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It is imminent to develop intelligent harvesting robots to alleviate the burden

of rising costs of manual picking. A key problem in robotic harvesting is how

to recognize tree parts efficiently without losing accuracy, thus helping the

robots plan collision-free paths. This study introduces a real-time tree-part

segmentation network by improving fully convolutional network with channel

and spatial attention. A lightweight backbone is first deployed to extract

low-level and high-level features. These features may contain redundant

information in their channel and spatial dimensions, so a channel and spatial

attention module is proposed to enhance informative channels and spatial

locations. On this basis, a feature aggregation module is investigated to

fuse the low-level details and high-level semantics to improve segmentation

accuracy. A tree-part dataset with 891 RGB images is collected, and each

image is manually annotated in a per-pixel fashion. Experiment results show

that when using MobileNetV3-Large as the backbone, the proposed network

obtained an intersection-over-union (IoU) value of 63.33 and 66.25% for

the branches and fruits, respectively, and required only 2.36 billion floating

point operations per second (FLOPs); when using MobileNetV3-Small as the

backbone, the network achieved an IoU value of 60.62 and 61.05% for the

branches and fruits, respectively, at a speed of 1.18 billion FLOPs. Such results

demonstrate that the proposed network can segment the tree-parts efficiently

without loss of accuracy, and thus can be applied to the harvesting robots to

plan collision-free paths.
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tree-part segmentation, MobileNetV3, attention mechanism, neural network,
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Introduction

Fruit harvesting is time-sensitive and labor-intensive,
making manual picking expensive. In order to reduce the cost
burden of manual picking, it is of great significance to develop
intelligent harvesting robots. In structured environments, fruit
trees are often planted in a V shape (Chen et al., 2021) or plane
shape (Zhang et al., 2018), and fruit detection and localization
are key problems facing the robots, which have been well-
addressed. However, in unstructured environments, the fruit
trees have complex three-dimensional structures, and therefore
a major problem facing the robots is how to recognize tree parts
(including fruits, branches, and backgrounds) for the robots to
plan collision-free paths (Lin et al., 2021a). Due to the complex
shape and uneven thickness of the branches, the tree parts are
difficult to identify (Barth et al., 2018; Lin et al., 2021b). Guava
is a fruit widely grown in Guangdong Province, China. In this
study, a real-time and accurate guava tree-part segmentation
method is investigated to enable the guava-harvesting robots to
work in unstructured environments.

Tree-part segmentation can be accomplished by traditional
image analysis methods, requiring manual design of classifiers
via feature engineering (Amatya et al., 2016; Ji et al., 2016).
Such methods are usually limited to specific environments and
fruit trees. Currently state-of-the-art tree-part segmentation
are dominated by fully convolutional networks (FCN). Our
previous study used a VGG16-based FCN to segment guava
branches with an intersection-over-union (IoU) of 47.3% and an
average running time of 0.165 s (Lin et al., 2019). Furthermore,
we employed Mask R-CNN to detect and segment guava
branches simultaneously, and obtained 51.8% F1 score at a
speed of 0.159 s per image (Lin et al., 2021b). Unfortunately,
slender branches were found difficult to recognize. Li et al.
deployed DeepLabV3 with Xception65 as the backbone to
recognize litchi branches and fruits, and accomplished a mean
IoU (mIoU) of 78.46% at a speed of 0.6 s (Li et al., 2020).
Majeed et al. (2020) used a VGG16-based SegNet to segment
tree trunk, branch and trellis wire, and achieved a boundary-
F1 score of 0.93, 0.89, and 0.91, respectively. Zhang et al.
employed DeepLabV3+ with a lightweight backbone ResNet18
to identify apple tree trunks and branches. The IoUs for trunks
and branches were 63 and 40%, respectively, and the average
running time was 0.35 s per image (Zhang et al., 2021). Chen
et al. (2021) applied a ResNet50-based DeepLabV3, a ResNet34-
based U-Net and Pix2Pix to segment occluded branches,
respectively, and found that DeepLabV3 outperformed the
other models in terms of mIoU, binary accuracy and boundary
F1 score. Boogaard et al. (2021) segmented cucumber plants
into eight parts by using a point cloud segmentation network
PointNet++ and obtained 95% mIoU. Wan et al. developed
an improved YOLOV4 to detect branch segments, applied
a thresholding segmentation method to remove background,
and used a polynomial fit to reconstruct the branches. The

detection F1 score was 90%, and the running speed was 22.7
frames per second (FPS) (Wan et al., 2022). Because manually
annotating a large empirical dataset is time-consuming and
costly, Barth et al. trained DeepLabV2 with VGG16 as the
backbone on a large synthetic dataset and then fine-tuned
DeepLabV2 on a small empirical dataset. The final network
categorized pepper plants into seven different parts with a
mIoU of 40% (Barth et al., 2019). Furthermore, Barth et al.
(2020) deployed a cycle generative adversarial network to
generate realistic synthetic images to train DeepLabV2 and
obtained 52% mIoU. Although the approaches mentioned above
produce encouraging results, they are typically computationally
inefficient since they employ very deep backbones to encode
both low-level and high-level features. How to strike a balance
between real-time performance and accuracy is a key problem
that needs to be solved.

Recently, some efforts have been made to develop real-
time segmentation networks. These efforts can be roughly
divided into two categories. The first category uses existing
lightweight backbones to reduce computation. Howard et al.
(2019) developed a shallow segmentation head and appended it
to the top of MobileNetV3, and achieved a mIoU of 72% with
only 1.98 million multiply-accumulate operations on Cityscapes
dataset. Hu et al. proposed a fast spatial attention module
to enhance the features encoded by ResNet34, used a simple
decoder to merge the features, and achieved 75.5 mIoU at 58
FPS on the Cityscapes dataset (Hu P. et al., 2020). Another
category uses customized lightweight backbones to speed up
the network inference. Yu et al. proposed a novel network
termed BiSeNetV2, which uses a semantic branch with narrow
channels and deep layers to generate high-level semantics,
applies a detail branch with wide channels and shallow layers to
obtain low-level details, and combines these features to predict
a segment map. It achieves 72.6% mIoU on the Cityscapes
dataset with a speed of 156 PFS (Yu et al., 2021). Gao
(2021) proposed a fast backbone that consists of many dilated
block structures and used a shallow decoder to output the
segmentation. The network achieves 78.3 mIoU at 30FPS on the
Cityscapes dataset. Overall, the first category is more attractive,
because it utilizes exiting backbones to extract semantic features
and hence allows us to focus on more important modules
such as decoder.

The objective of this study is to develop a real-time and
accurate tree-part segmentation network so that the robots can
avoid the obstacles during harvesting. Specifically, a state-of-
the-art lightweight backbone is deployed to capture the low-
level and high-level features. And then, an attention module
is proposed to enhance informative channels and locations
in the above features. Subsequently, these features are fused
together by a feature aggregation module. The final feature
is processed by a segmentation head to output a segment
map. A comprehensive experiment is performed to evaluate the
proposed tree-part segmentation network.
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The contribution of the study is listed as follows:

(1) A tree-part dataset containing 891 RGB images is
provided, where each image is annotated on a per-
pixel level manually.

(2) A real-time tree-part segmentation is proposed by
improving an FCN with channel and spatial attention.

(3) The developed network achieves impressive results.
Specifically, when using MobileNetV3-Large as the
backbone, the network achieves an IoU of 63.33, 66.25,
and 93.12% for the branches, fruits and background,
respectively, at a speed of 36 FPS.

Materials and methods

In this section, the data used for this research, including
data acquisition, split and annotation, is presented in section 2.1.
The developed tree-part segmentation network is introduced in
section 2.2. Section 2.3 explains the evaluation criteria used to
measure the performance of the developed network.

Data

Data acquisition
The data acquisition site is located in a commercial guava

orchard on Haiou Island, Guangzhou, China. The guava species
is carmine. There is 3.1 m between two neighboring rows and
2.5 m between two neighboring trees in each row. A low-cost
depth camera RealSense D435i is used to capture images, which
can simultaneously generate RGB and depth images. This study
only uses RGB images, which have a resolution of 480 pixels
by 640 pixels. The images were taken on September 24, 2021
between 12:00 and 16:00, just in time for the guava harvest. The
day was sunny with a temperature range of 30–34◦C. During

image acquisition, the camera was held by hand and moved
along the path between two rows. The distance between camera
and guava tree was about 0.6 m. A total of 41,787 images were
acquired. Because adjacent images look similar and may have
little effect on network training, a subset of the images were
sampled uniformly which comprises 891 images. Figure 1A
shows a captured image.

Data split
These 891 RGB images were divided into a test and training

set. The test set contains the first 30% of the images, and the
training set contains the last 70% of the images. This partitioning
approach keeps the data sets independent and therefore better
examines the generalization performance of the network.

Data annotation
Because branches and fruits will prevent the robots from

getting close to the targets, they should be annotated to enable
the network to recognize them. Each pixel on the images in
the training and test sets was annotated as a branch, fruit, or
background class using the open-source annotation program
LabelMe (Russell et al., 2008). A visual example is shown in
Figure 1B. It is worth noting that per-pixel label annotation
is very time-consuming, and we spent almost 2 months to
accomplish the annotation task.

Tree-part segmentation network

This section illustrates the proposed tree-part segmentation
network in detail. An efficient network backbone for capturing
low-level and high-level features is introduced in Section 2.2.1.
The proposed channel and spatial attention module for boosting
meaningful features is elaborated in Section 2.2.2. Section
2.2.3 describes the multi-level feature aggregation module for

FIGURE 1

Image example. (A) A guava tree. (B) Different parts of the guava tree, where the red, green, and black regions represent the fruit, branch, and
background, respectively.
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fusing low-level details and high-level semantics. Section 2.2.4
introduces the segmentation head, and Section 2.2.5 presents the
network architecture.

Backbone
To realize real-time segmentation and thus enable the

harvesting robots to work efficiently, an efficient neural network
MobileNetV3 (Howard et al., 2019) is employed as the
segmentation network backbone. MobileNetV3 builds on the
latest techniques such as depth-wise separable convolution,
inverted bottleneck (Sandler et al., 2018) and squeeze-excitation
network (Hu J. et al., 2020), and has been widely deployed in
mobile applications. There are many layers outputting feature
maps of the same resolution, and these layers are considered
to be at the same stage. MobileNetV3 has five stages. Let {C2,
C3, C4, C5} denote the outputs of the last layer of stage 2,
stage 3, stage 4, and stage 5. Typically, the output of shallow
stage such as C2 contains low-level information but with limited
semantics, while that of deep stage such as C5 contains high-
level semantics but with low resolution. These low-level details
and high-level semantics can be combined to achieve high
accuracy segmentation (Yu et al., 2021). Therefore, they are
utilized in this study.

Because MobileNetV3 is primitively designed to output
1,000 classes for ImageNet (Russakovsky et al., 2015), the last
few layers have many channels, which may be redundant for
our task. In this study, the last layer in stage 5 is directly
excluded. We discover that this modification can improve the
segmentation accuracy and speed. Additionally, it is a common
practice to place atrous convolution in the last few stages of the
backbone to generate dense feature maps, which can effectively
increase the segmentation accuracy (Chen et al., 2018; Howard
et al., 2019). However, when we developed the network model
in this paper, we found that the atrous convolution harmed
the performance of our network. Hence, we do not use it
in the backbone.

Global context information can reduce the probability
of misclassification. Pyramid pooling module (PPM) (Zhao
et al., 2016) is a practical technique to generate global context
information, which uses four different scales of global average
pooling layers to enlarge the network receptive fields, up-
samples the resulting feature maps so that they have the same
size as the original feature map by bilinear interpolation, and
then concatenates them as the final global context information.
PPM is attached at the top of MobileNetV3.

Channel and spatial attention module
Formally, {C2, C3, C4, C5} encode different levels of

channel and spatial information. Not every channel offers useful
information. Channel attention mechanism (Roy et al., 2018;
Woo, 2018; Hu J. et al., 2020) can be used to recalibrate
these feature maps to focus on useful channels, thereby
increasing the representation power. Note that the squeeze and

excitation attention block of MobileNetV3 serves to refine some
intermediate layers, whereas the channel attention mechanism
here only serves to refine the output of the last layer of
each stage. Besides, the pixel-wise spatial information is more
important for semantic segmentation. Therefore, the feature
maps can be further recalibrated along space using spatial
attention mechanism, making them more informative spatially
(Roy et al., 2018; Woo, 2018). To this effect, a channel and
spatial attention module (CSAM) is proposed, which consists
of a channel attention module and a spatial attention module.
CSAM is detailed as follows.

The channel attention module is developed by the
inspiration of Howard et al. (2019) to strengthen useful channels
and weaken useless channels. Let X ∈ RH × W × C denote a
feature map, where H and W are the spatial height and width,
and C is the number of channels. A global average pooling layer
is first performed on X, resulting a vector u ∈ RC with its kth

element:

uk =
1

H × W

H∑
h = 1

W∑
w = 1

u(h,w, k) (1)

Vector u is then used to generate a gate vector g by employing a
gating mechanism:

g = σ(W1u) (2)

where σ refers to the sigmoid function, W1 ∈ R
C
r × C is a

learnable tensor, and r is a reduction ratio using for limiting
model complexity. Gate vector g measures the usefulness of the
channels, which is used to recalibrate X:

Xc = g
⊗

δ(W2∗X) (3)

where
⊗

denotes the channel-wise multiplication, δ is the ReLu
function, ∗ refers to convolution, W2 ∈ R1 × 1 × C × C

r denotes
the filter kernel, and Xc ∈ RH × W × C

r is the projection of X.
Equation 3 not only depicts the interdependencies between the
channels of X, but also highlights the useful channels while
downplaying the useless ones.

In order to fully exploit the spatial information of the
feature map, the spatial attention module developed by Roy
et al. (2018) is deployed. Specifically, a gate map G ∈ RH × W

is first generated via squeezing the feature map along its channel
dimension and employing a sigmoid function:

G = σ(W3∗Xc) (4)

where W3 ∈ R1 × 1 × C
r × 1 is the filter kernel. Then gate map G

is used to rescale the feature map:

Xs = G
⊗

Xc (5)

where
⊗

denotes the element-wise multiplication. Equation 5
makes the network focus on important spatial locations and
ignore useless ones.

The architecture of CSAM is illustrated in Figure 2. CSAM
is appended on C2, C3, C4 and the output of PPM, and
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FIGURE 2

Design details of CSAM. Note that Conv is convolutional operation, and BN is batch normalization; 1 × 1 represents the kernel size, H ×W × C
and H ×W × C/r denote the tensor shape (height, width, and depth); the first

⊗
refers to channel-wise multiplication, and the second

⊗
is

element-wise multiplication.

the corresponding reduction ratios are set to {1, 1, 2, 4} for
MobileNetV3-Large and {1, 1, 1, 2} for MobileNetV3-Small.
The resulting feature maps are denoted as {G2, G3, G4, G5}.
It is worth noting that CASM is attached to PPM and not C5

simply because PPM itself contains C5. The work (Roy et al.,
2018) also proposes a similar attention module. CSAM differs in
introducing a reduction ratio to reduce the module complexity,
and information goes through the two modules in an orderly
manner, which progressively filters out useless information.

Let us consider an input feature map of C channels.
The channel attention module introduces 2C2

r new weights,
while the spatial attention module introduces C

r weights. So,
a CASM brings a total of 2C2

+ C
r parameters. Because the

feature maps of MobileNetV3 have relatively few channels, these
extra parameters only add a small amount of computation
to the backbone.

Feature aggregation module
Typically, thin branches are harder to segment than thick

branches, because detailed information is easily lost when the
output stride is increased. This problem can be alleviated by
fusing feature maps from different layers, such as {G2, G3, G4,
G5}. A simple variant of feature pyramid network (FPN) (Lin
et al., 2016) is used to gradually up-samples and merges the
feature maps from deepest feature maps to shallow ones. As
shown in Figure 3, our FPN variant first appends a 1 × 1
convolutional layer on the coarsest feature map G5 to reduce
its channel dimension, up-samples G5 by a factor of 2, and
then merges G5 with its corresponding bottom-up map G4

by element-wise addition. This process is repeated until the
finest feature map is generated. A 3 × 3 convolutional layer
is appended on each merged feature map to generate the final
feature map with a fixed output dimension of 48. Here, batch
normalization and ReLu are adopted after each convolution,

which are omitted for simplifying notations. On this basis, these
feature maps are concatenated. Because lower-level feature maps
may have large values than higher-level ones, which probably
destabilizes network training, the concatenated features should
be normalized carefully. To this effect, a L2 normalization layer
(Liu et al., 2015) is performed on the concatenated features.
Specifically, let X = (x1, ..., xC) be the concatenated features,
and C is the number of channels. X is normalized with the
following equation:

xc = γc
xc
||xc||2

(6)

where ||·||2 means the L2 norm; c = 1, . . ., C; and γc is a learnable
scaling parameter, which can avoid the resulting features being
too small and hence promotes network learning. In experiments,
the initial value of γc is set to 1. Subsequently, a CSAM with
reduction ratio of K is attached after the L2 normalization
layer to further refine the feature map, where K refers to the
number of feature maps fused. Figure 3 shows the architecture
of the proposed FAM.

Segmentation head
The segmentation head is used to output a segment map of

the same size as the input RGB image, which is N-channeled
with N being the number of classes. In this study, N equals
to 3. Figure 4 shows the segmentation head, which consists
of a 3 × 3 convolution layer, a batch normalization layer, a
ReLU activation, a 1 × 1 convolution layer and an up-sampling
operation via bilinear interpolation.

Network architecture
The overall architecture is shown in Figure 5. MobileNetV3

forms the backbone network with PPM attached on the top to
capture global contextual information. Feature maps from the

Frontiers in Plant Science 05 frontiersin.org

https://doi.org/10.3389/fpls.2022.991487
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-991487 September 7, 2022 Time: 21:33 # 6

Lin et al. 10.3389/fpls.2022.991487

FIGURE 3

Design details of FAM. Note that up refers to up-sampling by
bilinear interpolation.

last layers of stage 2, stage 3, stage 4, and PPM are refined by
CSAM and then used as input to FAM to produce a feature
map containing low-level details and high-level semantics. The
output of FAM is processed by the segmentation head to make
the final semantic segmentation.

The tree-part segmentation network is trained in an end-
to-end manner to minimize a cross-entropy loss defined on
the output of the segmentation head. To stabilize network
training, an auxiliary segmentation head is inserted after the
output of stage 3, and an auxiliary cross-entropy loss with
weight 0.4 is added to the final loss (Zhao et al., 2016), as
shown in Figure 5. This auxiliary segmentation head is only
used in the training phase and removed in the inference phase.
Furthermore, a L2 regularization with weight 5e−4 on the
parameters of the network except the backbone are added to
the final loss to alleviate network over-fitting. Note that because
this study uses a pre-trained MobileNetV3 on ImageNet as
the backbone, we do not place the L2 regularization on the
parameters of the backbone.

Segmentation evaluation

To evaluate the accuracy performance of the tree-part
segmentation network, three commonly used metrics are used:

IoU, mIoU, and pixel accuracy (PA). For the sake of explanation,
let N denotes the total number of classes, and pij denote the
number of pixels that belong to class i but are predicted to be
class j. Obviously, pii, pij and pji represent the number of true
positives, false negatives, and false positives, respectively. IoU is
the ratio between the intersection and union of the ground true
and predicted segmentation, and can be calculated by dividing
true positives by the sum of false positives, false negatives and
true positives. For class i, its IoU is computed as follows:

IoU i =
pii∑N−1

j = 0 pij +
∑N−1

j = 0 pji − pii
(7)

mIoU is an improved IoU which computes the IoU value for
each class and then averages them:

mIoU =
1
N

N−1∑
i = 0

pii∑N−1
j = 0 pij +

∑N−1
j = 0 pji − pii

(8)

PA measures the network recall ability. It calculates a ratio
between the amount of true positives and the total number of
pixels:

PA =
∑N−1

i = 0 pii∑N−1
i = 0

∑N−1
j = 0 pij

(9)

To measure the real-time performance of the developed
network, three metrics are utilized: floating point operations
per second (FLOPs), FPS, and number of parameters. Note that
FPS is determined by counting how much RGB images can be
processed per second in the inference phase.

Experimental setup

Implementation details

The developed network is programmed in Pytorch and runs
on a computer with Windows 10 system, 32 GB RAM, Intel
i9-11900K CPU, and NVIDIA GeForce RTX 3080 GPU. The
backbone is pre-trained on ImageNet, and other parameters are
initialized using the default initialization method in Pytorch.
Standard Adam is used to minimize the loss function, and
“cosine” learning scheduler (Loshchilov and Hutter, 2016) is

FIGURE 4

Illustration of the segmentation head. Note that S is the scale ratio of up-sampling, and N is the number of classes.
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FIGURE 5

Overview of the tree-part segmentation network, where
three-dimensional blocks represent feature maps and
two-dimensional blocks refer to convolutional modules.

used to adjust learning rate, where initial learning rate is set
to 1e−4. The network is trained on the train set, and 150
training epochs are used with a mini-batch size of 12. To
avoid network over-fitting, the following data augmentation
methods are implemented during training: horizontal flipping,
vertical flipping, random rotation within the range of [−45◦,
45◦], random scale within the rage of [0.8, 1.2], and randomly
changing the hue, saturation and value of the input image.

Ablation study

This section performs the ablation study to validate the
effectiveness of each module in our network. In the following
experiments, MobileNetV3-Large is used as the backbone, and
the segmentation models are trained on our training set and

evaluated on our test set. The ablation study is detailed as
follows:

(1) Ablation for backbone. Placing atrous convolution in
the last stage of the backbone can preserve the details,
which has been widely utilized in semantic segmentation
(Chen et al., 2018; Howard et al., 2019). However,
it is unclear whether atrous convolution can improve
the segmentation accuracy of our network. In addition,
whether removing the last layer of stage 5 of the backbone
network will improve efficiency and accuracy. Experiments
are conducted to answer these questions.

(2) Ablation for feature aggregation. High-level features
contain semantic information but with limited details,
while low-level features contain detailed information but
with limited semantics. Fusing these features can improve
segmentation accuracy. However, it is unclear which low-
level and high-level features should be fused. We re-
implement the network with different combinations of
the low-level and high-level features, and find the best
combination through experiments.

(3) Ablation for auxiliary segmentation head. Auxiliary
segmentation head has been widely used in semantic
segmentation (Zhao et al., 2016; Yu et al., 2021). We insert
the auxiliary segmentation head to different stages of the
backbone in the training phase and reveal which position
is most important.

Comparison with existing methods

To evaluate the accuracy and real-time performance of the
developed network, a comparison experiment is performed.
MobileNetV3-Large and MobileNetV3-Small are used as the
backbone of our network. Four state-of-the-art networks
are used for comparisons: DeepLabV3 (Chen et al., 2017),
DeepLabV3+ (Chen et al., 2018), LR-ASPP (Howard et al.,
2019), and FANet (Hu P. et al., 2020). For the sake of

TABLE 1 Ablations on the backbone and feature aggregation module.

Row AC R NF IoU (%) mIoU (%) PA (%) FPS #Params FLOPs

Branch Fruit Background

1 X x 4 63.37 66.67 93.05 74.03 93.76 32.84 6.9M 3.48B

2 X X 4 62.51 67.05 93.18 74.25 93.87 33.85 5.7M 3.08B

3 x x 4 63.40 66.03 93.26 74.23 93.95 33.80 6.9M 2.44B

4 x X 4 63.33 66.25 93.12 74.23 93.84 36.00 5.7M 2.36B

5 x X 3 58.72 63.14 92.20 71.35 92.96 34.67 5.7M 1.66B

6 x X 2 49.74 61.16 90.72 67.21 91.49 34.36 5.7M 1.46B

AC, Apply atrous convolution in the last block of the backbone; R, Remove the last layer in stage 5 of the backbone; NF, Number of feature maps fused in FAM. When NF = 4, {G2 , G3 ,
G4 , G5} are fused. When NF = 3, {G3 , G4 , G5} are fused. When NF = 2, {G4 , G5} are fused. M and B represent million and billion, respectively.
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TABLE 2 Ablations on the auxiliary segmentation head, which is
inserted after the output of different stages in the backbone.

Stage IoU (%) mIoU (%) PA (%)

Branch Fruit Background

2 62.45 65.32 92.95 73.58 93.68

3 63.33 66.25 93.12 74.23 93.84

4 64.04 61.96 93.33 73.11 94.02

5 63.07 61.98 93.23 72.76 93.92

comparison, DeepLabV3, DeepLabV3+ and LR-ASPP use
MobileNetV3-Large as the backbone, and apply the atrous
convolution to the last block of MobileNetV3-Large to generate
denser feature maps. FANet uses ResNet18 as the backbone
as suggested by Hu P. et al. (2020). All of the comparison
networks are implemented in Pytorch and trained according
to the strategy described in section 3.1. Our network and
the comparison networks are evaluated on the test set, and
quantitative results including IoU, mIoU, PA, FPS, and FLOPs
are reported and discussed.

Results and discussion

Ablation study

Table 1 lists the results of different configurations of the
backbone. As shown in the table, we observed that (1) when
not employing the atrous convolution in the last block of the
backbone to extract dense features, the mIoU and PA slightly
improved by 0.20 and 0.19%, respectively, while being faster
(row 1 vs. row 3), (2) removing the last layer in stage 5 of
the backbone did not decrease the IoU and PA while being
slightly faster (row 1 vs. row2, row 3 vs. row 4), and (3) when
not employing the atrous convolution and removing the last
layer in stage 5, the network obtained similar accuracies while
being significant faster than its variants (row 4 vs. row 1, 2,
and 3). These results indicate that the atrous convolution was
not necessary for our task, and the MobileNetV3 backbone
contained redundant layers which should be excluded.

Aggregating different levels of features has varying effects
on the network performance, as shown in Table 1. Fusing {G2,
G3, G4, G5} performed better than fusing {G3, G4, G5} and
{G4, G5} by 2.88 and 7.02%, respectively, in terms of mIoU,
and only required a few more computation. This illustrates that
the network performance could benefit from fusing as many
features as possible. In this study, we fused {G2, G3, G4, G5} to
improve the network accuracy.

Table 2 shows the effect of different positions to place
the auxiliary segmentation head. As can be seen, inserting
the auxiliary segmentation head into the output of stage 3
outperformed that of stage 2, stage 4 and stage 5 by 0.65,
1.12, and 1.47%, respectively, in terms of mIoU, and slightly
underperformed that of stage 4 and stage 5 by 0.17 and 0.08%,
respectively, in terms of PA. Therefore, we chose to attach the
auxiliary segmentation head to the output of stage 3.

Comparison with existing methods

Table 3 lists the accuracy and real-time performance of
the proposed network and comparison methods. Overall,
our network with MobileNetV3-Large as the backbone
outperformed LR-ASPP, DeepLabV3, DeepLabV3+, and
FANet in terms of the accuracy metrics, which validated the
effectiveness of the proposed modules. Furthermore, our
network performed faster than DeepLabV3, DeepLabV3+
and FANet in terms of FLOPs, likely because DeepLabV3 and
DeepLabV3+ applied a very time-consuming atrous spatial
pyramid pooling module to encode context information,
and FANet used a relatively large backbone. Surprisingly,
there was little difference in FPS between our network and
the comparison networks, probably because the depth-wise
convolution in MobileNets and the multi-branch design in
ResNet increased the memory access cost, affecting the inference
speed (Ding et al., 2021). Conclusively, the proposed network
with MobileNetV3-Large as the backbone was more accurate
than the comparison methods while being fast.

Additionally, our network with MobileNetV3-Small as the
backbone had slightly lower accuracy than DeepLabV3+,
but higher accuracy than LR-ASPP, DeepLabV3, and
FANet. Moreover, this network achieved the best real-time
performance. In other words, when MobileNetV3-Small was

TABLE 3 Accuracy and real-time performance of the proposed network and comparison methods on test set.

Methods Backbone IoU (%) mIoU (%) PA (%) FPS #Params FLOPs

Branch Fruit Background
Ours MobileNetV3-Large 63.33 66.25 93.12 74.23 93.84 36.00 5.7M 2.36B

Ours MobileNetV3-Small 60.62 61.05 92.82 71.50 93.52 37.91 2.7M 1.18B

LR-ASPP MobileNetV3-Large 60.05 58.60 92.85 70.50 93.52 36.67 5.7M 2.37B

DeepLabV3 MobileNetV3-Large 56.34 58.82 92.14 69.11 92.85 35.78 13.5M 11.58B

DeepLabV3+ MobileNetV3-Large 62.59 61.05 93.36 72.33 94.00 31.52 14.2M 35.73B

FANet ResNet18 54.71 57.57 92.25 68.17 92.97 36.65 13.8M 6.93B
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FIGURE 6

Visual examples illustrating results of our network and comparison networks. (A) RGB image. (B) Ground truth. (C) Ours (MobileNetV3-Large).
(D) LR-ASPP. (E) DeepLabV3. (F) DeepLabV3+. (G) FANet.

used as the backbone, the proposed network was the fastest
among the comparison networks, but somewhat less accurate.

Our network achieved a large IoU value for the background,
probably because the background dominated the images,
making the network pay more attention to the background.
This problem can be alleviated by reshaping the loss function
by down-weighting the background and up-weighting other

objects (Ronneberger et al., 2015). Besides, the IoU value of the
branch class was lower than that of the fruit class. A possible
reason was that some branches were very thin and hence their
detailed information was easy to be lost, making them hard
to segment. Although we have fused multi-layer features to
solve such a problem, MobileNetV3 was too lightweight to
provide enough features. Future work will consider adding
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a detail branch (Yu et al., 2021) to the backbone to extract
detailed information.

Some qualitative results were shown in Figure 6. Visually,
our network was more accurate in tree-part segmentation.
Specifically, the developed network could capture the details
of most thin branches, whereas the comparison networks
struggled to segment the thin branches, as shown in the yellow
boxes in columns 1–3 of Figure 6. Besides, our network
outperformed the comparison networks in the recognition
ability of fruits, as shown in the while boxes in column
4 of Figure 6. The results validate the effectiveness of the
developed attention module and feature aggregation module.
Although most of the branches were identified, some thin
branches seemed to be difficult to identify. In robotic harvesting,
the thin branches might clog the end effector, causing shear
failure. Therefore, future work will focus on improving the
segmentation accuracy of thin branches. A relevant video can be
found at: https://www.bilibili.com/video/BV1nS4y147wa/?vd_
source=d082953b9cfe065d2d003486f259e84f.

Conclusion

This study aimed to develop a tree-part segmentation
network that can segment fruits and branches efficiently and
accurately for harvesting robots to avoid obstacles. Experimental
results validated that the proposed network can accomplish the
research objective. Some specific conclusions drawn from the
study were given as follows:

(1) A tree-part dataset was collected. The dataset consists of
891 RGB images captured in the fields. Each image is
manually annotated in a per-pixel fashion, which took us
almost 2 months to label. To the best of our knowledge, this
is the first tree-part dataset used to help harvesting robots
avoid obstacles.

(2) A tree-part segmentation network was developed, which
consists of four components: a lightweight backbone,
CASM, FAM, and segmentation head. Here, CASM was
used to enhance informative channels and locations
in the feature maps, and FAM was designed to fuse
multi-layer feature maps to improve the segmentation
accuracy. Experiments on the test set shows that when
using MobileNetV3-Large as the backbone, the network
achieved an IoU of 63.33, 66.25, and 93.12% for the
branches, fruits and background, respectively, at a speed
of 2.36 billion FLOPs. These performance values validates
that the network could segment tree parts efficiently and
quite accurately. However, the IoU value of the branch
class was the lowest, probably because the max-pooling
operations in the backbone lost the detailed information
of the thin branches, thus making the thin branches
difficult to segment.

The proposed network could be transferred to segment
other fruits by fine-tuning on new datasets. Future research
will add two more classes (soft branch and hard branch) to
the current dataset to allow harvesting robots to push away
soft branches and avoid hard ones for better fruit picking.
Furthermore, future work will attempt to add a detailed path in
the backbone to preserve the detailed information of the input
image, thus improving the accuracy.
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