriguez et al., 1993; Marchant et al.,

2020). Recently, Feng et al. (2021) reported that changed profiles

of acylsugar could reduce levels of resistance to six insect

pests such as B. tabaci, M. persicae, Macrosiphum euphorbiae,

Trichoplusia ni, Heliothis virescens, and Helicoverpa zea. This

type of plant resistance to herbivore pests could be strengthened

via bioengineering to enhance amounts of defensivemetabolites,

alter available biochemical pathways, or transfer the biosynthesis

of novel types of defensive metabolites into target plants.

Nevertheless, present strategies of bioengineering are limited

owing to several factors, such as inadequate references for

the biosynthetic pathways of plant metabolites, unexpected

byproducts originating from plant metabolites, and demands

for the spatial specificity of metabolite production to increase

resistance to insect pests.

Spodoptera litura (Fabricius), the tobacco cutworm, is one

notorious polyphagous and destructive herbivore pest that feeds

on various economic and horticultural crops, including cotton,

soybeans, tobacco, tomatoes, and peanuts. The extensive range

of host plants suggests that S. litura could neutralize the traits

of resistance of different plants (Shi et al., 2022), and some

specific secondary metabolites of the plants significantly inhibit

the growth of S. litura in the larval stages (Kundu et al.,

2018). Because the application of chemical agents has been the

primary step against S. litura for the most recent few decades,

an increasing number of studies has indicated that several

field-collected S. litura populations have evolved significant

levels of resistance to a variety of chemical agents such as

carbamate, organophosphate, chlorantraniliprole, pyrethroids,

abamectin, indoxacarb, and emamectin benzoate, and the wide

application of these chemical agents is no longer a suitable

strategy for environment-friendly plant protection (Tong et al.,

2013; Saleem et al., 2016; Wang et al., 2018; Xu et al.,

2020). Considering that N. benthamiana acylsugars showed

defensive effects of metabolites against lepidopteran pests, it

may be possible to enhance resistance of plant by transgenic

methods of transferring biosynthetic pathways (Feng et al.,

2021). Typically, establishment of the life-table has been shown

as one important method for evaluating and understanding

the effects of exogenous elements on the individual and the

entire population of insect pests. The analysis of the life-table

could be used for precisely estimating the growth rate of the

population and the fitness costs, and on this basis, strategies of

pest management could be formulated more reasonably (Kliot

and Ghanim, 2012). In the present work, mortality and fitness

costs in a lab-reared population of S. litura with acylsugar

protection ofN. benthamianawere systematically examined, and

the results indicated the plant chemical defenses conferred by

acylsugar, and these results can supply important data for using

acylsugar for controlling pests via chemical plant defenses in

the field.

Materials and methods

Insects and plants

The reference strain of S. litura, Lab-S strain, was used in this

study and was reared on an artificial diet in one insect-rearing

room without exposure to chemical agents for over 5 years

(Zhang et al., 2022). The wild-type (WT) and the acylsugar-

deficient asat2-1 line (ASAT2) plants of N. benthamiana were

obtained from the Boyce Thompson Institute, Ithaca, New York,

USA, and the ASAT2 plants showed an almost complete absence

of acylsugar compared to the WT plants (Feng et al., 2021). All

plants of WT and the ASAT2 mutant of N. benthamiana were

reared at 23◦C and a 16:8 h light:dark photoperiod in a well-

controlled chamber. All bioassays and fitness cost evaluation
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work were performed at 26◦C under a 16:8 h light:dark

photoperiod in a well-controlled growth chamber.

Bioassays

The lethal activity of acylsugar toward various stages of

larvae was examined by bioassays. S. litura eggs were maintained

on an artificial diet, and five larval stages (the 2nd, 3rd, 4th,

5th, and 6th stages), were measured. For each tested instar of

larvae, one hundred 12-h-old larvae were selected and fed with

the leaves ofWT or ASAT2 plants. Ten larvae were placed on one

WT or ASAT2 plant as one tested group, and 10 of the tested

groups were set as replicas for each bioassay. The immobile

larvae in each stage were considered as dead, and the number of

larvae that survived was recorded after 48 h. Comparisons were

made between the WT and ASAT2 using the Student’s t-test.

Defensive e�ects of acylsugar on S. litura

of F0

This study evaluated the defensive effects of acylsugar on

second-instar larvae of S. litura. Six hundred one-day-old

second-instar larvae were randomly collected, and 300 of them

were fed with N. benthamiana leaves of WT plants, while the

other 300 were fed with N. benthamiana leaves of ASAT2 plants.

The total number of deformed pupae was counted, and, within

24 h, all healthy pupae were weighed, and the rate of pupation

was recorded. After the adults emerged, 15 pairs of female and

male adults were coupled in the first 12-h after emergence, and

each couple was placed into one plastic cup (3-cm diameter and

5-cm height). Each of the tested couples was introduced into new

plastic cups daily, and the fecundity of each female, oviposition,

and egg hatching rate was recorded every day. Comparisons

were made between the plants of WT and ASAT2 using the

Student’s t-test.

Transgenerational defensive e�ects of
acylsugar on F1 o�spring

To determine whether acylsugar exerts transgenerational

defensive effects on the F1 population, the egg hatching rate

was assessed by sampling 20 egg masses (more than 250 eggs

per mass) on the fourth day of the oviposition duration for

F0 females, which were fed on acylsugar (the WT plants) or

acylsugar-depleted (the ASAT2 plants) from the second larval

instar. Further, 100 collections from four masses of eggs (20–

30 eggs from each mass) were utilized to establish the life table

for each tested population of S. litura. Neonates of the F1

generation were transferred individually into one plastic tube

and fed with artificial diet in the tube. The developmental time

of larval-instar stages and survival rates were checked daily,

and pupation rate, duration of pupae, the longevity of adults,

and emergence rate were recorded every day. Newly emerged

males and females of the F1 generation were coupled and put

into one plastic cup for oviposition. The fecundity of females,

oviposition duration of females, and hatchability of the eggs

were checked daily. Comparisons were made between the WT

and ASAT2 using the Student’s t-test. Net reproductive rate (R0)

and the relative fitness were evaluated according to a previously

published method (Wang and Wu, 2014).

Results

Toxicity of acylsugar on di�erent instar
larvae in S. litura

To confirm if the depletion of acylsugar in the ASAT2

mutants enhances the adaptability of S. litura on Nicotiana

benthamiana, we performed bioassays with the 2nd, 3rd, 4th,

5th, and 6th instars of S. litura. When each of the specific instar

larvae was put onto the leaves of the ASAT2 mutant or wildtype

(WT), survival rates of S. litura on WT plants were significantly

lower compared to their counterparts reared on the ASAT2

plants (Figure 1). The 2nd instar larvae of S. litura onWT plants

had the lowest survival rate,∼53%, while the survival rate of 2nd

instar larvae on ASAT2 plants was ∼96% (Figure 1). For other

stages of larvae in the bioassays, survival rates of S. litura on

WT plants decreased more significantly than on ASAT2 plants

(Figure 1).

E�ect of acylsugar on larvae and adults
of S. litura F0 generation

Biological components including survival rate and

developmental time, larval, and pupal weight, the fecundity

of females, duration of oviposition, and egg hatching rate for

the F0 generation grown from 2nd instar larvae fed with or

without acylsugar were studied. Compared to those fed on

ASAT2 plants, the survival rate of the second- to sixth instar

larvae from the F0 group fed with WT significantly decreased in

each stage (Figure 2A), and their weight significantly decreased

in each stage from second instar larvae to pupae (Figure 2B). In

comparison with the ASAT2 group, the development time of

second- to sixth instar larvae of F0 fed withWTwas significantly

prolonged by 2.2 days (Figure 3A). However, pupal duration

and female and male longevity were not significantly different

between those reared on WT and ASAT2 plants (Figures 3A,B).

Further, compared to the mean fecundity of ASAT2-fed

females (3,815.53 eggs per female), WT-fed females displayed

significantly reduced fecundity, with 2,565.93 eggs per female

(Figure 4A). Similarly, a significant decrease in the egg hatch
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FIGURE 1

Survival rate of bioassays using specific stages of larval instars on WT and ASAT2 plants of N. benthamiana. Values are presented as means ± SE.

Asterisks above error bars indicate significant di�erences (P < 0.05).

rate of WT-fed females (79.58%) was observed compared with

ASAT2-fed females (94.20%; Figure 4C). However, there was no

detectable difference in the duration of oviposition between the

two populations (Figure 4B).

Transgenerational defensive e�ects of
acylsugar on the F1 generation

No significant defensive effects of acylsugar on the period

of various stages of life were detected between ASAT2-fed

and the WT-fed group (Figure 5A). In addition, the pupation

and emergence rate did not significantly differ between the

two groups (Figure 5B). However, in comparison with the

ASAT2-fed group, the larval survival of the WT-fed plant

group significantly decreased (Figure 5B). Further, a significant

difference in eggs laid per female of F1 was observed between the

ASAT2-fed (4,188.87 ± 267.29) and WT-fed groups (3,356.87

± 207.54; Figure 6A). On the contrary, no significant difference

was observed in other reproduction parameters, such as

oviposition duration (Figure 6B) and hatchability of the eggs

(Figure 6C). All fitness parameters of F1 offspring are displayed

in Table 1. Relative to the net replacement rate (R0) of the

ASAT2-fed group, the fitness of the WT-fed group was 0.51

(Table 1).

Discussion

Acylsugars exuded by glandular trichomes are considered

powerful natural pesticides (Puterka et al., 2003), and can

directly kill some species of insect pests (Feng et al., 2021). In this

study, we found that although larvae of S. litura grow well on the

ASAT2 mutant line of N. benthamiana, significant insecticidal

effects of acylsugar against larvae of S. litura were observed in

the WT line of N. benthamiana. In particular, a 50% lethality

effect was detected for the 2nd instar larvae. Similarly, it has

been reported that knockout of acylsugar biosynthesis conferred

a significantly higher survival rate for M. persicae and B. tabaci

on the ASAT2 mutant line compared with their high mortality

in wildtype N. benthamiana (Feng et al., 2021). Considering

that acylsugars are defensive metabolites generated by various

Solanaceae species, in which they provide deterrence against

a large range of herbivores, acylsugar-associated herbivore

resistance has huge promise against insect pests of tomato such

as whiteflies, thrips, and aphids (Goffreda et al., 1988, 1989;

Hawthorne et al., 1992; Rodriguez et al., 1993; Juvik et al., 1994;

Liedl et al., 1995; Leckie et al., 2012).
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FIGURE 2

Survival rate (A) and weight of individual (B) in each larval stage of the F0 generation on WT and ASAT2 plants of N. benthamiana. Values are

presented as means ± SE. Asterisks above error bars indicate significant di�erences (P < 0.05).

FIGURE 3

Development time (A) and longevity of adults (B) of the F0 generation on WT and ASAT2 plants of N. benthamiana. Values are presented as

means ± SE. Asterisks above error bars indicate significant di�erences (P < 0.05), and n.s. indicates not significant (P > 0.05).

Further, acylsugars can negatively affect the fitness of various

insect pests by interfering with behaviors such as feeding

and oviposition and have detrimental effects on their growth

(Simmons et al., 2003; Resende et al., 2006). To investigate

the underlying ecological effects of acylsugar on insect pests,

we conducted systematic work on the defensive effects on S.

litura. We observed that acylsugar shows insecticidal effects

against S. litura larvae from the 2nd to the 6th stage, and it was

previously observed that there was a high death rate of sucking

insect pests such as B. tabaci and M. persicae on wild-type

plants of N. benthamiana (Feng et al., 2021). In the acylsugar-

fed group, S. litura larvae showed decreased body weight in

each larval and pupal stage. They also displayed significant

prolongation of the larval period, suggesting that acylsugar

not only acts against larvae directly but also suppresses their

development. More importantly, fecundity of females and egg

hatching rate of the S. litura F1 generation were significantly

affected by acylsugar. Similarly, these effects were also observed

in Tetranychus urticae and Frankliniella occidentalis (Lucini

et al., 2015; Ben-Mahmoud et al., 2019). It has also been

reported that acylsugar could interfere with the oviposition and

feeding of M. persicae and Tuta absoluta, and have detrimental

effects on their growth (Simmons et al., 2003; Resende et al.,

2006).

In addition to reducing the fitness of S. litura during the

F0 generation, the transgenerational effects of acylsugar were
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FIGURE 4

Fecundity (A), oviposition duration (B), and egg hatching rate (C) of the F0 generation of S. litura on WT and ASAT2 plants of N. benthamiana.

Values are presented as means ± SE. Asterisks above error bars indicate significant di�erences (P < 0.05), and n.s. indicates not significant (P >

0.05).

FIGURE 5

Development time (A) and survival rate (B) of the F1 generation on WT and ASAT2 plants of N. benthamiana. Values are presented as means ±

SE. Asterisks above error bars indicate significant di�erences (P < 0.05), and n.s. indicates not significant (P > 0.05).

detected. Here, we found that in the F1 generation of the WT-

fed group, the larval survival rate and female fecundity were

still significantly suppressed, even though the F1 generation of

S. litura was reared on an artificial diet from hatching. A variety

of studies have suggested that various chemical agents can

affect insect pests by damaging their behavioral or physiological

characteristics including longevity, duration of growth, host

locating, feeding ability, and fecundity (Desneux et al., 2006;

Biondi et al., 2013; Wang et al., 2016, 2017; Qu et al., 2017; Fang

et al., 2018; Jam and Saber, 2018; Zhou et al., 2021). Most of

these effects could also be transgenerational, indirectly affecting

their offspring (Cui et al., 2018), and they could cause alterations

in communities and ecosystems (Lu et al., 2012; Mohammed

et al., 2019). Thus, the transgenerational effects induced by

acylsugar might be contributed to delaying the outbreak of

acylsugar in a short term. Recently, biopesticides (natural

products) have emerged as a better alternative for pest control

(Mostafiz et al., 2020), and acylsugars, one of the products of

glandular trichomes that secrete secondary metabolites, could

be repellent, toxic, and disturb oviposition and feeding of

insect pests. They are involved in tritrophic interactions in

plant defenses by tagging herbivores for predation through

breaking down volatile acylsugar products (Weinhold and

Baldwin, 2011) and efficiently protecting plants from attacks

from microbes (Luu et al., 2017). In tomato plants, breeding

measures have attempted to control the composition and

content of acylsugar for increasing resistance to herbivores, and

more enhanced breeding lines have been generated (Leckie et al.,
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FIGURE 6

Fecundity (A), oviposition duration (B), and egg hatching rate (C) of the F1 generation of S. litura on WT and ASAT2 plants of N. benthamiana.

Values are presented as means ± SE. Asterisks above error bars indicate significant di�erences (P < 0.05), and n.s. indicates not significant (P >

0.05).

TABLE 1 Life tables and relative fitness of two tested populations of

Spodoptera litura.

Life-history parameter ASAT2 WT

Number of neonates 150 150

Number of pupae 124 98

Number of adults 104 74

Number of female moths 59 40

Mean eggs laid female−1 4,188.87 3,356.87

Egg viability (%) 93.66 88.79

Predicted neonate number of next generation 231,474 119,222

Net replacement rate (R0) 1,543.16 794.81

Relative fitness 1 0.52

Relative fitness= R0 (WT-fed)/R0 (ASAT2-fed).

2012, 2013, 2014; Smeda et al., 2016). Accordingly, acylsugars

can provide an alternative to synthetic insecticides for the future

environmentally-friendly control of insect pests.

In recent years, novel advances in ecotoxicology have been

impacting the assessment of xenobiotic effects (Godfray, 1993;

Sedaratian et al., 2013). Demography has been considered as one

approach for evaluating the overall effects of xenobiotics because

it can illustrate all the impacts of a xenobiotic on a population

of insect pests (Hamedi et al., 2010). In addition, combining

demography with biological parameters could better predict

the impacts of xenobiotics at the population level. Fitness cost

is considered as one essential biological component that must

be assessed when formulating xenobiotics pest management

strategies. The fitness cost can be observed when organisms face

niche alteration and must adapt to novel surroundings (Kliot

and Ghanim, 2012). In the present study, compared with the

ASAT2-fed group, significant the fitness costs resulting from

acylsugar displayed a fitness value of 0.52 in theWT-fed group. It

has been shown that the more significant fitness cost, the longer

it takes for insect pests to develop their populations, which is one

vital element of the Integrated Pest Management (IPM) program

(Kliot and Ghanim, 2012). Therefore, an overall understanding

of fitness costs associated with defensive metabolites of plants

could contribute to the design of more effective strategies for

pest management against herbivore pests.
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