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In wheat breeding, spike number is a key indicator for evaluating wheat yield,

and the timely and accurate acquisition of wheat spike number is of great

practical significance for yield prediction. In actual production; the method

of using an artificial field survey to count wheat spikes is time-consuming

and labor-intensive. Therefore, this paper proposes a method based on

YOLOv5s with an improved attention mechanism, which can accurately detect

the number of small-scale wheat spikes and better solve the problems of

occlusion and cross-overlapping of the wheat spikes. This method introduces

an efficient channel attention module (ECA) in the C3 module of the backbone

structure of the YOLOv5s network model; at the same time, the global

attention mechanism module (GAM) is inserted between the neck structure

and the head structure; the attention mechanism can be more Effectively

extract feature information and suppress useless information. The result

shows that the accuracy of the improved YOLOv5s model reached 71.61%

in the task of wheat spike number, which was 4.95% higher than that of the

standard YOLOv5s model and had higher counting accuracy. The improved

YOLOv5s and YOLOv5m have similar parameters, while RMSE and MEA are

reduced by 7.62 and 6.47, respectively, and the performance is better than

YOLOv5l. Therefore, the improved YOLOv5s method improves its applicability

in complex field environments and provides a technical reference for the

automatic identification of wheat spike numbers and yield estimation. Labeled

images, source code, and trained models are available at: https://github.com/

228384274/improved-yolov5.
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Introduction

Wheat is an important food crop in our country. In 2021,
the planting area of wheat will be 22.911 million hectares, and
the output will be 134 million tons in our country; China
is the largest wheat producer in the world (Sreenivasulu and
Schnurbusch, 2012; Ge et al., 2018; Chen et al., 2021; Wen
et al., 2022). However, the current COVID-19 epidemic is
raging, the domestic and foreign environments are complex
and changeable, abnormal weather and natural disasters are
frequent, and food security is facing severe challenges (Laborde
et al., 2020; FAO, 2021; Ministry of Emergency Management
of the People’s Republic of China, 2022). The spike number is
an important indicator for wheat yield estimation (Zhang et al.,
2007; Gou et al., 2016; Zhou et al., 2021). Therefore, wheat spike
number detection is the key to predicting and evaluating wheat
yield. Timely and accurate acquisition of wheat spike numbers
has always been the focus of wheat breeding and cultivation
research.

In actual production, the acquisition of wheat spikes
mainly includes low-throughput artificial field investigation and
high-throughput remote sensing image processing. Artificial
field surveys have the disadvantages of strong subjectivity,
strong randomness, and lack of uniform standards, which
lead to the shortcomings of time-consuming, labor-intensive,
and low-efficiency researchers. They cannot obtain statistical
results of wheat spikes efficiently and quickly (Kamilaris and
Prenafeta-Boldú, 2018). The high-throughput remote sensing
image processing is based on the feature fusion of different
textures (Ganeva et al., 2022), color features (Grillo et al.,
2017), spectral reflectance, and uses machine learning to
detect targets in wheat spike images to extract the number
of wheat spikes. Zhao et al. (2021) proposed a method
based on an improved YOLOv5, which can accurately detect
the number of wheat spikes in unmanned aerial vehicle
(UAV) images; the average accuracy (AP) of wheat spike
detection in UAV images is 94.1%, which is 10.8% higher
than the standard YOLOv5, and solves the problem of the
wrong detection and missed detection of wheat spikes due to
occlusion conditions. Gong et al. (2021) proposed a method
of wheat-head detection based on a deep neural network
to enhance the speed and accuracy of detection; the mean
average precision of the proposed method is 94.5%, and the
detection speed is 71 FPS. Li et al. (2022) used a deep-learning
algorithm (Faster R-CNN) on red green blue (RGB) images
to explore the possibility of image-based detection of spike
numbers and its application to identify the loci underlying
spike numbers. Xiong et al. (2019) proposed a simple yet
effective contextual extension of TasselNet–TasselNetv2, which
simultaneously addresses two important use cases in plant
counting.

Alkhudaydi et al. (2019a) developed a deep-learning-
based analysis pipeline to segment spike regions from
complicated backgrounds. Zhao et al. (2022) proposed a
deep learning method for oriented and small wheat spike
detection (OSWSDet); the AP is 90.5%. Wang Y. D. et al.
(2021) proposed an improved EfficientDet-D0 object detection
model for wheat ear counting; the counting accuracy of the
improved EfficientDet-D0 model reaches 94%, which is about
2% higher than the original model and focuses on solving
occlusion. Wang et al. (2019) proposed a field-based high-
throughput phenotyping approach using deep learning that can
directly measure morphological and developmental phenotypes
in genetic populations from field-based imaging. David et al.
(2020, 2021) built the Global Wheat Head Detection (GWHD)
dataset and released in 2021 a new version of the GWHD
dataset, which is bigger, more diverse, and less noisy than the
GWHD_2020 version. Yang et al. (2021) proposed an improved
YOLOv4 with a spatial and channel attention model was
proposed that could enhance the feature extraction capabilities
of the network by adding receptive field modules. Fernandez-
Gallego et al. (2018) proposed an automatic algorithm for the
number of wheat spikes to estimate the number of wheat spikes
under field conditions. Lu et al. (2017) developed a smartphone
application software to complete the detection and collection of
wheat diseased spikes, with an accuracy of 96.6%. Pound et al.
(2017) used the deep learning method to calculate the number
of wheat spikes through the images of wheat spikes taken under
greenhouse conditions. Hasan et al. (2018) and Li et al. (2021)
use the R-CNN method to detect, count, and analyze wheat
spikes, which has high recognition accuracy, but the detection
speed is slow and cannot be deployed in real-time detection
equipment. Compared with the above methods, our proposed
method has a faster detection speed while improving accuracy
than the two-stage target detection method. Compared with
other improved YOLO algorithms, we introduce the attention
mechanism into the YOLO model to improve the network’s
ability to extract the target features, rather than relying on
data sets. Compared with the traditional image processing
methods, the deep learning technology can automatically extract
the target features, while the traditional methods mainly
rely on manual design features, and the algorithm has no
generalization. The extraction ability of unknown features is
poor. Therefore, we introduce the attention mechanism into the
YOLO model to ensure accuracy and faster detection speed,
which lays the foundation for future deployment on mobile
devices.

In recent years, with the rapid development of artificial
intelligence, deep learning algorithms have been widely used
in the industrial field. Huang et al. (2021) determined whether
workers meet the standard of wearing helmets by improving the
YOLOv3 algorithm. The final result is that the mAP reaches
93.1%. Huang et al. (2022) used the improved single shot
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multiBox detector (SSD) algorithm to verify the effectiveness
of multi-scale feature fusion for small targets. Sun et al.
(2022) solved the problems of poor image quality, loss of
detail information, and excessive brightness enhancement in
the image enhancement process in a low-light environment by
improving the multi-scale Retinex and ABC algorithms. Bai
et al. (2022) improved the network by combining the target
frame recommendation strategy in the SSD algorithm with the
frame regression algorithm to improve the detection accuracy
of small targets. Weng et al. (2021) proposed an angle network
model to accurately estimate the robot picking angle, which
improves the accuracy and real-time detection. Gao et al. (2019)
applied deep neural networks to hand detection and achieved
good results. The deep learning object detection model has made
remarkable progress in wheat spike image detection (Madec
et al., 2019; He et al., 2020), which is the main technical means
for wheat spike recognition and detection counting, and has
reached top performance in detection accuracy and speed (Zhou
et al., 2018a; Khoroshevsky et al., 2021; Lu et al., 2021; Wang
D. et al., 2021). Single-stage algorithms for object detection
include SSD (Liu et al., 2016) and the YOLO family, which
includes YOLO (Redmon et al., 2016), YOLO9000 (Redmon and
Farhadi, 2017), YOLOv3 (Redmon and Farhadi, 2018), YOLOv4
(Bochkovskiy et al., 2020), and YOLOv5 (Ultralytics, 2021). The
single-stage detection algorithm is also known as the target
detection algorithm based on regression analysis, which regards
the target detection problem as a regression analysis problem
on target location and category information, which can directly
output the detection results through a neural network model.
Considering the cost and observational limitations of satellites,
ground-based remote sensing, and drones according to the
needs of researchers, the use of smartphones has significantly
improved the efficiency of wheat spike surveys. However, in
the detection of wheat spike images, due to the high density of
wheat spike, serious occlusion, and serious cross-overlapping,
detection errors and missed detection of the wheat spike are
caused. At the same time, due to the large morphological
differences between individual wheat spikes and the fact that
the color of the wheat spike is consistent with the background,
the difficulty and accuracy of wheat spike detection are further
increased.

In order to solve the above problems, this paper proposes
an improved YOLOv5s target detection method using an
attention mechanism for the accurate detection of wheat spikes.
This method introduces ECA into the C3 module of the
backbone structure of the YOLOv5s network model; GAM is
inserted between the neck structure and the head structure;
the attention mechanism can more effectively extract feature
information and suppress useless information. This method
improves the applicability of the YOLOv5s method in complex
field environments, which can accurately detect the number
of small-scale wheat spikes and better solve the problem of
occlusion and overlap of a wheat spike.

Materials and methods

Overview of the test site

The experimental site is located in the regional wheat
experiment of the Henan Modern Agriculture Research and
Development Base of the Henan Academy of Agricultural
Sciences. It is located at 35◦0′44′′ north latitude and 113◦41′44′′

east longitude, as shown in Figure 1. The climate type is a warm
temperate continental monsoon climate, with an annual average
temperature of 14.4◦C, annual average rainfall of 549.9 mm, and
annual sunshine hours of 2300–2600 h. The wheat-corn rotation
is the main planting pattern in this area.

The experiment adopted a completely randomized block
design; the sowing date was 9 October 2020, the planting density
was 1.95 million plants/hm2, and there were 501 plots in total.
Each plot was planted with six rows of new winter wheat
varieties, repeated three times, and the plot area was 12 m2. The
management measures of the experimental field are higher than
those of the ordinary field.

Data collection

Global wheat open dataset
The wheat spike image data is a public dataset

provided by the Global Wheat Challenge 2021 International
Conference on Computer Vision 2021.1 The dataset consists
of sample_submission.csv, test.zip, and train.zip, which
each contain 3,655 images; the resolution of each image is
1024× 1024.

Image data collection
The images were collected at 10:00 a.m. on 19 and 20 April

2021. The weather was clear and cloudless. The smartphone
Huawei Honor 20 Pro was used to obtain the wheat heading
stage images. The photographer fixed the smartphone on the
handheld shooting pole, which shot vertically 50 cm above the
wheat canopy. A total of 560 images were taken, and each image
has a resolution of 960× 720. An example of some images at the
heading stage of wheat is shown in Figure 1.

Dataset construction and labeling
According to the number of images, the wheat heading

date image is used as the dataset to construct the wheat spike
number YOLOv5s detection model. The training dataset used in
this paper is from train.zip provided by global wheat challenge
2021, where train.zip contains 3,655 images of wheat spikes and
anchor box files. According to the number of wheat spikes in

1 https://www.aicrowd.com/challenges/global-wheat-challenge-
2021/dataset_files, 6 July 2021, day download.
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FIGURE 1

Geographical location of the study area.

FIGURE 2

Data enhancement.

each image, 500 clear and unobstructed original images of the
wheat heading stage were selected as the test set. According to
the format requirements of the Pascal VOC dataset, labeling is
used to label and generate the dataset XML type annotation file.
Cut the original collected image into 640× 640-pixel images.

Data enhancement
In order to improve the generalization ability of the training

model, we mainly chose mosaic data enhancement, adaptive
anchor box calculation, and adaptive image scaling as data
enhancement methods. The details are as follows:

Mosaic data enhancement

Mosaic data enhancement uses four images and stitches
them together in the form of random scaling, random
clipping, and random arrangement. Each image has its own
corresponding annotation box. After stitching the four images,
a new image is obtained, and the corresponding annotation box
of the image is also obtained. Then the image is transferred to a

neural network for learning, which is equivalent to transferring
four images for learning, making the model recognize the target
in a smaller range. Figure 2 shows the workflow of wheat spikes
enhanced with mosaic data.

Adaptive anchor box calculation

YOLOv5 network model does not only use the anchor box
that has been labeled. Before starting training, it will check
the labeled information in the dataset and calculate the best
recall rate of the labeled information in this dataset for the
default anchor box. When the best recall rate is greater than
or equal to 0.98, there is no need to update the anchor box;
If the optimal recall rate is less than 0.98, the anchor box that
conforms to this data set needs to be recalculated. This function
is embedded in the code in YOLOv5. For each training, the best
anchor box is adaptively calculated according to the name of the
data set. Users can turn off or turn on the image preprocessing

Frontiers in Plant Science 04 frontiersin.org

https://doi.org/10.3389/fpls.2022.993244
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-993244 September 22, 2022 Time: 14:19 # 5

Zang et al. 10.3389/fpls.2022.993244

function according to their own needs. This paper uses this
image preprocessing method before training data.

Adaptive image scaling

Due to the different aspect ratios of most images, the size of
black edges at both ends is different after using the traditional
image scaling method to scale and fill. However, if too much
filling is used, there will be a lot of information redundancy,
affecting the algorithm’s reasoning speed. In order to further
improve the reasoning speed of YOLOv5, this method can
adaptively add the fewest black edges to the scaled image.

Field measurement data collection
Consistent with the acquisition time of the image data, the

measured value of the number of the wheat spikes was collected
by an image-based manual counting method. Based on the
unified wheat spike counting standard, people with relevant
agronomic backgrounds were selected to count, and the average
value was taken as the measured value of the wheat spike
number corresponding to the image.

Network model construction

YOLOv5s network model
YOLOv5 is the latest product of the YOLO series, which is

improved based on YOLOv4, and the running speed has been
greatly improved (Chen and Chen, 2022). The YOLOv5 network
model structure is mainly divided into four versions: YOLOv5s,

YOLOv5m, YOLOv5l, and YOLOv5x. In practical applications,
a model of an appropriate size can be selected according to
different specific scenarios. YOLOv5 is an improved version
based on YOLOv4, which is a one-stage detection network
with excellent accuracy and detection speed. After absorbing
the advantages of the previous version and other networks,
YOLOv5 has changed the previous YOLO target detection
algorithm’s characteristics of fast detection speed but low
accuracy. YOLOv5 has improved the detection accuracy and
real-time performance, meeting the real-time detection needs of
video images, and the structure is also more compact. YOLOv5s
have the least number of parameters, but the accuracy is low.
YOLOv5s have a small depth and width while ensuring high
accuracy. The other three versions continue to deepen and
widen on this basis, especially when enhancing the extraction of
image semantic information. YOLOv5s have the characteristics
of fast running speed and high flexibility and have strong
advantages in the rapid deployment of models. The network
structure is shown in Figure 3. The network consists of four
parts: input, backbone, neck, and head. The size of the input
image at the input end is 640 × 640 × 3, and the images are
preprocessed using strategies such as mosaic data enhancement,
adaptive anchor box calculation, and image scaling. The role
of the backbone network is to extract rich semantic features
from the input image. It includes the Focus module, the Conv
module, the C3 module, and the SPP module. In YOLOv5,
CSPDarknet53 is used as the backbone network of the model.
The neck adopts FPN and PAN to generate feature pyramids,
which are used to enhance the detection of multi-scale objects.

FIGURE 3

Network structure of YOLOv5s algorithm.
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FIGURE 4

Structure of efficient channel attention (ECA) module.

The head is predicted from the features passed from the neck,
and three different scaled feature maps are generated.

Improved YOLOv5s network model
Among the five models of the YOLOv5 network, the

YOLOv5s model has high accuracy, fewer parameters, and
fast detection speed, which can be deployed on hardware
devices. The research on wheat spike detection and counting
is based on the YOLOV5s network model, and the attention
mechanism is added to YOLOV5s to improve the robustness of
the network model.

Attention mechanism

The introduction of an attention mechanism into
convolutional neural networks shows great potential for
improving network performance. In the field of computer
vision, attention mechanisms are widely used in natural
scene segmentation, medical image segmentation, and object
detection. Among them, the most representative is the
Squeeze-and-Excitation (SE) (Hu et al., 2018), followed by
the Convolutional Block Attention Module (CBAM) (Woo
et al., 2018) module. Although the SE module can improve
the network performance, it will increase the complexity and
computational complexity of the model. The CBAM module
ignores the channel-space interaction, which leads to the
loss of cross-dimensional information. Therefore, this paper
selects a more lightweight Efficient Channel Attention (ECA)
(Wang et al., 2020) module and a Global Attention Mechanism
(GAM) (Liu et al., 2021) that can amplify cross-dimensional
interactions. In view of a large number of wheat spikes, dense
distribution, occlusion, and overlap in the wheat spike image,
the direct use of pre-trained YOLOv5x has high prediction
accuracy, but the inference speed of the network is slow, and
the number of parameters of the model is 168 M, which is
difficult to use in hardware devices Deploy on. The reasoning
speed of the YOLOv5s network model is fast, and the number
of parameters is small, but the accuracy of YOLOv5s is low. The
direct use of the YOLOv5s network model to detect and count
wheat spikes is not satisfactory.

Introduce the improved C3 module of the efficient
channel attention module

The ECA module structure is shown in Figure 4. The size
of the input feature map is C × H × W, and then the size of
the feature map is obtained through Global Average Pooling
(GAP). The aggregated features obtained after GAP generate
channel weights through a weight-sharing one-dimensional
convolution. Among them, the one-dimensional convolution
involves the hyperparameter ψ(C), which is the size of the
convolution kernel determined by the mapping of the channel
dimension C. Then, after the obtained feature map is operated,
the output size is 1 × 1 × C, and it is multiplied by the
corresponding channel of the original input feature, and the final
output feature size is C × H ×W. Among them, the calculation
method is shown in the following formula 1:

k = ψ (C) =
∣∣∣∣ log2 (C)

γ
+

b
γ

∣∣∣∣
odd

(1)

C represents the channel dimension, |t|odd represents the
nearest odd number closest to it t, γ is set to 2, and b is set to 1.

In this study, the ECA module was introduced into the
C3 module of the backbone part of the YOLOv5s network
model so as to improve useful features, suppress unimportant
features, and improve the accuracy of network model detection
without additional model parameters. The improved C3 module
is named the ECA-C3 module, and its structure is shown in
Figure 5.

Introduce the YOLOV5s model improved by the global
attention mechanism module

The purpose of the GAM module is to design an attention
mechanism that can reduce information dispersion while
amplifying the interactive features of the global dimension.
Figure 6 shows the whole process of the GAM module. Given
an input feature map, the intermediate states and outputs are
defined as follows:

F2 = Mc (F1)⊗ F1 (2)

F3 = Ms (F2)⊗ F2 (3)
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FIGURE 5

Structure of improved C3 module.

FIGURE 6

Structure of global attention mechanism (GAM) module.

FIGURE 7

Network structure of improved YOLOv5s algorithm.
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Among them, F1 is the input feature map, F2 is the feature
map obtained after channel attention, F3 is the final feature map
after GAM Mc and MS represents the channel attention map and
the spatial attention map, respectively; ⊗ it represents element-
wise multiplication.

The channel attention submodule maintains features in
three dimensions using a three-dimensional arrangement and
then amplifies the spatial dependencies across dimensions
in a two-layer Multi-Layer Perceptron (MLP). In the spatial
attention sub-module, first, two convolution operations with a
kernel size of 7 × 7 are used for spatial information fusion. At
the same time, in order to eliminate the feature loss caused by
pooling, the pooling operation is removed here to maintain the
feature map further.

YOLOv5s network model with
attention mechanism

The improved YOLOv5s network model is shown in
Figure 7. When different from the standard YOLOv5s, the
improved model replaces the C3 module of the backbone part
with the proposed ECA-C3 module so that the network can
effectively extract the target features; GAM is added before the
2D convolution between the neck and head module, and the
added GAM will increase the number of parameters of the
network model, but it can make the network capture important
features like the three-dimensional channel, space width, and
space height. The size of the improved YOLOV5s input image
is 3 × 640 × 640, and the first prediction branch of the head
is used as an example to illustrate. The algorithm structure of
the improved YOLOv5s model is shown in Table 1. Among
them, “from” refers to the input layer corresponding to the layer
module, and−1 refers to the previous layer.

Channel attention modeling
First, a feature map with a size of 256× 80× 80 is obtained

through the C3 module, and a feature map of 80 × 80 × 256
is obtained through dimension transformation; the feature map
is passed through a two-layer MLP, and the channel scaling
rate is set to 4. The dimension of the feature map is reduced
to 80 × 80 × 64, and then the dimension is increased to
80 × 80 × 256; the feature map is restored to the original shape
and size of 256 × 80 × 80 through dimension transformation;
the sigmoid function is used to obtain the size of 256 × 80 × 80
channel attention map; multiplies the original input feature map
F and MC(F1) to get a feature map of size 256× 80× 80.

Spatial attention modeling
First, F1 pass a 7 × 7 convolution, and set the same

channel scaling rate as the channel attention, and the size of
the obtained feature map is 64 × 80 × 80; then go through
a 7 × 7 convolution again to restore the feature map to

TABLE 1 Algorithm structure of improved YOLOv5s.

Number of layers From Parameter
quantity

Module
name

0 −1 3520 Focus

1 −1 18560 Conv

2 −1 18819 ECA-C3

3 −1 73984 Conv

4 −1 115715 ECA-C3

5 −1 295424 Conv

6 −1 625155 ECA-C3

7 −1 1180672 Conv

8 −1 656896 SPP

9 −1 1182723 ECA-C3

10 −1 131584 Conv

11 −1 0 Upsample

12 [−1,6] 0 Concat

13 −1 361984 C3

14 −1 33024 Conv

15 −1 0 Upsample

16 [−1,4] 0 Concat

17 −1 90880 C3

18 −1 147712 Conv

19 [−1,14] 0 Concat

20 −1 296448 C3

21 −1 590336 Conv

22 [−1,10] 0 Concat

23 −1 1182720 C3

24 [17,20,23] 8622262 Detect

256 × 80 × 80. After using the sigmoid function, a spatial
attention map MS(F2) with a size of 256 × 80 × 80 is obtained;
multiply with F1 and MS(F2), an output feature map with a size
of 256× 80× 80 is obtained.

Experimental results and analysis

Experimental equipment and parameter
settings

The experiment is based on the deep learning framework
built by Pytorch1.10 and CUDA11.2, using Linux Ubuntu18.04
LTS operating system, Intel R© Core TMi7-8700 CPU @3.70GHZ
processor, Tesla T4 16G for experiments. The size of the images
for training, verification, and testing in this experiment is
640 × 640 pixels, the input batch size is set to 8, and the
training process is set to 60 epochs. The training process uses the
stochastic gradient descent (SGD) optimizer; the initial learning
rate is 0.01, the momentum factor is 0.937, and the weight decay
rate is 0.0005.

Evaluation index and loss function
YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, and improved

YOLOv5s are validated on the validation set randomly divided
into the public data set Global wheat challenge 2021, and
the evaluation indicators Precision, Recall, mAP@0.5, and
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TABLE 2 Test performance comparison of different models.

Methods RMSE MAE Recall mAP@.0.5 Map@.0.5:0.95

YOLOv5s 53.23 41.24 0.887 0.949 0.526

YOLOv5m 51.56 40.83 0.894 0.949 0.522

YOLOv5l 49.71 38.87 0.888 0.947 0.525

YOLOv5x 44.51 33.62 0.913 0.950 0.541

Improved YOLOv5s 43.94 34.36 0.911 0.951 0.545

Faster R-CNN 94.57 87.10 0.819 0.862 0.355

mAP@0.5:0.95 are similar, it showed that all three models could
achieve the best performance in the detection task of the Global
wheat challenge 2021, so the above four evaluation indicators
are not selected to evaluate the model. This study mainly
evaluates the performance of the model when the wheat spike
data collected in the field is used as the test set for wheat spike
counting. Therefore, the accuracy (Accuracy, ACC) is selected as
the evaluation index for YOLOv5s counting, using the number
of parameters and the amount of calculation (GFLOPs) and
inference speed to evaluate model performance. The calculation
formula of accuracy is as follows:

ACC =
TP + TN

TP + FN + FP + TN
(4)

Recall =
TP

TP + FN
(5)

mAp =
∫ 1

0
P · R dR (6)

Among them, TP they represent true positives, TN
represents true negatives, FP represents false positives, and FN
represents false negatives. The larger the ACC value, the better
the detection effect of the model.

In this study, CIoU is selected as the loss function to
calculate the localization loss. CIoU can better represent the
gap between the prediction and annotation frames, making the
network model more robust during training. The CIoU loss
function is defined as follows:

IoU =
area(ar ∩ tr)
area(ar ∪ tr)

(7)

CIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv (8)

α =
v

(1− IoU) + v
(9)

v =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2
(10)

Among them, ar and tr represent the anchor box and the
bounding box ρ2(b, bgt) and the Euclidean distance between
the center points of the anchor box and the bounding box,
respectively. α is an equilibrium parameter and does not

TABLE 3 Statistical average error and average accuracy.

Methods Mean error (%) Mean accuracy (%)

YOLOv5s 33.34% 66.66%

YOLOv5m 33.29% 67.29%

YOLOv5l 30.89% 69.11%

YOLOv5x 27.52% 72.48%

Improved YOLOv5s 28.39% 71.61%

Faster R-CNN 54.07% 45.93%

participate in gradient calculation; ν is a parameter used to
measure the consistency of aspect ratio. Wgt and hgt are the width
and the height of the bounding box, while w and h are the widths
and the height of the anchor box.

RMSE =

√√√√ 1
N

N∑
i=1

(pi − qi)2 (11)

MAE =
1
N

N∑
i=1

∣∣pi − qi
∣∣ (12)

where N is the number of images, pi is the angle of the
oriented detection box in the i image, and qi is the angle of the
corresponding oriented bounding box.

Quantitative analysis of experimental
results

YOLOv5s, YOLOv5m, YOLOv5I, YOLOv5x, improved
YOLOv5s, and the Faster R-CNN were used to evaluate the
performance metrics of wheat spike data collected in the
field. It can be seen from Table 2 that the evaluation metrics
of Faster R-CNN were the worst. The evaluation metrics
of improved YOLOv5s were better than those of standard
YOLOv5s, YOLOv5m, and YOLOv5I and were similar to those
of YOLOv5x.

The evaluation metrics of the average error rate and AP
rate of the above different models on the test images are shown
in Table 3. YOLOv5x has the highest AP, and Faster R-CNN
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has the lowest AP. Compared with the standard YOLOv5s, the
accuracy of the improved YOLOv5s is improved by 4.95%, and
compared with YOLOv5m and YOLOv5l, the AP is improved
by 4.32 and 2.50%, respectively, and the AP is basically close to
that of YOLOv5x.

Table 4 shows the comparison of different models in
parameter quantity, giga floating-point operations per second
(GFLOPs), inference, inference speed, and graphic processing
unit (GPU) resource occupancy. Although the standard
YOLOv5s parameter quantity, GFLOPs, inference, inference
speed, and GPU resource occupancy are the least, the detection
accuracy is low. While Faster R-CNN has the most GFLOPs,
inference, inference speed, and GPU resource occupancy, the
effect is the worst. The parameter quantity, GFLOPs, inference,
inference speed, and GPU resource occupancy of the improved
YOLOv5s are all larger than those of the standard YOLOv5s and
less than those of the standard YOLOv5I and YOLOv5x.

Table 5 compares the AP and training time between EloU
and CloU. By comparing the effects of EloU and CloU in the
YOLOv5s model, the AP after using EloU is slightly higher than
that of CloU, but the training time is significantly increased.
Therefore, this paper selects CloU as the loss function to
calculate the localization loss.

Qualitative analysis of experimental
results

Figure 8 compares the recognition results of the standard
YOLOv5s and YOLOv5m network models with the improved
YOLOv5s network model in this paper for the recognition of
wheat spikes in the field environment. It can be seen from
Figure 8 that the standard YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x network models have seriously missed detections in
areas with dense wheat spikes. With a high recognition rate and
good generalization performance, the purple box area shows the
superiority of the improved YOLOv5s detection results.

The images of wheat spikes are dense and sparse. Figure 9
shows the experimental results of the improved YOLOv5s model
under different densities and backgrounds. Figures 9A,F show
the counting results when the spikes of wheat are sparse;
Figures 9B–D show the counting results in the case of dense
wheat spikes. Among them, the color of wheat leaves in
Figures 9B,D is similar to that of wheat spikes, and the color
of wheat leaves in Figures 9C,E is yellow, and the color of wheat
spikes is green.

Discussion

Spike number is an important indicator for determining
wheat yield phenotypic traits, and spike detection is a hot spot
in wheat phenotype research (Fernandez-Gallego et al., 2019).
The wheat spike image data comes from the heading stage of
this study. At this time, due to the large difference in the shape
and the high density of the wheat spike, there are too many
occluded parts, and the characteristics of the wheat spike are not
obvious. In the process of spike recognition, there is a problem
of omission in the detection of wheat spike occlusion, which
leads to an error in the wheat spike count. In the wheat spike
detection, the overlapping wheat spike in some images is not
identified and marked, the adjacent wheat spike is not identified
and marked, and the two wheat spikes are closely connected
and identified as one wheat spike. This study proposes a target
detection based on improved YOLOv5s, which corrects these
problems in the process of wheat spike recognition. It effectively
solves the problem of missed detection caused by occlusion and
overlap in wheat spike detection. Therefore, the target detection
method based on the improved YOLOv5s significantly improves
the accuracy and recognition ability of the wheat spike in the
image.

Deep learning is currently the main technical means of
wheat spike recognition, detection, and counting. Using digital
images of winter wheat to obtain the color, texture, and

TABLE 4 Comparison of parameter quantity, GFLOPs, inference, inference speed, and GPU resource occupancy of different models.

Methods Parameter quantity (M) GFLOPs Inference (Min) Inference speed (ms) GPU resource occupancy (G)

YOLOv5s 13.38 15.8 370.5 7.5 1.70

YOLOv5m 39.77 47.9 396.2 11.6 1.80

YOLOv5l 87.90 107.6 415.6 17.3 2.10

YOLOv5x 164.36 204.0 479.9 29.0 2.40

Improved YOLOv5s 28.81 31.6 372.5 14.7 2.42

Faster R-CNN 41.30 278.2 755.3 227.7 7.87

TABLE 5 Comparison of average accuracy and training time between CloU and EloU of YOLOv5 models.

Methods Mean accuracy (%) Inference (Min)

Improved YOLOv5s with CIoU 71.61% 372.5

Improved YOLOv5s with EIoU 72.82% 405.6
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FIGURE 8

Qualitative analysis of experimental results of YOLOv5 algorithm. (A–E) Represent the number of images.

FIGURE 9

Experimental effects of improved YOLOv5s under different densities and backgrounds. (A–F) Represent six different images randomly selected
from the global wheat challenge 2021 International Conference on computer vision 2021 dataset.

shape features of a wheat spike and establishing a wheat
spike recognition classifier through deep learning methods, we
identified wheat spike recognition and detection and counting.
Zhou et al. (2018b) proposed an SVM segmentation method
for segmenting wheat spikes in visible light images. Sadeghi-
Tehran et al. (2019) developed the wheat spike number counting

system DeepCount, which is used to automatically identify and
count the number of wheat spikes in the images of wheat
spikes. Alkhudaydi et al. (2019b) and Misra et al. (2020)
constructed the SpikeletFCN spikelet counting model based
on a fully convolutional network, which used the density
estimation method to calculate the number of wheat spikelets.
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These research results show that the deep convolutional neural
network has good robustness for wheat spike counting. In this
study, when the resolution of the input image is higher, the
detection accuracy is also higher, which is consistent with other
research results tested on general datasets (Singh et al., 2018).
This study introduces ECA in the C3 module of the backbone
structure of the YOLOv5s network model. The GAM module
is inserted between the neck structure and the head structure.
The accuracy and efficiency of the improved YOLOv5s target
detection method are significantly improved, which solves the
problem of wheat spikes caused by cross occlusion to a certain
extent. The problem of unclear and omitted spike identification
has better practical application value.

Conclusion

We developed an improved YOLOv5s-based attention
mechanism for wheat spike number image detection. The
method includes three key steps: data preprocessing of the
wheat spike image, adding an attention mechanism module
for network improvement, and YOLOv5s network model fused
with an attention mechanism. In the wheat spike counting task,
the accuracy of the improved YOLOv5s model reached 71.61%,
which was 4.95% higher than that of the standard YOLOv5s
model and had higher counting accuracy. The improved
YOLOv5s and YOLOv5m have similar parameters, while RMSE
and MEA are reduced by 7.62 and 6.47, respectively, and
the performance is better than YOLOv5l. The experimental
results show that the improved YOLOv5s algorithm improves
the applicability in complex field environments, which can
accurately detect the number of small-scale wheat spikes
and better solve the occlusion and overlapping problems
of a wheat spike.

In the case of extremely dense samples, the coincidence
probability of wheat spike heads is high, and the regression
idea of the YOLO algorithm is based on dividing the image
into grids; that is, each grid can only predict one target at
most, so it does not perform well when there are multiple
target objects in the same grid, and it is impossible to identify
all the targets. Due to its portability and lightweight network,
YOLOv5s is used as the main model for training, which
improves its flexibility and speed compared with YOLOv4,
and reduces many of its parameters to make it applicable
to portable devices. The improved model needs to take into
account the training accuracy and training speed and increase
the number of parameters.

The improved YOLOv5s method proposed in this study can
realize the counting of wheat spikes and can meet the needs
of high-throughput operations in the wheat field environment.
In future research work, we will gradually optimize the built-
in YOLOv5s network structure and analyze the wheat spike
detection network structure for the wheat spike images acquired

by smartphones to obtain better wheat detection performance.
In addition, we will envisage applying this method to other
crop counts to demonstrate its robustness in solving occlusion
and overlap problems. Subsequently, the improved YOLOv5s
method can save time and effort.
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