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Endophytic bacteria improve the growth, physiology, and metabolite profile

of plants. They are known as potential biocontrol agents of soil-borne

diseases. This study evaluated the effects of endophytic bacterial strains on

growth, vase life, biochemical attributes, and antioxidant and nematicidal

activities of French marigold (Tagetes patula). French marigold seeds were

sole and consortium inoculated with three promising endophytic bacterial

strains, Burkholderia phytofirmans (PsJN), Enterobacter sp. (MN17), and

Bacillus sp. (MN54). The vase life of French marigold was promoted by

66.6% in the individual application of PsJN and 100% in plants treated

with consortium compared to the uninoculated control. The shoot and

root fresh weights were also increased by 65.9 and 68.7%, with the

combined application of all three strains. The total phenolics, flavonoid, and

protein contents were higher in consortium treatment with an increase of

up to 38.0, 55.9, and 65.9%, respectively, compared to the uninoculated

control. Furthermore, combined application of endophytic bacterial strains

promoted DPPH radical scavenging, mortality of plant-parasitic nematodes,

and ferric reducing antioxidant power activities with increase of up to

278.0, 103.8, and 178.0%, respectively, compared to uninoculated control. An

increase in antioxidant activities of ascorbate peroxidase (APX), catalase (CAT),

glutathione peroxidase (GPX), and superoxide dismutase (SOD) were observed

up to 77.3, 86.0, 91.6, and 102.9%, respectively by combined application
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of endophytic bacterial strains. So, given the economic importance of

floriculture crops, endophytic bacterial isolates studied here have shown

a great potential for improving the productivity of cultivated ornamental

French marigold.

KEYWORDS

allelopathic effect, antioxidant activity, endophytic bacteria, metabolites, plant-
parasitic nematodes, Tagetes patula, vase life

Introduction

Floriculture contributes excellent value to the agricultural
economy of Pakistan. Significant growth has been observed in
this sector resulting in massive production of ornamental plants
(Sudhagar, 2013; Khan et al., 2016). French marigold (Tagetes
patula) is a commercial ornamental flower used in medicinal
products for decoration and landscaping purposes (Bosma et al.,
2003). It is also a repellent plant against various Lepidoptera,
Coleoptera, Hemiptera, and plant-parasitic nematodes (PPNs;
Fabrick et al., 2020). French marigold is a widely studied plant
due to its allelopathic potential against PPNs (Hooks et al.,
2010). Literature indicated that marigolds could be involved in
the biocontrol of 14 genera of PPNs, including ectoparasitic,
endoparasitic, and semi-endoparasitic nematodes (Suatmadji,
1969; Siddiqui and Alam, 1987). Marigold affects PPNs by acting
as a poor host, producing allelopathic compounds, creating an
antagonistic nematode environment, and behaving as a trap
crop (Wang et al., 2001; Pudasaini et al., 2008). The expansion of
environmentally safe techniques to inhibit PPNs growth seems
attractive due to the environmental hazards of nematicides and
chemical fumigants (Schneider et al., 2003).

The commercial production of ornamental plants is
significant globally, including in Pakistan. Essential plant
nutrients are vital in the quality production of seeds and
flowers (Kashif, 2001). Over the past decades, extensive use of
chemical fertilizers has negatively impacted the environment.
In this regard, the application of bioinoculants has been
gaining interest in the scientific communities (Zahir et al.,
2004; Khan et al., 2019; Nazli et al., 2020). Several plant
growth-promoting rhizobacteria (PGPR) have shown their
potential to improve plant growth, crop yield, and quality
(Ali et al., 2017; Mustafa et al., 2019; Umar et al., 2020).
Such bioinoculants have direct effects on plant growth as
these species facilitate nutrient uptake, fix atmospheric nitrogen
(N), solubilize nutrients including phosphorus (P), potassium
(K), and zinc (Zn), produce siderophores which solubilize
and sequester iron, synthesize growth hormones (e.g., auxins,
cytokinins, and gibberellins), and synthesize the enzymes that
modulate plant growth and development (Gray and Smith,
2005; Khan and Bano, 2019; Saeed et al., 2019). These microbes
enhance plant growth indirectly by reducing or eliminating the

adverse effects of pathogenic microorganisms using numerous
mechanisms that include the induction of host resistance to
the pathogen (Van Loon, 2007; Khan, 2020; Khan et al., 2020;
Nazli et al., 2020). Multiple studies have demonstrated the
improvement in plant growth and development following seed
or root inoculation with microbial strains capable of producing
plant growth regulators (Zahir et al., 2004; Naseem et al., 2018;
Ahmad et al., 2019b).

Certain aspects of PGPR interactions have been studied
well, e.g., growth effects, nutrient availability, biocontrol of
plant pathogens, tolerance of water stress, and other adverse
environmental conditions. The microbiota within plant roots
may significantly differ from that within the rhizosphere,
indicating that the plants influence the microbial colonies
inside their roots (Ali et al., 2017). Some endophytes can
promote plant growth, and the mechanisms adopted by
bacterial endophytes are similar to those used by rhizospheric
bacteria (Santoyo et al., 2016). Within their plant host, the
microbes named endophytes remain in the intercellular or
intracellular region of healthy plant tissue throughout their
complete life cycle, causing no harmful impact on the plant.
By secreting phytohormones, endophytic bacteria promote the
growth of their host. Endophytic bacteria can also promote
the growth and yield of a plant by acting as biocontrol agents
(Mustafa et al., 2019).

Flower senescence is the leading cause of short vase
life and loss in quality which primarily determines its
economic and ornamental value to establish a capital-incentive
business (Van Doorn, 2002). Ethylene is a crucial stress
regulatory phytohormone produced at low levels under normal
circumstances and conferring beneficial effects on plant growth
and development (Ahmad et al., 2020). However, in response
to various stresses, there is often a significant increase in
endogenous ethylene production that leaves adverse impacts
on plant growth and is thought to be responsible for flower
senescence (Van Doorn, 2001). Endophytic microbes having
ACC-deaminase activity may naturally enhance plant growth
under stress conditions by lowering ethylene production
(Nascimento et al., 2012; Nazli et al., 2020). Flower senescence
can be delayed by a reduction in ACC content, causing the
synthesis of ethylene to a smaller extent (Moon and Ali, 2022).
Previously, several studies have reported positive effects of
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PGPR and endophytic inoculation on plant growth promotion
of different crops. However, the impact of microbial consortium
inoculation remained neglected in the past, especially in
horticultural crops. Moreover, there is a need to explore
the effects of microbial inoculation on pharmacological and
nematicidal activities of crops such as French marigold,
which in the present study constitutes the further novelty
of this work. Thus, we hypothesized that the endophytic
bacterial inoculation in consortia might improve the growth
and extends the vase life of French marigold; however,
their effects on pharmacological and nematicidal activities
may vary depending on the microbial sp. in question. The
specific objectives of the present study were to evaluate the
impact of different endophytic bacterial species on growth,
flowering, and delay in flower senescence in French marigolds
and the effects of bacterial endophytes on pharmacological
and nematicidal activities of essential flower extract of
French marigolds.

Results

Plant growth parameters

The present study shows the effects of endophytic bacteria
strain Burkholderia phytofirmans PsJN, Enterobacter sp. MN17,
and Bacillus sp. MN54 inoculation on French marigold
growth and senescence. Almost all the growth parameters
evaluated were significantly (p < 0.05) modified by four
inoculating treatments.

Inoculation with endophytic bacteria caused a significant
increase in plant height, shoot mass, root mass, and root length
(Figure 1). All the five treatments statistically differed from
each other. The increase in plant height up to 15.98 cm was
recorded in the consortia, followed by MN17 showed an increase
in plant height (14.33 cm) which was significantly different
from control. The minimum plant height of 10.67 cm was
found in control. The difference in plant height in PsJN, MN17,
MN54, and consortia was quite evident compared to control.
Data regarding shoot fresh weight revealed that application
of endophytic bacterial strains significantly improved the
shoot fresh weight plant−1. The maximum increase in shoot
fresh weight up to 26 g plant−1 was recorded in the
consortia application, followed by MN54, MN17, and PsJN
showed an increase in shoot fresh weight up to 24.33,
22.00, and 19.68 g plant−1, respectively, compared to control
(15.67 g plant−1; Figure 1).

Inoculation with MN54 significantly affects root length
(10.60 cm) and root fresh weight (4.05 g plant−1), which
was further increased in consortia application (10.90 cm and
4.69 g plant−1, respectively) as compared to control (8.2 cm and
2.78 g plant−1, respectively; Figure 1). Individual inoculation of
PsJN and consortia significantly increased the number of flowers

plant−1 up to 7.33 and 8.33, respectively, over control which
reported 5.30 number of flowers plant−1.

Endophytic bacteria extend the vase
life

The vase life of French marigold inoculated with a
consortium of all three endophytic bacterial strains was 12 days
compared to 6 days of control (Figure 2). Corresponding
treatments of PsJN prolonged vase life by 10 days. Similarly,
reduction in petal senescence was also significantly increased up
to 8 days by MN17 and MN54. The inoculation with PsJN and
consortia reported an increase in flower diameter up to 42.31
and 45.33 mm, respectively, compared to control (25.67 mm;
Figure 2).

Photosynthetic parameters and SPAD
index

The chlorophyll contents in terms of SPAD value were
higher in endophytic bacterial strains treated plants compared
to the uninoculated control (Figure 1). A maximum SPAD
value of 42.33 was observed in consortium treated plants,
followed by strain MN17 (41.30) over the uninoculated control
(24.30). The consortium application gave a maximum increase
of up to 36.84% in photosynthetic rate compared to the
control (Figure 3). Strain PsJN inoculation also reported a
better increase in the photosynthetic rate of up to 23.21%
compared to the uninoculated control. A maximum increase
in transpiration rate of up to 26.82% was observed due to
consortium application. The application of PsJN also showed a
better transpiration rate with an increase of up to 19.51% over
uninoculated control (Figure 3). The consortium application
showed a significant increase of up to 54.54 and 23.41% in
stomatal and sub-stomatal conductance, respectively, compared
to the untreated control.

Biochemical and antioxidant
parameters

The increase in total phenolic and flavonoid contents was
observed due to inoculation with endophytic bacterial strains
(Figure 4). The consortium application reported maximum
phenolic contents of 602.67 mg g−1 followed by strain PsJN
(596.0 mg g−1) than the uninoculated control (435.67 mg g−1;
Figure 4). A maximum increase in total flavonoid contents
of 304.30 mg g−1 was recorded in strain PsJN treated plants
compared to the untreated control (157.32 mg g−1). The
maximum protein contents of 6.27 µg ml−1 were observed
in consortium treated plants, followed by PsJN inoculated

Frontiers in Plant Science 03 frontiersin.org

https://doi.org/10.3389/fpls.2022.993130
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-993130 September 5, 2022 Time: 17:34 # 4

Naveed et al. 10.3389/fpls.2022.993130

FIGURE 1

Effect of endophytic bacterial inoculation on (A) plant height, (B) shoot weight, (C) root length, (D) root weight, (E) number of flowers plant−1,
and (F) SPAD value of French marigold. Error bars represent the standard error (SE). Bars with different letters are significantly different (P < 0.05)
according to the LSD test.
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FIGURE 2

Effect of endophytic bacterial inoculation on (A,B) vase life and (C) maximum flower diameter of French marigold. Error bars represent the
standard error (SE). Bars with different letters are significantly different (P < 0.05) according to the LSD test.
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FIGURE 3

Effect of endophytic bacterial inoculation on (A) transpiration rate, (B) stomatal conductance, (C) photosynthetic rate, and (D) substomatal
conductance of French marigold. Error bars represent the standard error (SE). Bars with different letters are significantly different (P < 0.05)
according to the LSD test.

plants which reported 5.67 µg ml−1 of total protein contents
compared to the control having 3.78 µg ml−1 of total proteins
contents (Figure 4).

The positive effect of tested endophytic strains and their
consortium application on ferric reducing power of French
marigold flower extract had been demonstrated in Figure 4.
Strain PsJN treated plants reported a higher ferric reducing
ability of 150%, which was further extended up to 167% in
consortium treated plants compared to the uninoculated control
having a ferric reducing power of 60% (Figure 3). Strains
MN17 and MN54 also showed a better ferric reducing ability
of 129 and 77%, respectively, compared to the uninoculated
control. Inoculation with endophytic bacterial strains reported
increased DPPH scavenging activity of French marigold flower
extract compared to the uninoculated control (Figure 4).
The consortium application reported higher DPPH scavenging
activity of 58% than the uninoculated control of 15% DPPH
scavenging activity.

The increase in antioxidant activities was observed due to
endophytic bacterial strain over control treatment (Figure 5).
Strain PsJN, MN17, and MN54 increased the ascorbate
peroxidase (APX) to 31.9, 48.6, and 24.6%, respectively.
However, consortium application increased the APX up to
77.3% over treatment set as control. Similarly, strain MN17
increased the catalase (CAT), glutathione peroxidase (GPX),
and superoxide dismutase (SOD) up to 48.6, 60.2, and 65.8%,
respectively. However, combined application of endophytic
bacterial strains increased the CAT, GPX, and SOD activity to
86.0, 91.6, and 102.9%%, respectively, over control treatment.

Nematicidal and hemolytic activities

French marigold flower extract from endophytic bacterial
strains treated plants reported nematicidal activity against
Meloidogyne incognita (Figure 4). The maximum nematicidal
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FIGURE 4

Effect of endophytic bacterial inoculation on (A) phenolic contents, (B) flavonoid contents, (C) protein contents, (D) ferric reducing power, (E)
mortality of PPNs, and (F) DPPH radical scavenging activity of French marigold. Error bars represent the standard error (SE). Bars with different
letters are significantly different (P < 0.05) according to the LSD test.

activity of up to 70.7% was recorded in consortium treatment,
followed by strain MN17 which reported 50.7% higher
nematicidal activity than uninoculated control. French
flower extract of endophytic bacterial strains treated plants
causes a reduction in hemolytic activity compared to the
uninoculated control (Figure 6). A maximum decrease
of 1.33, 1.30, and 1.30% in hemolytic activity of French
flower extract was reported by strains PsJN, MN17, and
MN54, respectively, over the uninoculated control of 2.6%
hemolytic activity.

Plant mineral contents

The N, P, and K contents in a shoot of French marigold were
significantly promoted by inoculation with endophytic bacterial
strains compared to the uninoculated control (Figure 6). The
maximum increase of up to 43.9% in shoot N contents was
observed in consortium treated plants followed by strain PsJN,
which reported 37% higher shoot N contents compared to the
uninoculated control. The maximum increase of up to 105.9 and
45.9% in shoot P and K contents, respectively, were obtained
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FIGURE 5

Effect of endophytic bacterial inoculation on (A) ascorbate peroxidase (APX), (B) catalase (CAT), (C) glutathione peroxidase (GPX), and (D)
superoxide dismutase (SOD) activity of French marigold. Error bars represent the standard error (SE). Bars with different letters are significantly
different (P < 0.05) according to the LSD test.

due to consortium application compared to the uninoculated
control (Figure 6). Strain PsJN also reported a better increase
of up to 60 and 33.3% in shoot P and K contents, respectively,
over the uninoculated control.

Enumeration of endophytic bacteria in
the rhizosphere, root, shoot, and
flowers

Effective colonization of the applied strains was observed
in the rhizosphere, root/shoot/leaves/flowers interior of French
marigold (Figure 7). However, when used as a consortium, the
persistence of selected strains was more enhanced relative to
individual inoculation in the rhizosphere and tissue interior
of French marigold plants. Inoculation with PsJN showed
4.49 × 105 CFU g−1 rhizosphere, 3.36 × 105 CFU g−1

root interior, 8.64 × 104 CFU g−1 shoot interior, and
8.04 × 104 CFU g−1 flowers bacterial population. However,
the highest CFU g−1 dry weight of the inoculant strains
was recovered from the rhizosphere (5.83 × 105), root

(4.53 × 105), shoot (1.21 × 105), and flowers (9.80 × 104) in
the consortium treatment.

Pearson correlation and principal
component analysis

A significant positive correlation was observed in
growth attributes, vase life, biochemical parameters,
physiological parameters, biological activities, and plant
mineral contents (Figure 8).

Principal component analysis (PCA) revealed
interrelationships between different variables. The score and
loading plots of PCA on some crucial traits of French marigold
are shown in Figures 9A,B. Among all the components,
the first two components viz. PC1 (Dim1) and PC2 (Dim2)
exhibited maximum contribution and accounted for 91.5% of
the total dataset. Of which PC1 contributed 85.7% while PC2
contributed 5.8%, respectively. All applied treatments were
successfully separated by the first two principal components
(Figure 9A). The distribution of the treatments gave a clear
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FIGURE 6

Effect of endophytic bacterial inoculation on (A) hemolytic activity, (B) plant N (%), (C) plant P (%), and (D) plant K (%) in French marigold. Error
bars represent the standard error (SE). Bars with different letters are significantly different (P < 0.05) according to the LSD test.

FIGURE 7

Persistence of selected endophytic strains in the rhizosphere, root, shoot, leaves, and flowers of French marigold. Error bars represent the
standard error (SE). Bars with different letters are significantly different (P < 0.05) according to the LSD test.
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FIGURE 8

Represents correlation among measured parameters, where abbreviations of the correlation matrix are plant height (PH), shoot weight (SW),
root weight (RW), flower diameter (FD), total flavonoids contents (FV), phenolic contents (PN), protein contents (PR), DPHH scavenging activity
(DPHH), hemolytic activity (HA), vase life (VL), reducing power (RP), mortality of PPNs (PPNs), transpiration rate (TR), photosynthetic rate (PHR),
stomatal conductance (ST), sub stomatal conductance (SUBST), plant N (N), plant P (P), and plant K (K).

FIGURE 9

Score plots (A) and loading plots (B) of PCA on different attributes of French marigold by application of Endophytic bacteria alone and in
combination. Score plots (A) represent the separation of treatments as (1) Control, (2) PsJN inoculation, (3) MN 17, (4) MN 54, and (5) Consortia.
The abbreviations of loading plots (B) are plant height (PH), shoot weight (SW), root weight (RW), flower diameter (FD), total flavonoids contents
(FV), phenolic contents (PN), protein contents (PR), DPHH scavenging activity (DPHH), hemolytic activity (HA), vase life (VL), reducing power
(RP), mortality of PPNs (PPNs), transpiration rate (TR), photosynthetic rate (PHR), stomatal conductance (ST), sub stomatal conductance
(SUBST), plant N (N), plant P (P), and plant K (K).
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indication that endophytic bacterial strains sole or their
consortium application had significant effects on studied
attributes of French marigold compared to control. The sole
application of endophytic bacterial strains was displaced more
from control, and the consortium treatment was more displaced
from control, indicating that it has a more pronounced effect.
The first group of variables with which PC 1 is positively
correlated includes plant height (PH), shoot weight (SW), root
weight (RW), flower diameter (FD), total flavonoids contents
(FV), phenolic contents (PN), protein contents (PR), DPHH
scavenging activity (DPHH), hemolytic activity (HA), vase
life (VL), reducing power (RP), mortality of PPNs (PPNs)
transpiration rate (TR), photosynthetic rate (PHR), stomatal
conductance (ST), sub stomatal conductance (SUBST), plant N
(N), plant P (P), and plant K (K).

Discussion

Chemical inhibitors such as silver thiosulphate (Veen
and van de Geijn, 1978; Hyde et al., 2020), cyclic olefin
norbornadiene (Reid and Wu, 1992; Depaepe and Van Der
Straeten, 2020), and L-a-(aminoethoxyvinyl)-glycine (Nayani
et al., 1998; Yu et al., 2022) are applied to inhibit plant
ethylene production and to promote vase life of ethylene-
sensitive flowers. However, the use of different chemicals
has a variety of drawbacks associated with their application
rate and method and high costs. Applying bio-effectors
containing beneficial microorganisms instead of synthetic
chemicals improves plant growth by supplying plant nutrients
and may sustain environmental health and soil productivity. In
the present study, three promising bioinoculants, including B.
phytofirmans strain PsJN, Enterobacter sp. strain MN17, and
Bacillus sp. strain MN54, were applied to French marigold
seeds in the forms of sole inoculation and their consortium
treatments. The treated plants were grown in a pot trial to
investigate the effects of endophytic bacterial strains on plant
attributes in terms of vase life, physiological, biochemical,
antioxidant, and biological activities. By adopting the current
biotechnological approach, we hypothesized that bioinoculants
could competently dwell in the French marigold rhizosphere
and improve the quality of their flowers in terms of their growth,
vase life, chemical constituents, physiological, and biological
activities (Dal Cortivo et al., 2020).

Endophytes improve the growth
attributes of French marigold plants

To sustain ornamental crop production under limited
available resources, the greenhouse growers need to reduce the
cost of production in terms of chemical fertilizers without losing

crop quality. PGPR can improve plant growth in a resource-
poor environment by improving plant nutrient availability. In
the current study, the application of endophytic bacterial strains
in sole inoculation and/or consortium treatment enhances the
plant growth of French marigold in terms of plant height,
root length, shoot weight, and root weight (Figure 1). The
French marigold plants treated with a consortium of strains B.
phytofirmans (PsJN), Enterobacter sp. (MN17), and Bacillus sp.
(MN54) showed maximum increase in plant growth attributes
compared to sole inoculation that may be due to accumulative
and synergistic effect of endophytic bacterial strains that boosted
the plant growth through involving their direct and indirect
impact (Doty et al., 2009; Suherman and Anggoro, 2011; El-
Deeb et al., 2012; Mustafa et al., 2019; Aziz et al., 2020;
Nordstedt and Jones, 2020; South et al., 2021). These strains
showed their potential in vitro plant growth-promoting (PGP)
attributes, including production of indole-3-acetic acid and
siderophore, solubilization of nutrients, and nitrogen fixation,
which our research group previously reported (Samreen et al.,
2019; Naveed et al., 2020a; Sabir et al., 2020). Similarly, Puri
et al. (2020) said that Caballeronia sordidicola isolated from
spruce seedlings in low-fertility soil possess PGP attributes
and promoted plant growth attributes of spruce and pine
tree seedlings. In this study, the increase in plant growth
of French marigold due to the application of a consortium
of endophytic bacterial strains might also be due to the
production of phytohormones, including auxins, gibberellins,
ethylene, cytokinin, and abscisic acid that can stimulate plant
growth as chemical messengers. These hormones are essential in
regulating plant growth and development in plants by regulating
the process of organogenesis, cell division, expansion, and
differentiation (Ryu and Patten, 2008).

Endophytes improve physiological
attributes of French marigold plants

In this study, the application of endophytic bacterial strains
promoted plant physiological attributes, including chlorophyll
contents, transpiration rate, photosynthetic rate, and stomatal
and sub-stomatal conductance compared to the uninoculated
control (Figures 1, 3). The beneficial influence of endophytic
bacterial strains was more dominant in consortium treatment
than in sole inoculation of strains. These beneficial effects of
plant-bacteria interaction were previously reported by various
researchers under numerous environmental stresses, including
drought (Naveed et al., 2014), salinity (Ahmad et al., 2014),
heavy metals (Naveed et al., 2020a,b), and hydrocarbon toxicity
(Ali et al., 2020). Increased physiological attributes due to
bacterial inoculation improved plant growth and biomass
production of French marigolds. The increase in chlorophyll
content due to a consortium of endophytic strains could be
related to the established factor of higher enzymatic activities
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such as catalase and peroxidase (Singh, 1988; Kavino et al.,
2010). The plant-associated bacteria logically boosted enzymatic
activity due to their abundant biomass, higher metabolic
activity, and extracellular enzyme production. They are also
involved in plant defense by eliciting multiple antioxidant
enzymes and counteracting oxidative stress by reactive oxygen
species (Prasanna et al., 2013, 2017; Ibiang et al., 2017).
The consortium of endophytic strains could be involved in
regulating the transpiration of water and penetration of CO2

into the leaf by maintaining optimum moisture content.
Such physiological phenomena could be helpful in rainfed
cultivation by closing stoma and reducing water loss by
preventing transpiration.

The application of PGPR showed their great prospect
for improving nutrient availability and reducing the excessive
application of chemical fertilizer. In the current study,
inoculation with endophytic bacterial strains improves N, P,
and K concentration in a shoot of marigold flower plants
(Figure 5). The increase in nutrient concentration was more
prominent in consortium treatment as compared to the sole
application of endophytic bacterial strains. This increase in
nutrient concentration could be due to the ability of endophytic
bacterial strains to increase the bioavailability of nutrients in the
soil and to improve its uptake and accumulation. Previously,
we have reported the tested strains viz. B. phytofirmans (PsJN),
Enterobacter sp. (MN17), and Bacillus sp. (MN54) in vitro
ability to solubilize nutrients, especially P might improve its
bioavailability in soil and enhance uptake and accumulation in
plants shoot (Samreen et al., 2019; Naveed et al., 2020a; Sabir
et al., 2020). Such nutrient solubilizing bacterial strains might
also have the ability to solubilize other nutrients, including K
and zinc, which can be possible in the current study as we
have observed the increase in K concentration in plants of
the marigold flower. Our results are similar to the findings of
Khanghahi et al. (2018), Mumtaz et al. (2018, 2020), and Ahmad
et al. (2019a). Such nutrients solubilizing bacteria adopted
a variety of mechanisms, including acidolysis, reduction in
pH, enzymolysis, and complexation through extracellular
polysaccharides (Welch et al., 1999; Parmar and Sindhu,
2013). The mechanisms of association of plant and endophytic
bacterial strains are not precise for mineral solubilization that
might result from the secretion of organic acids of ligands
specific to elements (Duangpaeng et al., 2012). Such ligands
can alter substrate pH and enhance insoluble compounds’
chelation (Forchetti et al., 2010; Khan et al., 2020). The free-
living rhizosphere and endophytic bacteria also demonstrated
N-fixation in roots of nonleguminous crops (Nag et al., 2020)
which might be valid for the current endophytic bacteria strains
that showed an increase in N concentration in marigold flower
plants. The precise mechanism of association of free-living
endophytic bacteria with plant species is not well-known. It
may be due to the presence of plant-specific root exudates that
recruits plant-available bacteria and carry the microbiota from

one generation to another (Toju et al., 2018; Van Deynze et al.,
2018; Eyre et al., 2019).

Endophytes improve the vase life of
French marigold flowers

Bacteria associated with plants improve the quality of
their flowers. In the present study, the uninoculated control
revealed the lowest flower quality in terms of their numbers,
diameters, and vase life (Figures 1, 2) which might be due to
higher ethylene production during the flower ripening process.
Higher ethylene production at ripening time causes several
stress changes, including rapid loss of chlorophyll, proteolysis,
loss of catalase activity, and increased membrane permeability
(Ranwala and Miller, 2005). However, the increase in these
flower’s quality attributes of marigold was observed due to the
sole and/or consortium inoculation with endophytic bacterial
strains, which might be due to the ability of these bacteria
to produce ACC-deaminase that reduces the ethylene level
in plants and delay flower ripening (Moon and Ali, 2022).
This ethylene reduction in plants by ACC-deaminase-producing
bacteria is a critical property that enables interference with the
physiological processes of the host plant (Eun et al., 2019; Ali
et al., 2022). Various commercially available chemicals such as
potassium permanganate, ultraviolet lamps, activated charcoal,
and catalytic oxidizers inhibit the ethylene concentration in
fruits and flowers to improve vase life (Ebrahimi et al., 2021).
However, improving the vase life of flowers through applying
rhizosphere and endophytic bacteria is a novel biotechnological
approach that is quite efficient in increasing flower quality
and composition.

Endophytes improve biochemical and
antioxidant attributes of flowers
extract

We reported the increase in the total content of phenolics,
flavonoids, and protein in French marigold flower extract due
to inoculation with endophytic bacterial strain (Figure 4).
The consortium of endophytes mediated responses in French
marigold flower extract promoted these metabolites in flower
extract that played a cumulative, synergistic role in the
enhancement of plant growth and flower quality. Previously,
various researchers showed evidence of total proteins, phenolics,
and flavonoid contents in plant-microbe interaction (Weir et al.,
2004; Brencic and Winans, 2005; Bhattacharya et al., 2010).
The flavonoid and phenolic contents in the extract of French
marigolds could quench free radicals and act as antioxidants
involved in anti-inflammatory and anti-carcinogenic responses
(Biglari et al., 2008). We observed higher flavonoid and phenolic
contents in marigold flower extract due to the consortium
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application of endophytic bacterial strains that could manifest
higher antioxidant capacities. Further, consortium application
also reported a higher increase in antioxidant activities in
terms of DPPH radical scavenging, APX, CAT, GPX, and SOD
activity and ferric reducing power of extract from French
marigold flowers (Figure 4). Li et al. (2007) analyzed the 11
Chinese cultivars of marigold flowers extracted with ethanol,
ethyl acetate, and n-hexane through high-performance liquid
chromatography-mass spectrometry. They reported marked
variation in total phenols, flavonoids, antioxidants, and radical-
scavenging activities in the tested marigold cultivars.

Similarly, Duan et al. (2007) and Liu et al. (2009) reported
polyphenols extracted from lychee-fruit pericarp to possess
the scavenging activity against DPPH free radical, superoxide
anions, and hydroxyl radicals. Additionally, a reduction in
hemolytic activity was observed in the current study due
to inoculation with sole and demonstrating the ability of
endophytic bacterial strains to reduce the hemolytic activity
of French marigold flower extract. The reduction in hemolytic
activity was more in sole inoculation than in a consortium
which might be due to the application of a single organism
in sole inoculation with endophytic bacteria. The reduction in
hemolytic activity due to inoculation can be due to the increased
production of antioxidants because of bacterial application in
French marigold plants.

Endophytes improve the nematicidal
activity of French marigold flowers
extract

Some marigold varieties are resistant to PPNs due to their
allelopathic potential (Wang et al., 2007; Hooks et al., 2010).
A blue-fluorescing compound called α-terthienyl in marigold
plants was recognized for its allelopathic potential against
nematodes, insects, fungi, and viruses and cytotoxic activities
(Zechmeister and Sease, 1947; Wang et al., 2007). In this
study, endophytic bacterial strains promoted the nematicidal
activity of extract from French marigold flowers compared
to the uninoculated control (Figure 5). This increase in
nematicidal activity could be due to the role of endophytic
bacterial strains in enhancing the production of nematicidal
phytocompounds specially α-terthienyl. Various rhizospheric
and endophytic bacterial strains are also well-known for
their potential role in the biocontrol of phytopathogen and
are involved in indirect plant growth promotion (Mhatre
et al., 2019; Gamalero and Glick, 2020), which might be
true for current endophytic bacterial strains. Sturz and
Kimpinski (2004) isolated several bacterial endophytes from
African and French marigolds that showed their nematicidal
activities against Pratylenchus penetrans in soils. Such plant
bacterization could be a potential candidate for non-residual
and environment-friendly pesticides that will boost the plant’s

defense metabolites to reduce the pathogens population in the
root zone (Nivsarkar et al., 2001).

Materials and methods

Preparation of endophytic bacterial
inoculum

Three pre-isolated endophytic PGP bacterial strains, viz.
B. phytofirmans PsJN (Naveed et al., 2020a), Enterobacter sp.
MN17 (Sabir et al., 2020), and Bacillus sp. MN54 (Samreen
et al., 2019) were collected from Environmental Science
Laboratory, Institute of Soil and Environmental Sciences (ISES),
University of Agriculture Faisalabad (UAF), Pakistan. These
strains were grown separately in Luria-Bertani (LB) broth
containing tryptone (10 g L−1), yeast extract (5 g L−1), and
NaCl (10 g L−1) at 28 ± 1◦C and 100 rpm for 48 h in an
orbital shaking incubator (Firstek Scientific, Japan). The optical
density (OD) at 600 nm of each broth was adjusted to 0.5 using a
spectrophotometer (Gene Quant Pro, Gemini BV, Netherlands)
to obtain a uniform population of bacteria [108–109 colony
forming units (CFU) ml−1].

Seed bacterization

The peat as a carrier material was sterilized at a pressure of
138 kPa and temperature of 121◦C for 30 min and inoculated
with bacterial broth culture. The peat-based inoculum was
incubated at 28 ± 2◦C by adding a 10% sugar solution to
increase the microbial populations. For inoculation, the desired
suspension of inoculum (108–109 CFU ml−1; 250 ml kg−1

peat) was mixed with sterilized peat and incubated for 24 h at
28 ± 2◦C before use for seed coating (seed to peat ratio 1.25:1
w/w). Marigold seed dressing was prepared with the inoculated
peat mixed with 10% sterilized sugar (sucrose) solution in a 10:1
ratio (Saeed et al., 2019). In the case of un-inoculated control,
seeds were coated with the sterilized peat treated with broth, and
10 % fixed sugar solution.

Pot experiment and treatment plan

A pot experiment was conducted in the net-house, ISES,
UAF, Pakistan, to evaluate the potential of endophytic bacteria
to improve flowering, pharmacological activities, and delay of
flower senescence of French marigold. The soil used for the
experiment was collected from the field, air dried, thoroughly
mixed, passed through a 2-mm sieve, and analyzed for various
physical and chemical characteristics. The soil was sandy clay
loam, having pH, 7.88; EC, 1.38 dS m−1; organic matter, 0.78%;
total nitrogen, 0.034%; available phosphorus, 7.80 mg kg−1
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and extractable potassium, 117 mg kg−1. French marigold
seeds were surface sterilized by dipping in 70% ethanol for
2 min and treated with 1.5% NaClO for 5 min, followed by
washing three times with sterile distilled water (1 min each
time). The efficacy of surface sterilization was checked by
culturing seeds and aliquots of the final rinse in LB agar plates
where no growth was observed. The experiment contained the
following treatments: (1) Control, (2) PsJN inoculation, (3) MN-
17 inoculation, (4) MN-54 inoculation, and (5) Consortia of
PsJN, MN-17, and MN-54. Surface-disinfected marigold seeds
were coated with different endophytic bacterial treated slurry. In
the control treatment, slurry for seed coating was prepared using
sterilized LB broth. Pots were arranged in the net-house using a
completely randomized design with three replications of each
treatment. The plants were harvested after 60 days during full
bloom flowering and further processed immediately for growth,
physiological, and pharmacological analysis.

Assessment of growth parameters and
vase life

The end of vase life was determined as the time in which
50% of open flower petals had wilted. The vase life of French
marigold flowers was recorded by the number of days from the
day that cut flowers were put in distilled water and incubated
at room temperature (24◦C for 12 days) until they had no
ornamental value (underwent a color change, wilt, or loose
turgidity). The mean value of the vase life of all flowers in
each was calculated as the average vase life for each treatment.
Plant agronomic parameters such as plant height, shoot, root
fresh weight, root length, number of flowers plant−1, and
flower diameter were recorded after harvesting the French
marigold plants.

Physiological parameters

Plant physiological parameters of both treated and untreated
plants were recorded at mid-day (between 10:00 and 14:00).
A portable infrared gas analyzer [IRGA (CI-340) Germany] was
used (at 1,200–1,400 µmol m−2 s−1 photosynthetic photon
flux density) to measure transpiration rate, photosynthetic rate,
stomatal, and substomatal conductance. Relative chlorophyll
contents SPAD index of the second leaf from apex were recorded
through Chlorophyll meter at vegetative stage.

Estimation of total flavonoid, phenolic
acid, and protein contents

To determine total flavonoid contents, 0.5 ml of French
marigold flowers extract was mixed with 2 ml of distilled

water and 0.15 ml of NaNO2 (5%) solution and incubated for
6 min. After that, 0.15 ml of 10%, AlCl3 solution was added
and incubated for 6 min, followed by adding NaOH (4%)
solution to the mixture. The volume of the reaction mixture
was made up to 5 ml by adding methanol. The absorbance of
the reaction mixture was taken at 510 nm after incubation for
15 min. Total flavonoid contents of the extracts were expressed
as catechin equivalents from the linear regression curve of
catechin (Park et al., 2008). The total phenolic compounds in
French marigold flowers extract were determined by the Folin–
Ciocalteu method (Bärloche and Graça, 2020). The calibration
curve was prepared with different concentrations of gallic acid.
To estimate total protein contents, 0.1 ml of French marigold
flower extract and 0.1 ml of NaOH (2N) were mixed and
hydrolyzed at 100◦C. The freshly prepared complex-forming
reagent (1 ml) consisting of Na2CO3 (2%), CuSO4.5H2O (1%),
and KNAC4H4O6.4H2O (2%) was added to cooled hydrolysate
(Lowry et al., 1951). After 10 min of incubation, 0.1 ml of Folin
reagent was added through a vortex and incubated for 30 min.
Total protein contents were estimated by taking absorbance at
750 nm (Lowry et al., 1951).

DPPH radical scavenging and
antioxidant power assays

The antioxidant activity of French marigold extract was
estimated through DPPH radical scavenging assay as performed
by Yen and Chen (1995) with slight modifications. The freshly
prepared 1 ml of DPPH solution was added to 3 ml of marigold
flower extracts at different concentrations and kept for 30 min
in the dark. After incubation, absorbance was noted at 517 nm.
A low absorbance of the reaction mixture indicates a high
radical scavenging activity. The antioxidant activity of butylated
hydroxytoluene and ascorbic acid was analyzed as standards.
The solution without marigold flower extract was used as a
control. The inhibition of DPPH radical samples was calculated
as follows.

DPPH inhibition (%) = [AC −
AS
AC
] × 100 (1)

where, AC, absorbance of control; AS, absorbance of sample.
The ferric reducing power of French marigold flower extract

that reflected their antioxidant activity was determined using
Fe3+ and Fe2+ reduction assay (Benzie and Strains, 1996). The
1 ml of French marigold flowers extract in methanol was added
to 2.5 ml of sodium phosphate buffer (0.2 M; PBS) and 2.5 ml
of K3Fe(CN)6 (1%) solution. The solution was incubated at
50◦C for 20 min on a vortex shaker, followed by adding 2.5 ml
of trichloroacetic acid (10%). The final volume of 2.5 ml after
centrifugation was diluted up to 5.0 ml with deionized water,
and absorbance was read at 700 nm.

For antioxidant enzyme determination, frozen leaf material
was homogenized in potassium phosphate buffer (0.2 M,
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pH 7) ice-cold solution with ethylene diamine tetra acetic
acid (EDTA) (0.1 mM). The activity of APX was measured
by a decline in spectrophotometer absorbance (290 nm
wavelength) due to the reduction of ascorbate by H2O2

(Nakano and Asada, 1981). The activity of CAT enzymes
was observed by a diminution in the spectrophotometer
absorbance (240 nm wavelength) owing to H2O2 loss (Cakmak
and Marschner, 1992). The activity of GPX was observed by
spectrophotometric absorbance (340 nm wavelength) due to the
reaction of a sodium azide, glutathione, and GPX solution into
a β-NADPH (nicotinamide adenine dinucleotide phosphate)
(Aebi, 1983). The activity of SOD enzyme was estimated by
spectrophotometric absorbance (420 nm wavelength) due to
reaction of enzyme extract with sodium phosphate, EDTA and
pyrogallol (Roth and Gilbert, 1984).

Hemolytic and nematicidal activities

Hemolytic activity of French marigold extracts was assayed
through the method of Powell et al. (2000). The human blood
cells (3 ml) were gently poured into a sterile falcon tube and
washed three times with chilled PBS (5 ml) by centrifuging the
tubes for 5 min. The red blood cells (180 µl) were gently mixed
with French marigold flower extract (20 µl) and centrifuged for
5 min. The supernatant (100 µl) was diluted with chilled sterile
PBS (900 µl). Triton X-100 was run as a positive control, and
PBS was taken as a negative control in triplicate. Absorbance was
taken at 576 nm through ELISA plate reader.

The nematicidal activity of endophytic bacterial strain
treated French marigold flowers extract was evaluated. A root-
knot nematode M. incognita at juveniles J2 stage was obtained
by incubating nematode egg masses in tap water at 27◦C in
the dark. They were collected every 2 days and concentrated
in small volumes of sterilized water by filtering through 1 µm
Whatman filters and collecting them after repeated washes
(Molinari, 2009). The soil stages juveniles of nematodes were
separately transferred to oil solutions from French marigold
flower extract in Petri dishes. Each treatment had 100 nematodes
in triplicate. Nematodes in distilled water and 0.05% Tween
solutions were served as checks. The Petri dishes were kept at
room temperature (28 ± 2◦C). Numbers of un-hatched and
M. incognita juveniles were daily recorded for 16 days, and
immobile soil stages of nematode were counted after 24 and
72 h (Abd-Elgawad and Omer, 1995). Each time, the nematodes
were transferred in aerated distilled water, and then the active
nematodes were counted after a day.

Plant analysis

Post-harvest plant biomass (above and below ground) was
obtained after drying whole plants at 65◦C for 72 h, and samples

were wet digested by following the method of Wolf (1982).
The plant digested samples were analyzed for N, P, and K
concentration by following the technique of Estefan et al. (2013).
The N contents in plant digest were determined through the
Kjeldahl method. The P concentration was estimated through a
colorimetric method, while the K concentration was determined
using a flame photometer.

Persistence of endophytic bacteria in
the rhizosphere, root, shoot, and
flowers

The rhizosphere and endophytic persistence of selected
bacterial strains were determined by dilution and plate
counting technique. For colonization assay, rhizospheric soil
was collected, and soil slurry was prepared at a ratio of 1:5 (soil:
NaCl 0.9%) following agitation for 30 min at room temperature.
After sedimentation, serial dilutions up to 10−6 were plated
onto a 10% tryptic soy agar medium. Colonies were counted
after incubating the plates at 28 ± 1◦C for 2-days, and the
colonization value was determined following the equation.

No of colonies (CFU g−1 dry weight) = 1/dilution factor

×number of colonies/dry weight (2)

Similarly, 1 g of surface-sterilized samples of each plant
tissue (root, shoot, leaves, and flowers) were homogenized in
5 ml 0.9% saline buffer using a sterile mortar and pestle. After
settling the solid fraction, serial dilutions up to 10−5 were
spread on a TSA medium. Twenty-five visible colonies were
selected per treatment randomly, and their identity with that of
inoculant strain was confirmed by restriction fragment length
polymorphism (RFLP) analysis of the 16S–23S rRNA intergenic
spacer (IGS) region (Naveed et al., 2014).

Statistical analysis

Data for different growth and yield attributes were collected
and analyzed statistically using software “Statistix 8.1

R©

” version.
Means were compared by using least significant difference
(LSD) test (Steel et al., 1997) at a 5% probability level. Origin
Pro 9.1 software was used for graphs, and Pearson correlation,
PCA was performed using R-software.

Conclusion

The current study concluded that French marigold plants
inoculated with endophytic bacteria improve plant growth,
physiology, nutrient uptake, and vase life compared to the
uninoculated control. They also improve the metabolites,
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antioxidant enzyme activity, and nematicidal activities of
extract from French marigold flowers. The application
of endophytic bacteria is also involved in reducing the
hemolytic activity of extract from French marigold flowers.
The consortium application reported a significantly more
significant improvement in French marigold attributes than
sole inoculation. Consortium application of such compatible
promising endophytic bacteria could benefit the horticulture
industry by providing evidence that beneficial bacteria adopted
as an effective tool to reduce fertilizers input and improve
plant metabolites profile and pharmaceutical quality of
ornamental plants.
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