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Coupling life cycle assessment
and global sensitivity analysis to
evaluate the uncertainty and key
processes associated with
carbon footprint of rice
production in Eastern China
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An accurate and objective evaluation of the carbon footprint of rice production

is crucial for mitigating greenhouse gas (GHG) emissions from global food

production. Sensitivity and uncertainty analysis of the carbon footprint

evaluation model can help improve the efficiency and credibility of the

evaluation. In this study, we combined a farm-scaled model consisting of

widely used carbon footprint evaluation methods with a typical East Asian rice

production system comprising two fertilization strategies. Furthermore, we

used Morris and Sobol’ global sensitivity analysis methods to evaluate the

sensitivity and uncertainty of the carbon footprint model. Results showed that

the carbon footprint evaluation model exhibits a certain nonlinearity, and it is

the most sensitive to model parameters related to CH4 emission estimation,

including EFc (baseline emission factor for continuously flooded fields without

organic amendments), SFw (scaling factor to account for the differences in

water regime during the cultivation period), and t (cultivation period of rice), but

is not sensitive to activity data and its emission factors. The main sensitivity

parameters of the model obtained using the two global sensitivity methods

were essentially identical. Uncertainty analysis showed that the carbon

footprint of organic rice production was 1271.7 ± 388.5 kg CO2eq t–1 year–1

(95% confidence interval was 663.9–2175.8 kg CO2eq t–1 year–1), which was

significantly higher than that of conventional rice production (926.0 ± 213.6 kg

CO2eq t–1 year–1, 95% confidence interval 582.5-1429.7 kg CO2eq t–1 year–1)

(p<0.0001). The carbon footprint for organic rice had a wider range and greater

uncertainty, mainly due to the greater impact of CH4 emissions (79.8% for
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organic rice versus 53.8% for conventional rice). EFc, t, Y, and SFw contributed

the most to the uncertainty of carbon footprint of the two rice production

modes, wherein their correlation coefficients were between 0.34 and 0.55

(p<0.01). The analytical framework presented in this study provides insights into

future on-farm advice related to GHG mitigation of rice production.
KEYWORDS

carbon footprint, global sensitivity analysis, morris sensitivity analysis, sobol’
sensitivity analysis, uncertainty analysis, life cycle assessment
GRAPHICAL ABSTRACT
1 Introduction

Rice (Oryza sativa L.) is a staple food for nearly half of the

world’s population, and global rice consumption is projected to

increase from 480 million tons (Mt) of milled rice in 2014 to

nearly 550 Mt in 2030 (FAO, 2019). Driven by global population

and economic growth, global rice production faces the twin

challenges of increasing productivity to meet demand and

reducing greenhouse gas (GHG) emissions to mitigate climate

change (Yuan et al., 2021). Paddy fields are an important source

of GHG emissions, accounting for about 50% of total CH4

emissions and 10% of total N2O emissions from cropland,

respectively (Feng et al., 2021a). Carbon footprint evaluation

models are important for understanding and quantifying

emissions from rice production systems and give a better

understanding of emission hotspots and mitigation opportunities.

Such models are based on a life cycle assessment approach, the use

of which typically varies in target, scope, geographic area, and time

span, and can be applied to field scale (XuQ. et al., 2020; Zhou et al.,

2022), regional scale (Chen et al., 2021; Xu Z. et al., 2020), and

national or global scale (Lathuillière et al., 2014) GHG assessments.

Though such models draw on generic methodologies (IPCC, 2006),
02
the rough methods required for country-level assessments are often

insufficient to facilitate detailed policy analysis of the food sector.

Consequently, the need for system-level assessments of GHG

emissions from food production systems is growing (Singh et al.,

2020; Arunrat et al., 2021).

However, the paddy field is complex, and their GHG emissions

are strongly influenced by factors such as tillage practices (Xu et al.,

2022), fertilization strategies (Liu et al., 2016), and irrigation regimes

(Jiang Y. et al., 2019). The existing modelling methods are limited in

their ability to accurately capture these complexities, which presents

a significant challenge for both modelers and those seeking to

leverage such methods for decision-making. Therefore, the carbon

emission model of agricultural production system has considerable

uncertainty, and it is necessary to conduct sensitivity analysis and

uncertainty analysis on the carbon footprint evaluation model,

which will help to provide reference for further optimizing

parameters and reducing the uncertainty of evaluation results in

the future.

Sensitivity analysis can identify high-sensitivity parameters

from many input parameters, simplify low-sensitivity parameters,

or increase the accuracy of high-sensitivity parameters through

more accurate monitoring methods, thereby increasing the overall
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accuracy of the evaluation model (Reisinger et al., 2017;

Jóhannesson et al., 2020). At present, the sensitivity analysis of

the carbon footprint evaluation model mainly adopts the local

sensitivity method, which only changes one input parameter at a

time and evaluates the impact of a single parameter change on the

evaluation results. For example, a previous study explored the

impact of changes in input parameters on output results in an

LCA assessment of Spanish red wine production (Meneses et al.,

2016). Xu et al. studied the impact of input parameter changes ( ±

40%) on environmental indicators such as global warming,

eutrophication, and acidification, with respect to Chinese export

and domestic green tea production (Xu et al., 2021). The changes in

coal consumption in tea processing stage are the most sensitive to

global warming and acidification, while NH3 volatilization in tea

cultivation stage is the most sensitive to eutrophication. The crops

involved in the above studies were mainly derived from drylands,

whose GHG emissions are significantly different from those of

paddy fields. All the aforementioned studies used the local

sensitivity method, which ignores the nonlinearity of the carbon

footprint evaluation model to a certain extent, as well as the

influence of the interaction between parameters on the output

results. The global sensitivity method comprehensively considers

the influence of each parameter and the interaction between

parameters on the output result. The commonly used global

sensitivity methods include Morris, EFAST, and Sobol’ method

(Saltelli et al., 2008). Currently, there is no report on the global

sensitivity analysis of the carbon footprint of rice production, and it

is unknown whether the sensitivity of the model parameters will be

affected by management strategies.

A model is a description of a real system in nature after a

series of assumptions and generalizations, which will inevitably

lead to a certain amount of uncertainty. Uncertain factors such

as monitoring errors, lack of key data, insufficient data

representation, selection of accounting models, and allocation

methods are inevitable in the carbon footprint evaluation

process (De Koning et al., 2010). The uncertainty of carbon

footprint assessment results often comes from the uncertainty

of input parameters, including activity data, emission factors,

model parameters, and scenario selection, which are

propagated through the model and lead to uncertainty in

estimated values (Milne et al., 2014). In ecological footprint

evaluation studies lacking uncertainty analysis, the evaluation

results are often questioned and are unconvincing in the

interpretation stage (Zhuo et al., 2014; Zhang et al., 2021).

Therefore, evaluation and quantification of the uncertainty of

input parameters on the results are essential for the analysis of

carbon footprint evaluation results. They can help researchers

choose more reliable data sources and effectively optimize the data

collection plan, and consequently, promote the application and

development of product carbon footprint evaluation methods.

Given the impact of uncertainty in interpreting model

outputs, as well as the importance of rice production to GHG
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budgets on a global scale, in this study, we aimed to identify the

causes and uncertainties in modelling the farm-scaled GHG

footprint affecting rice production in China. We developed a

global sensitivity and uncertainty analysis method for system-

scaled carbon footprint evaluation and application to rice

production with different fertilization strategies, in order to

achieve the following: 1) determine the most sensitive parameter

in the carbon footprint evaluation of rice production, and

improve the evaluation efficiency and accuracy of the model;

2) improve the robustness of the evaluation results and

determine the reliability of the evaluation results through

uncertainty analysis, providing technical support for further

optimizing parameters and reducing the uncertainty of

evaluation results in the future.
2 Materials and methods

2.1 Carbon footprint evaluation
methodology

2.1.1 System boundary and functional unit
The carbon footprint was calculated by following the

methodology from the IPCC Guidelines for National

Greenhouse Gas Inventories (Hergoualc’h et al., 2019). The

system boundary of life-cycle product carbon footprint was

from cradle to farm gate, including indirect greenhouse gas

(GHG) emissions from the production, transportation, and use

of agricultural inputs, as well as direct GHG emissions from the

farming stage. The functional unit was expressed as kg CO2eq t
−1

year−1 rice product (dry matter).
2.1.2 GHG emission calculation from
upstream stage

Based on Hergoualc’h et al. (2019), the GHG emissions from

upstream stage was calculated by Equation (1).

GHGraw material =on
i=1(Ai � ji) (1)

where GHGraw material is the sum of GHG emissions from

upstream stage (kg CO2eq ha–1 year−1); Ai refers to the

amount of agri-material inputs in the upstream stage per

hectare, including the inputs of rice seeds, chemical fertilizers,

organic fertilizers, pesticides, herbicides, and fungicides, as well

as the consumption of electricity and diesel during irrigation,

land preparation, and harvesting (kg ha–1 or kWh ha–1); and ji

refers to the carbon emission coefficients of different agricultural

materials (kg CO2eq·Unit
–1), which were mainly derived from

the Chinese Life Cycle Database (CLCD v0.8; https://efootprint.

net/login) and the Swiss Ecoinvent 2.2 database (https://

simapro.com/databases/ecoinvent/).
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2.1.3 Field GHG emissions
The CH4 emissions from rice cultivation were calculated using

Equation (2), which is based on Hergoualc’h et al. (2019) (Tier 2).

QCH4
= EFi� t � A (2)

where QCH4
denotes annual methane emissions from rice

cultivation (kg CH4 ha
–1), EFi denotes adjusted daily emission

factor for a particular harvested area (kg CH4 ha–1 day–1), t

denotes cultivation period of rice (day); and A denotes annual

harvested area of rice (ha year–1).

Emissions from each different region can be calculated by

multiplying a baseline default emissions factor with various scaling

factors, as shown in Equation (3) (Hergoualc’h et al., 2019).

EFi = EFC � SFW � SFP � SFO � SFs,r (3)

where EFc is the baseline emission factor for continuously

flooded fields without organic amendments; SFw is a scaling

factor to account for the differences in water regime during the

cultivation period; SFp is a scaling factor to account for the

differences in water regime in the pre-season before the

cultivation period; SFO is a scaling factor that should vary for

both type and amount of organic amendment applied and can be

calculated by equation (4); and SFs,r is a scaling factor for soil

type, rice cultivar, etc., if available.

The default conversion factor for farmyard manure was

calculated by Equation (4) (Hergoualc’h et al., 2019):

SFo = (1 +oiROAi � CFOAi)
0:59 (4)

where SFO is the scaling factor for both type and amount of

organic amendment applied; ROAi is the application rate of

organic amendment i, in dry weight for straw and fresh weight

for others in tons ha–1; and CFOAi is the conversion factor for

organic amendment i (in terms of its relative effect, with respect

to straw applied shortly before cultivation).

Hergoualc’h et al. (2019) provided an estimation method for

N2O emission, where the direct emissions of N2O are calculated

as follows (Tier 1):

QN2O   (Direct) = FSN + FONð Þ � EF1 + FCR � EF1FR½ �
� 44=28 (5)

where QN2O   (Direct) is the direct N2O emissions (kg N2O year–1);

FSN is the annual amount of synthetic N fertilizer applied to soils

(kg N year–1); FON is the annual amount of animal manure,

compost, sewage sludge and other organic N additions applied to

soils (kg N year–1); FCR is the annual amount of N in crop

residues (kg N year–1); EF1 is the emission factor for N2O

emissions from N inputs (kg N2O-N (kg N input)–1); and

EF1FR is the emission factor for N2O emissions from N inputs

to flooded rice, kg N2O-N (kg N input)–1.

The formula for estimating indirect N2O emissions was as

follows (Hergoualc’h et al., 2019):
Frontiers in Plant Science 04
QN2O   (Indirect) = FSN � FracGASF + FON � FracGASMð Þ½ �
� EF4 + FSN + FON + FCRð Þ
� FracLEACH−(H) � EF5 � 44=28 (6)

where QN2O   (Indirect) denotes the indirect N2O emissions (kg

N2O year–1); FracGASF is the fraction of synthetic N fertilizer that

volatilizes as NH3 and NOx, kg N volatilized (kg of N applied)–1;

FracGASM is the fraction of applied organic N fertilizer material

(FON) that volatilizes as NH3 and NOx, kg N volatilized (kg of N

applied or deposited)–1; EF4 is the emission factor for N2O

emissions from atmospheric deposition of N on soils and water

surfaces, kg N–N2O (kg NH3–N+NOx–N volatilized)–1;

FracLEACH-(H) is the fraction of all N added to, or mineralized

in, managed soils in regions where leaching or runoff occurs that

is lost through leaching and runoff, kg N (kg of N additions)–1;

and EF5 is the emission factor for N2O emissions from N

leaching and runoff, kg N2O–N (kg N leached and runoff)–1.
2.1.4 Calculation of carbon footprint
Yield-based carbon footprint (CF) is calculated using

Equation (7):

CF = GHGraw material + QCH4
� 25 + QN2O   (Direct) + QN2O   (Indirect)

��

(7)

where CF is the carbon footprint per unit of yield for rice

production (kg CO2eq t
–1 year−1); Y is the yield of rice (kg ha–1).

25 and 298 are the global warming potentials of CH4 and N2O

on a 100-year scale (IPCC, 2013).
2.2 Sensitivity analysis

2.2.1 Scenarios, data source, and selection
of parameters

Sensitivity analysis was performed under two fertilization

scenarios: conventional rice production (CON) and organic rice

production (ORG) modes. The geographic area is in Jiangsu

Province, which represents an important rice-producing area in

eastern China. Collection of agricultural input data of CON and

ORG was from 15 and 9 farms through survey questionnaire in

2020–2021. The questionnaire on management practices

included: (1) chemical fertilizers, pesticide, fungicide,

herbicide, farm yard manure, irrigation water, rice seed,

electricity and diesel consumption; (2) yield of rice. In the

CON mode, chemical fertilizer and pesticides were used to

guarantee high productivity and pest control, while in the

ORG mode, only farmyard manure was used and the use of

pesticides was not permitted. Rice seed and some fuels, such as

electricity and diesel, were used for agricultural operations such

as land preparation and irrigation for both scenarios. The

calculation of CO2 emissions from manufacture of agricultural
frontiersin.org
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machinery, i.e., tractor, combine harvester, and pump, is often

omitted from carbon footprint studies (Yodkhum et al., 2017).

These agricultural machines were excluded from the system in

this study because of the lack of actual data on each machine’s

lifetime and its overall use times. Moreover, the change in soil

carbon sequestration was not considered in this study due to

missing data.

The parameters included in the sensitivity analysis of the

carbon footprint evaluation model were divided into three

categories: 1) background parameters (the carbon emission

coefficients of different agricultural materials defined in

Equation 1), 2) activity data (the amount of agri-material

inputs defined in Equation 1), and 3) CH4 and N2O

estimation parameters. The variation in each category

parameter and emission factor would be accounted for in the

final result, thereby affecting the objectivity of the final

evaluation result (Sykes et al., 2019). Parameters were assumed

to be independent from each other, and a uniform distribution

was assigned to all parameters because initial information on the

distribution characteristics was limited. Many of the previous

studies have assumed a uniform distribution of data when

encountering similar situations (Vanuytrecht et al., 2014;

Liang et al., 2017). A total of 29 and 21 input factors for CON

and ORG modes were selected, respectively, for sensitivity

analysis (Table A and Table B). Lower and upper boundaries

of the parameters used to design the sensitivity analysis were set

according to expert knowledge and the values recommended by

Hergoualc’h et al. (2019). Specifically, the upper and lower limits

of the background parameters were taken from the mean value ±

10%; the upper and lower limits of the activity data were based

on the maximum and minimum values of the survey data; the

upper and lower limits of the CH4 and N2O estimation

parameters were derived from the empirical values provided

by Hergoualc’h et al. (2019). The effects of parameter variation

on the output of the carbon footprint model were evaluated.
2.2.2 Local sensitivity analysis
Local sensitivity analysis observes the impact of input

parameter changes on the output by changing the value of the

input parameters one by one, while the remaining parameters

remain unchanged. In this study, each input parameter was

changed by ±10%, and then the change in carbon footprint was

observed, so that the sensitivity (Ei) of each parameter could be

obtained, as calculated by Equation (8):

Ei = DCF=DAi (8)

where Ei was the sensitivity of the input parameter Ai; DAi

denotes the change rate of the input parameter Ai (%), with the

value of ±10%; and CF denotes the corresponding rate of change

of the evaluation result CF when the input variable Ai has a

change rate of DAi. The larger the |E| is, the more sensitive the

evaluation result CF is to the input variable A.
Frontiers in Plant Science 05
2.2.3 Global sensitivity analysis
2.2.3.1 Morris method

The Morris method calculates the elementary effect (EE) of

each parameter on the selected output. These elementary effects

allow effects of all parameters on the same output to be

compared. The Morris method uses the following Equation (9)

to calculate the degree of influence (d) of each input parameter

on the output result:

di(xi,…, xk,D) =
½y(x1,…, xi� 1, x1 + D, xi+1,…, xk)�

D
(9)

where i is the number of parameters; y(X) is the output result of

the model; and X=(x1,…,xk) is the k-dimensional parameter

input vector. Upon discretizing the parameter value range (ximin,

ximax), each parameter can only take a value from these p values

(ximin,ximin+1/(p-1)×(ximax-ximin), ximin+2/(p-1)×(ximax-ximin),

…,ximax), where p is the parameter level. Due to the

randomness of the parameter values of the Morris method, it

is easy to cause value errors; thus, r repetitions are required, and

the total number of runs of the model is r(k+1) times, where k

represents the number of parameters. In this study, k was 29 and

21 for CON and ORG mode, respectively. The sensitivity of each

parameter is measured by the mean (m) and standard deviation

(s) of the r “elementary effects”. The larger the value of m, the
more sensitive the parameter is to the output result. The value of

s represents the interaction between parameters, and the larger

the value of s, the stronger the interaction between the

parameter under investigation and the other parameters.

The Morris sensitivity analysis for input samples were

performed with SimLab (2010), and the evaluation of the

carbon footprint model output sets was automated with

SimLab (2010). The sensitivity analysis was executed by

sampling r = 10 elementary effects (Morris, 1991). The model

finally ran 300 and 220 times in total for CON and ORG

mode, respectively.

2.2.3.2 Sobol’ method

Sobol’ method is a variance-based global sensitivity analysis

method, which quantitatively evaluates the effect of each input

parameter and the interaction between parameters on the output

variable by decomposing the variance of the output variable.

When there are m input parameters to be analyzed, the D(Y) of

the output result is defined as follows:

D(y) =o
i
Di + o

1≤i<j≤m
Dij +⋯+D1,2,⋯,m (10)

where Di is the variance generated by parameter i; Dij is the

variance produced by the interaction of parameters i and j; Dijk is

the variance resulting from the interaction of parameters i, j, and

k; and D1,2,…,m is the variance produced by the joint interaction

of m parameters.

For parameter i, the first-order sensitivity index (Si) can be

used to reflect the sensitivity of that single parameter, and the
frontiersin.org
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full-order sensitivity index (STi) can be used to indicate the

common effect of that parameter and all other parameters. The

equations to calculate these indices are as follows:

Si =
Di

D
(11)

STi = 1 −
D: i

D
(12)

where D:i represents the variances of parameters other than

parameter i.

The input samples for sensitivity analysis were generated

with SimLab (2010), and Sobol’ analysis method was executed

using m = 29 and 21 input factors for CON and ORG mode,

respectively, as well as a sample size of n(m + 2) model input sets,

where n is defined as having a range of 100 or higher (Saltelli

et al., 2000). In this study, we used n = 496 for a total of 15376

and n = 490 for a total of 11270 input parameter sets for

conventional rice, and organic rice, respectively.
2.3 Uncertainty analysis

Uncertainty analysis helps to increase the robustness of

evaluation results (Milne et al., 2014; Sykes et al., 2019). Sobol’

analysis embeds a Monte Carlo module in the SimLab (2010)
Frontiers in Plant Science 06
software, which enables the quantification of propagation of the

uncertainties in the model inputs through the model. Based on

the simulation values of Sobol’ analysis described above, an

uncertainty analysis was conducted. Mean, median, standard

deviation, minima, maxima, and 2.5% and 97.5% quantiles of

carbon footprints with a 95% confidence interval were

calculated, and the frequency histogram and the cumulative

distribution function were also provided.

2.4 Statistical analysis

Statistical analyses were carried out using SPSS 22.0 software,

and t-test of least significant difference (LSD)method was used to

analyze the differences in carbon footprint between CON and

ORG modes, followed by least significant difference (LSD) tests

(p< 0.05) with a significance level of 5%. Pearson correlation

analysis was used between input parameters and carbon footprint

(two-tailed).

3 Results

3.1 Local sensitivity analysis

The sensitivity (Ei) of each parameter can be obtained by

changing each input parameter by ±10% and then observing the

change in carbon footprint (Figure 1). The impact of CH4
B

A

FIGURE 1

Sensitivity analysis of each parameter of the carbon footprint evaluation model to the carbon footprint by a local sensitivity analysis in (A)
conventional and (B) organic rice production.
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emission estimation parameters on carbon footprint is higher

than that of emission factors, activity data, and N2O emission

estimation parameters. For conventional rice production mode,

among the CH4 emission estimation parameters, EFc, t, SFw, and

SFp had the greatest effect on carbon footprint (with an Ei of

±56.1%), followed by Ex (with an Ei of ±28.1%), CFOAs which

was ranked the last (with an Ei of ±21.5%). Among activity data,

the Ei of Y, Aurea, and Celec was ±24.6%, ± 17.2%, and ±10.4%,

respectively; while the Ei of other parameters were lower than

±10%. Emission factors of background database and N2O

emission estimation parameters had relatively low Ei. The

trend was similar in the CON and ORG modes. The above

analysis showed that it was impossible to know which parameter

was the most sensitive from the local sensitivity analysis alone, as

the sensitivities (Ei) of EFc, t, SFw, and SFp were consistent.
3.2 Global sensitivity analysis

3.2.1 Morris sensitivity analysis
Figures 2 A–B shows the mean (m) and variance (s) of the

Morris sensitivity index of the input parameters of the carbon

footprint evaluation model to carbon footprint of CON and

ORG modes. Overall, the estimation parameters of CH4

emission generally showed greater sensitivity than emission

factors of background database, activity data, and N2O

emission estimation parameters. For conventional rice

production, the sensitivity of EFc (m=3370.0 kg CO2eq t–1

year−1, s=1080.0 kg CO2eq t–1 year−1), SFw (m=2790.0 kg

CO2eq t–1 year−1, s=1150.0 kg CO2eq t–1 year−1), and t

(m=2740.0 kg CO2eq t–1 year−1, s=930.0 kg CO2eq t–1 year−1)

to carbon footprint was high among the sensitivities of CH4

emission estimation parameters. A higher s indicates that these

three parameters interact strongly with other parameters.

CFOAs, EF5, and FracLEACH-(H) had relatively high sensitivity

to carbon footprint, and thus, are relevant to the estimation of

CH4 and N2O emissions. Notably, although EF1FR had a

relatively high m (1980.0 kg CO2eq t–1 year−1), its low s
(132.7 kg CO2eq t–1 year−1) indicated weak interaction with

other parameters. For organic rice production mode, the

sensitivities of EFc, SFw, and t to carbon footprint were also

high, among the sensitivities of various parameters. The

difference is that the m and s of these three parameters in the

ORGmode were higher than those in the CONmode, indicating

that CH4 emissions have a greater impact on the carbon

footprint of the ORG mode.

3.2.2 Sobol’ sensitivity analysis
The Sobol’ first-order indices (Si) and Sobol’ total sensitivity

(STi) as per Sobol’ global sensitivity analysis, are shown in

Figure 2C–D. Similar to the results of the Morris analysis, the

sensitivity indices of CH4 emission estimation parameters were

the highest among those of all parameters associated with Sobol’
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sensitivity analysis. EFc, SFw, and t collectively explained 15.9%

−27.0% and 20.9%−40.8% of the variability of carbon footprint

for CON and ORG, respectively. The difference between STi and

Si of a parameter is the degree of influence of the interaction

between that parameter and other parameters on the output

results of the carbon footprint evaluation model. The larger the

difference, the stronger the interaction of the parameter. EFc,

SFw, and t indicated greater interaction with other parameters,

which corresponded to the s values noted as per the Morris

analysis method. Overall, the results of the two global sensitivity

analyses were consistent, and the results show that the CH4 and

N2O emission estimation parameters were more sensitive to the

carbon footprint of CON mode, whereas only the CH4 emission

estimation parameters were more sensitive to the carbon

footprint of ORG mode.

3.2.3 Comparison between Morris and
Sobol’ method

Two methods were used for the global sensitivity analysis;

correlations between the full-order sensitivity index (STi) values

calculated as per Sobol’ method and the m values calculated as

per Morris method for CON and ORG modes are shown in

Figure S1. The twomethods yielded r values of 0.90 for CON and

0.96 for ORG, indicating a very high correlation between the two

methods used.
3.3 Uncertainty analysis

Uncertainty analysis can be used to determine the correlation

between input parameters and output results, which helps increase

the robustness of results during the interpretation stage in LCA

studies. Thus, we conducted an uncertainty analysis based on

15360 outputs of CON and 11264 outputs of ORG using Sobol’

analysis. Figure 3A shows the frequency histogram of simulation

outputs of CON and ORG modes. The distributions of carbon

footprints of both modes were positively skewed, with skewness of

0.82 and 0.78 for CON and ORG, respectively. Simulated carbon

footprint was found to be higher for the ORGmode than the CON

mode, as indicated by a steeper line for the former (Figure 3B).

Figure 3C shows a violin plot of the simulated carbon footprint of

the two rice production modes. The mean value was 926.0 ±

213.6 kg CO2eq t–1 year−1 for CON mode and 1271.7 ± 388.5 kg

CO2eq t–1 year−1 for ORG mode, and the difference reached a

significant level (p<0.0001) (Table 1). The range of carbon

footprints for CON and ORG modes was 424.6–1946.9 kg

CO2eq t–1 year−1 and 491.6–3092.8 kg CO2eq t–1 year−1,

respectively. The 25% percentile and 75% percentile of CON

mode were 772.8 kg CO2eq t–1 year−1 and 1044.3 kg CO2eq t–1

year−1, respectively, while those of ORG mode were 979.6 kg

CO2eq t
–1 year−1 and 1495.8 kg CO2eq t

–1 year−1, respectively. The

CON mode exhibited 5% and 95% CIs of 582.5 and 1429.7 kg

CO2eq t–1 year−1, respectively, whereas the ORG mode exhibited
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5% and 95% CIs of 663.9 and 2175.8 kg CO2eq t–1 year−1,

respectively. The reason for ORG mode showing a broader

range and greater uncertainty of carbon footprint results might

be that it was affected by emissions of CH4 to a greater degree.

Breakdown of the system emissions into different sources is shown

in Figure 3D. The emissions of CH4 accounted for as high as

53.8% and 79.8% for the CON and ORG mode, respectively.

However, the emissions of N2O and embedded carbon emission in

the production of upstream agri-materials accounted for 18.5%

and 27.6% for CON mode, respectively, and 11.0% and 9.1% for

ORG mode, respectively.

We ranked the top 10 input parameters with greater

uncertainty affecting the carbon footprint according to the
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correlation coefficient (Figure 4). In addition to the CH4

estimation parameters, the system output (Y) also contributed

significantly to the uncertainty of the carbon footprint.

Specifically, taking conventional rice as an example, EFc had

the largest impact on the uncertainty of the carbon footprint,

with a correlation coefficient r of 0.50**; the correlation reached

an extremely significant level (p<0.01). The next most influential

inputs were t (r=0.45**), Y (r=–0.39**), and SFw (r=0.35**).

Several parameters related to N2O emission estimation (EF1FR,

FracLEACH-(H), and EF5) had relatively larger impacts on the

uncertainty of carbon footprint, while others had relatively

smaller impacts. Similarly, for organic rice, the most influential

inputs were EFc (r=0.55**), t (r=0.49**), SFw (r=–0.40**), and Y
B

C

D

A

FIGURE 2

Sensitivity analysis indices of conventional (CON) and organic (ORG) rice production modes, as per global sensitivity analysis. Morris mean effect
(m) to the carbon footprint, as per Morris method in (A) CON and (B) ORG. Sobol’ first-order indices (Si), and Sobol’ total sensitivity (STi) to, the
carbon footprint, as per a Sobol’ variance-based method in (C) CON and (D) ORG.
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(r=–0.34**); the correlation reached an extremely significant

level (p<0.01). However, other parameters had relatively

smaller impacts on the uncertainty of the carbon footprint,

with correlation coefficient r not being more than 0.15.
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4 Discussion

The current study involved a novel approach to identify and

quantify the sources and effects of sensitivity and uncertainty in
B C D

A

FIGURE 3

Uncertainty analysis of carbon footprint (CF) of conventional (CON) and organic (ORG) rice production. (A) Frequency histogram of CON (left)
and ORG (right); (B) cumulative distribution function; (C) violin plot of carbon footprint based on Sobol’ variance-based method. **** indicates
significant difference at p<0.0001 level by a t-test of least significant difference (LSD) method. (D) Breakdown of the total CF (calculated based
on Sobol’ variance-based method) to the level of individual emissions sources of CON and ORG. Error bars indicate 5-95% confidence interval
(CI) for each source, calculated via Monte Carlo simulation.
TABLE 1 Uncertainty analysis statistics of all output responses of conventional and organic rice production modes, as determined using Sobol’
global sensitivity analysis simulations.

Item Unit Conventional rice Organic rice

No. of values – 15376 11270

Minimum kg CO2eq·t
−1 year−1 424.6 491.6

25% Percentile kg CO2eq·t
−1 year−1 772.8 979.6

Median kg CO2eq·t
−1 year−1 902.2 1235.3

75% Percentile kg CO2eq·t
−1 year−1 1044.3 1495.8

Maximum kg CO2eq·t
−1 year−1 1946.9 3092.8

Mean kg CO2eq·t
−1 year−1 926.0 1271.7

S.D. kg CO2eq·t
−1 year−1 213.6 388.5

Skewness – 0.82 0.78

Kurtosis – 1.12 0.71

5% CI kg CO2eq·t
−1 year−1 582.5 663.9

95% CI kg CO2eq·t
−1 year−1 1429.7 2175.8
S.D., standard deviation; CI, confidence interval.
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the carbon footprint of rice production, based on IPCC

guidelines. Through the comparison of local sensitivity

analysis and global sensitivity analysis of carbon footprint

evaluation of rice production, in this study, we found that

although the local sensitivity analysis identifies the more

sensitive input parameters, the nonlinearity of the evaluation

model cannot be considered satisfactory. It is impossible to

determine which parameter is the most sensitive. From Figures

S2–S3, it is clear that the carbon footprints of CON and ORG

modes had extremely significant positive correlations with CH4

emission, wherein the correlation coefficient r reached 0.79 and

0.91, respectively. However, there is no reliable linear correlation

between the parameters (EFc, SFw, and t) involved in the

estimation of CH4 emissions and carbon footprint. This

suggests that the carbon footprint model exhibits a certain

amount of nonlinearity, and the two global sensitivity analyses

used in this study (Morris and Sobol’ method) account for the

interaction among the input parameters.

The results of this study showed that the contribution of

CH4 emissions to the carbon footprint of CON and ORG modes

was as high as 53.8% and 79.8%, respectively. This result is

concordant with those of previous studies (Jiang Z. et al., 2019;
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Arunrat et al., 2021; Kashyap and Agarwal, 2021). Therefore, the

uncertainty in the carbon footprint mainly stemmed from the

uncertainty in the estimation of CH4 emissions. CH4 emissions

from paddy field ecosystems were affected by many factors, such

as soil properties, climatic factors, water and nutrient

management strategies, organic substitutions, and rice

varieties, with a great degree of variability (Feng et al., 2021;

Yang et al., 2021). In the process of carbon footprint evaluation,

when the field measurement conditions for CH4 are not

available, notable attention must be paid to the values of EFc,

SFw, and t. The IPCC guidelines provide an estimate of the daily

time step CH4 emissions from paddy fields, and the emission

factor in the model can be modified according to specific water

and fertilizer management or organic substitutions. SFw is a

scaling factor that accounts for the differences in water regime

during the cultivation period. CH4 emission from paddy fields is

the net effect of CH4 generation, oxidation, and transport in soil.

Water status of soil strongly affects the redox environment of

paddy soil (Qian et al., 2022). Therefore, SFw has a remarkable

influence on the estimation of CH4 emissions from paddy fields.

The rice cultivation period (t) is strongly influenced by the rice

variety (Feng et al., 2021; Song et al., 2022). According to the
B

A

FIGURE 4

Tornado graphs showing the model inputs that according to the Pearson Rank correlation coefficient (two-tailed test), affected the uncertainty
in estimated carbon footprint the most for (A) conventional and (B) organic rice production. ** indicates significant difference at p<0.01 level.
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sowing period, growth period, and maturity period, paddy can

be divided into three categories: early paddy, middle paddy, and

late paddy. Generally, the growth period of early paddy is 90-120

days, middle paddy is 120-150 days, and late paddy is 150-170

days (Wang, 2016). Due to the different climatic conditions in

different regions, the cultivation period of the same rice variety

in different regions is different. It can be seen that the variability

of the parameter t is extremely large, which has a notable impact

on the uncertainty of CH4 emission estimation and carbon

footprint evaluation results. The correlation analysis showed

that the system output Y is significantly negatively correlated

with the carbon footprint (p<0.01), and this parameter had a

notable impact on the uncertainty of the carbon footprint

(Figure 4). The value of Y is mainly obtained from

investigation or on-field measurement; thus, it is necessary to

exercise caution when collecting the data. For the accurate values

of the above coefficients, analysts require extensive experience in

agronomy and ecology; this is crucial for increasing the

credibility of the evaluation results. Compared with the

estimation parameters for CH4 emission, the parameters

related to the estimation of N2O emission had lesser influence

on the uncertainty of carbon footprint. Among all the

parameters, EF1FR had the greatest impact on carbon footprint.

This parameter is frequently used in carbon footprint studies of

crop production to quantify N2O emissions from rice fields due

to nitrogen inputs (Yodkhum et al., 2017). In the present study,

the impact of EF1FR on the carbon footprint of CON mode was

greater compared to that of ORG model, owing to the higher

exogenous nitrogen input for CON mode than that for ORG

mode. Activity data and their carbon emission factors had a

lower impact on the carbon footprint than that of parameters

related to the estimation of CH4 and N2O emission. Among

them, fertilizer input, electricity consumption, and system

output (rice yield) had a greater impact on the carbon

footprint, indicating that these coefficients should be given

priority when collecting activity data.

According to the above analysis, adopting more accurate

inventory data will effectively reduce the uncertainty of the

evaluation results. Therefore, this study proposes the following

inventory data collection optimization scheme. Factors related to

greenhouse gas (especially for CH4) estimates should be given

priority, followed by activity data and their emission factors.

System-scale carbon footprint evaluation should use field-

measured CH4 and N2O emission levels as much as possible

because these values correspond to specific rice varieties,

management practices, and soil-climate conditions. In cases

where measured values cannot be provided, experts should be

consulted to determine the parameters involved in the

estimation of GHG emissions. The fundamental requirement

is that the basic research on the mechanism of GHG emissions

from paddy fields should be strengthened, which is crucial for
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improving the modelling of GHG emissions. Therefore, with the

continuous improvement and development of the basic database

of carbon footprint evaluation in the agricultural field, the

relevant carbon emission parameters will have better

temporal representation, statistical representation, geographical

representation, data sources, and technical representation.

The sensitivity and uncertainty analyses of the carbon

footprint of rice production conducted in the current study

provides a research framework that is applicable to crops in

other countries or regions. We strongly recommend that

emission factors or model parameters derived from local soil-

climate conditions be prioritized when other regions use the

analytical framework of this study. The limitations of this study

are as follows. 1) In global sensitivity analysis, parameters were

assumed to be independent from each other. However, in this

study, there were some correlations between parameters, such as

fertilizer application amount and rice yield. The global

sensitivity analysis algorithm will not work if the parameters

vary randomly and there is a correlation between the

parameters. This is a shortcoming of this study. In future

research, the parameters need to be independent of each other

and the algorithm needs to be further improved, which will help

to improve the credibility of the evaluation results. 2) The

fertilizers in the activity data in this study are the commonly

used urea and farmyard manures. The impact of activity data

and their emission factors on carbon footprint uncertainty may

change when new fertilizers such as nitrification inhibitors and

biochar-based fertilizers are used. 3) The results of this study

suggested that different fertilization scenarios have a large

impact on carbon footprint uncertainty. However, this study

did not consider scenarios such as different rice varieties,

irrigation regimes, and tillage practices, which should be

addressed in future studies.
5 Conclusions

This study provided a general approach to the sensitivity and

uncertainty analysis of a system-scaled carbon footprint

evaluation model for crop production, which is essential for

objective, accurate, and efficient accounting of GHG emissions

from crop production. Local sensitivity analysis cannot consider

the nonlinearity of the carbon footprint evaluation model, while

global sensitivity analysis overcomes this problem and effectively

identifies the key parameters of the model. The carbon footprint

evaluation model was most sensitive to model parameters related

to CH4 emission (primarily EFc, SFw, and t), while it was

relatively insensitive to N2O emission estimation parameters,

activity data, and its emission factors. The main model

sensitivity parameters of Morris and Sobol’ global sensitivity

analysis methods were essentially the same. Uncertainty analysis
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results based on the Sobol’ method showed that the carbon

footprint of CON mode was 926.0 ± 213.6 kg CO2eq t–1 year–1

with 95% confidence interval (582.5, 1429.7), and the carbon

footprint of ORG mode is 1271.7 ± 388.5 kg CO2eq t–1 year–1

with 95% confidence interval (663.9, 2175.8); the latter is

extremely significantly higher than the former (p<0.0001). EFc,

t, Y, and SFw contributed the most to the uncertainty of the

carbon footprint of both rice production modes, and the

correlation coefficient r was between 0.34 and 0.55; the r

values for these parameters were very significant (p<0.01).

Certainty can effectively improve the robustness and credibility

of evaluation results. Reducing the uncertainty of these

coefficients can effectively improve the robustness and

credibility of the evaluation results. The analytical framework

developed in the current study is applicable to other crops in

different regions, and it can be used to guide researchers to

formulate data inventory collection and optimization plans for

carbon footprint evaluation of crop production, as well as to help

policy makers assess whether the GHG mitigation is significant

in future grain production.
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