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Plant non-harvest changes element circulation and has a marked effect

on element sinks in the ecosystem. In this study, a field investigation

was conducted on the fixation of nitrogen and phosphorus in Miscanthus

lutarioriparius, the most dominant plant species in the Dongting Lake

wetlands. Further, to quantitatively compare the difference in nitrogen and

phosphorus sinks between harvest and non-harvest, an in situ experiment

on the release of the two elements from two types of litters (leaves

and stems) was studied. The nitrogen concentrations in the plant had no

significant relationship with the environmental parameters. The phosphorus

concentrations were positively related to the plot elevation, soil organic

matter, and soil total potassium and were negatively related to the soil

moisture. The leaves demonstrated a higher decomposition coefficient than

that of the stems in the in situ experiment. The half decomposition time

was 0.61 years for leaves and 1.12 years for stems, and the complete

decomposition time was 2.83 years for leaves and 4.95 years for stems.

Except for the nitrogen concentration in the leaves, all the concentrations

increased during the flood period. All concentrations unsteadily changed

in the backwater period. Similarly, except for the relative release index of

nitrogen in the leaves, all the relative release indices decreased in the flood

period. At the end of the in situ decomposition experiment, the relative release

indices of both the nitrogen and phosphors were greater than zero, indicating

that there was a net release of nitrogen and phosphorus. Under the harvest

scenario, the aboveground parts of the plant were harvested and moved

from the wetlands, thus increasing the nitrogen and phosphorus sinks linearly

over time. The fixed nitrogen and phosphorus in the aboveground parts

were released under the non-harvest scenario, gradually accumulating the

nitrogen and phosphorus sinks from the first year to the fifth year after non-

harvest, reaching a maximum value after the fifth year. This study showed that
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the nitrogen and phosphorus sinks greatly decreased after the non-harvest

of M. lutarioriparius compared to that after harvest. It is recommended to

continue harvesting the plant for enhancing the capacity of element sinks.

KEYWORDS

nitrogen sinks, phosphorus sinks, harvest, non-harvest, litter decomposition, relative
release indices

Introduction

A large amount of nitrogen and phosphorus has been
released into the environment in the past several decades,
causing great threats to the ecosystem (Grizzetti et al.,
2020). Approximately 605 million moles of nitrogen and 36
million moles of phosphorus are reportedly inputted into the
Narragansett Bay each year, eventually getting deposited in
the sediment (Nixon et al., 2008). Recently, the nitrogen and
phosphorus concentrations in the sediments of the major rivers
of China (such as the Yangtze River, Yellow River, and Huai
River) were found to be much higher than the soil background
values (Yang et al., 2017). This nitrogen and phosphorus will
be released from the sediments again and decrease the water
quality and accelerate eutrophication (Jin et al., 2006). Due to
their important roles in element sinks, plant species such as
Pistia stratiotes, Eichhornia crassipes, and Phragmites australis
are commonly used to remove the nitrogen and phosphorus
from aquatic ecosystems (Lu et al., 2010; Nash et al., 2019;
Rezania et al., 2019).

For plants, the capacity of nitrogen and phosphorus
sinks depends on the amount of elements fixed in the
plant. Nitrogen and phosphorus fixation is a biological
process and is associated with certain environmental factors.
Studies have shown soil pH to be one of the main
factors affecting the fixation of phosphorus (Barrow, 2017).
In high soil moisture conditions, low oxygen availability
limits nitrogen fixation (Sajedi et al., 2012). Under the
comprehensive influence of environmental factors, plant
organs exhibit different nitrogen and phosphorus allocation
patterns. For example, compared with stems and roots,
the leaves in 30 species of desert plants demonstrated
higher nitrogen and phosphorus concentrations (Luo et al.,
2021). Unlike terrestrial plants, aquatic plants can obtain
nitrogen and phosphorus from both soil and water, thus
demonstrating higher element concentrations in aboveground
parts than in underground parts (Granéli and Solander, 1988).
Detailed studies on nitrogen and phosphorus fixation are
therefore necessary for quantitatively evaluating the capacity
of element sinks.

The fixed nitrogen and phosphorus in plants is released into
the environment with the decomposition of litter. The release of
nitrogen and phosphorus from litter is also a biological process,

and the amount of the released elements can be reflected by the
weight of residual litter and elemental concentrations (van der
Valk et al., 1991; Kuehn and Suberkropp, 1998). The negative
exponential decay model is usually adopted for estimating
the mass of residual litters in the decomposition process
(Olson, 1963). The nitrogen and phosphorus concentrations
in litters show a dynamic balance between element release
from litters into the environment and element fixation by
litters from the environment (Zhang et al., 2020). A study
conducted on the decomposition of forest litter showed that
nitrogen concentration in litters increased in the first and second
years of the decomposition and decreased in the third year
(McClaugherty et al., 1985). Studies on the release process of
nitrogen and phosphorus in litter decomposition are therefore
also necessary for quantitatively evaluating the capacity of
element sinks.

Dongting Lake is the second largest freshwater lake in China
and is connected to the Yangtze River and the “four rivers”
of Hunan (Xiang, Zi, Yuan, and Li rivers). In the catchment,
a large amount of nitrogen, phosphorus, and heavy metals
are imported into the lake and deposited in the sediments.
Miscanthus lutarioriparius, a perennial, emergent macrophyte,
is distributed on the beach of the lake and is the most dominant
species in this area (Xu et al., 2021). In the past several decades,
the aboveground parts of this plant have been harvested as a
raw material for papermaking, causing the removal of a great
number of elements from the lake (Yao et al., 2018). However,
it is now forbidden to harvest M. lutarioriparius owing to
the important role of the lake in biodiversity protection and
the disappearance of papermaking industries in the region.
Typically, the aboveground parts of M. lutarioriparius will
decompose, and the fixed elements will be released into aquatic
ecosystems. The non-harvest of the plant, therefore, evokes
high concerns regarding the potential ecological risk caused
by the possible decline in element sinks. Few studies have
quantitatively estimated the difference in element sink between
plant harvest and non-harvest to date (Morton et al., 2010).
In this context, harvest refers to harvesting the aboveground
parts of plants once a year, while non-harvest means removing
human disturbance and letting plants fall and decompose in
the wild.

To this end, a field investigation and an in situ experiment
were conducted to explore the fixation of nitrogen and

Frontiers in Plant Science 02 frontiersin.org

https://doi.org/10.3389/fpls.2022.989931
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-989931 September 2, 2022 Time: 15:19 # 3

Peng et al. 10.3389/fpls.2022.989931

phosphorus in the aboveground parts of the plants and the
release of the two elements to reveal the changes in nitrogen
and phosphorus sinks after the policy change from harvest to
non-harvest.

Materials and methods

Study area

Dongting Lake has an area of 2,625 km2

(28(382gt98452gting15402gti30102gting Lake has an area
of 2n a by floods from the Yangtze, Xiang, Zi, Yuan, and
Li rivers. The annual fluctuation in the water level is
approximately 12–14 m, with the maxima in July–August
and minima in January–February (Xie et al., 2015). Since
the 1960s, M. lutarioriparius was planted in Dongting Lake
for paper manufacture. This plant generally germinates in
March–April and is harvested during November–December.
The total distribution area of M. lutarioriparius in the lake is
approximately 585 km2 and accounts for 22.3% of the total
area of Dongting Lake (Xu et al., 2021). Currently, the lake
is a global hotspot for biodiversity conservation, with three
international important wetlands and two national wetland
nature reserves.

Field investigation on nitrogen and
phosphorus fixation

In November 2016, 24 vegetated plots were selected on
the beach of Dongting Lake (Figure 1). The geographical
information of each plot was recorded using a hand-held GPS
(UniStrong, China). A quadrat (1 m × 1 m) was chosen for
investigation in each vegetated plot. The stems in each sampled
quadrat were cut from the soil surface and cut into pieces,
and the leaves were collected from the stems. The roots were
dug from a soil depth of 0–30 cm and carefully washed such
that they were free of soil. The mixed soil samples of 0–30 cm
were collected for determining the environmental parameters
in the soil. These vegetation and soil samples were sealed in
plastic bags and brought back to the laboratory for further
analysis.

In situ experiment on nitrogen and
phosphorus release

In November 2019, the leaves and stems of
M. lutarioriparius were collected from the beach of Dongting
Lake and air-dried. In April 2020, 5 g each of leaves and stems
were put into separate nylon mesh bags (15 cm × 25 cm) with
1 mm apertures. These bags were taken into M. lutarioriparius

communities on three beaches (Junshan, Beizhouzi, and
Luhu) of Dongting Lake. In each plant community, 72 bags,
including 36 leaf bags and 36 stem bags, were placed on the
soil surface. These bags were placed in the center of the plant
communities with an area of 30 width and 50 m length; the
distance between bags was 1 m. After the plant bags were
put into the plant communities for 30, 210, 240, 270, 300,
and 330 days, the samples were taken with six replicates
and brought back to the laboratory for further analysis
(Figure 2).

Measurements of biomass, and
nitrogen and phosphorus
concentrations in plants

In the field investigation and in situ experiment, samples
of roots, stems, and leaves were dried separately in an
oven at 80◦C for 48 h before measuring their dry weight.
The biomass of plant organs was defined as dry mass
per square meter, and plant total biomass was calculated
as the total weight of roots, stems, and leaves. Plant
organs were ground to a fine powder and passed through
a 0.15 mm mesh. Material less than 0.15 mm was then
used to test the concentrations of nitrogen and phosphorus.
The nitrogen concentrations in plants were analyzed using
a continuous flow analyzer (Auto Analyzer 3 HR, Seal
Analytical, Germany), and phosphorus concentrations were
measured by the molybdenum-antimony anti-colorimetric
method (NY/T 2017-2011).

Measurement of soil properties

In the field investigation, soil properties were measured
according to the Chinese national standards (Liu, 1996).
Soil moisture was calculated as [(FW - DW)/FW] × 100%,
where FW is the soil fresh weight and DW is the soil
dry weight after drying in an oven at 105◦C for 48 h.
The remaining fresh soil was air-dried in the shade for
the analysis of soil variables. The pH, electrolyte leakage,
organic matter concentration, total nitrogen concentration,
alkali-hydrolyzable nitrogen concentration, total phosphorus
concentration, available phosphorus concentration, and total
potassium concentration were then measured (Yao et al.,
2018).

Data calculation

The amount of nitrogen or phosphorus fixed by a plant
organ was calculated using the following equation:

Ef = M × C,
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FIGURE 1

The field investigation plots (circles) and in situ experiment points (triangles; JS: Junshan; BZ: Beizhouzi; LH: Luhu) in the Dongting Lake
wetlands.

where Ef is the amount of an element (nitrogen or phosphorus)
fixed in the plant organ (leaf, stem, or root), M is the dry mass of
the plant organ, and C is the concentration of an element in the
organ. The amount of elements fixed by the aboveground parts
of plants was the sum of the amount of the elements fixed by
leaves and stems.

The mass residual ratio of litter (leaf or stem) was calculated
using the following equation:

R =
Mt

M0
× 100%,

where R is the mass residual ratio of litter, Mt is the litter mass
after decomposing time t, and M0 is the initial litter mass.

A negative exponential decay model was used to analyze
the mass residual ratio of litter in litter decomposition (Olson,
1963):

y = ae−kt,

where y is the mass residual ratio of litter, a is the fitting
parameter, k is the annual decomposition coefficient, and t is the
decomposing time.

The amount of an element released in litter decomposition
(Er) and the relative release index (RRI) were calculated using
the following equations:

Er = M0 × C0 −Mt × Ct

RRI =
M0 × C0 −Mt × Ct

M0 × C0
× 100%,

where M0 is the initial litter mass, C0 is the initial
concentration of an element in the litter, Mt is litter mass
after decomposing time t, and Ct is the concentration of
an element in the litter at time t. The litter on the 360th
day could not be collected due to uncontrollable factors
in the field, and thus, the RRI in the time was calculated
according to the regression model of RRI in the leaves and
stems (Figure 3).

Nitrogen and phosphorus sinks were evaluated for
two scenarios. If the plant is harvested, the annual
element sinks were considered equal to Ef. If the plant
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FIGURE 2

Flow picture of the implementation of the in situ experiment (triangles, leaves; circles, stems).
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Dynamics of relative release indices (RRI, means ± SD) of nitrogen and phosphorus in the in situ experiment.
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is not harvested, the element sinks were calculated
as follows:

Sn =

n∑
i=1

Erl +

m∑
i=1

Ers,

where Sn is the element sink in the non-harvest scenario; Erl and
Ers are the element contents in residual leaves and stems after
a year’s litter decomposition, respectively; and n and m are the
complete decomposition times of leaves and stems, respectively.
Considering that the in situ experiment was conducted in 1
year, the amounts of both elements in the residual litters in the
following years (the second year, third year, etc.) were estimated
as the mean element concentrations in the in situ experiment of
1 year multiplied by the weight of residual litters calculated with
the exponential decay model of the residual litters (y = ae−kt).

Statistical analysis

Multiple comparisons were conducted to test the difference
in the biomass, concentrations of nitrogen and phosphorus
in plants, and amount of nitrogen and phosphorus fixed in
plants using Tukey’s test at the 0.05 significance level. Linear
regression analysis between mean concentrations of nitrogen
and phosphorus in plants and environmental parameters
was performed at the 0.05 significance level. Before analysis,
the homogeneity of variances was tested using Levene’s test,
and data were log10-transformed when necessary to reduce
the heterogeneity of variances. The statistical analyses were
performed using SPSS Statistics 23.0 (IBM Corp., United States)
software, and figures were produced using OriginPro 2021
(OriginLab Corp., United States) software.

Results

Concentrations and amount of
nitrogen and phosphorus in plants in
the field investigation

The concentrations and amounts of nitrogen and
phosphorus were significantly different in the three plant
organs (Table 1). For concentrations, both nitrogen and
phosphorus were the highest in the leaves (16.27 and 1.34 g
kg−1 for nitrogen and phosphorus, respectively), intermediate
in the roots (7.13 and 1.03 g kg−1, respectively), and lowest in
the stems (3.83 and 0.44 g kg−1, respectively). However, the
amounts of fixed nitrogen and phosphorus were the highest
in the roots (9.42 and 1.55 g m2 for nitrogen and phosphorus,
respectively), intermediate in the stems (4.46 and 0.49 g m2,
respectively), and lowest in the leaves (2.66 and 0.21 g m2,
respectively).

The total amounts of elements fixed by plants were 16.544 g
m2 for nitrogen and 2.239 g m2 for phosphorus. Combined with

the area of M. lutarioriparius in the Dongting Lake wetlands,
approximately 9,680 t nitrogen and 1,310 t phosphorus were
fixed by this plant per year, and 4,168 t nitrogen and 404 t
phosphorus were fixed by the aboveground parts.

The relationship between nitrogen and
phosphorus concentrations in plants
and environmental parameters in the
field investigation

The mean nitrogen concentrations in the plant did not
exhibit a significant relationship with the studied parameters
(Table 2). The mean phosphorus concentrations in the plant
were positive related to the plot elevation, soil organic matter,
and soil total potassium, and were negatively correlated to the
soil moisture.

Mass residual ratio of leaves and stems
in the in situ experiment

There was an obvious difference in the mass residual ratio
between leaves and stems (Figure 4). Over time, the mass
residual ratio of the leaves and stems demonstrated negative
exponential decay models. The decomposition coefficient was
1.037 for stems and 0.6018 for leaves. Based on the negative
exponential decay model, it may be deduced that the half
decomposition (50% decomposition) time was 0.61 years for
leaves and 1.12 years for stems, and the complete decomposition
(95% decomposition) time was 2.83 years for leaves and
4.95 years for stems.

Release of nitrogen and phosphorus in
leaves and stems in the in situ
experiment

The concentrations of nitrogen and phosphorus in the
leaves and stems changed with time gradually. The nitrogen
concentration in the leaves increased in the period from the
0th to the 30th day, decreased from the 30th to the 210th
day, and unsteadily changed from the 210th to the 330th
day. However, the phosphorus concentration in the leaves
increased from the 0th to the 300th day and decreased from
the 300th to the 330th day. Overall, the concentrations of
nitrogen and phosphorus in the stems increased from the 0th
to the 270th day and decreased from the 270th to the 330th
day (Figure 5).

The relative release index of nitrogen in the leaves gradually
increased in the period from the 0th to the 330th day.
However, the relative release index of nitrogen in the stems
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TABLE 1 Plant biomass, concentrations, and amounts of nitrogen and phosphorus (means ± SD) fixed in M. lutarioriparius in the field investigation.

Plant organs Plant biomass (g m−2) Element concentrations (g kg−1) Amount of elements (g m−2)

Nitrogen Phosphorus Nitrogen Phosphorus

Leaf 148.1± 102.4a 16.27± 5.12c 1.34± 0.32c 2.66± 2.52a 0.21± 0.16a

Stem 1139.9± 467.7b 3.83± 1.39a 0.44± 0.20a 4.46± 2.79b 0.49± 0.27b

Root 1428.7± 801.9c 7.13± 1.56b 1.03± 0.24b 9.42± 4.42c 1.55± 1.03c

Different letters in the same column indicate significant differences among plant organs at P < 0.05 based on Tukey’s test.

TABLE 2 Linear regression analysis of nitrogen (N) and phosphorus (P) concentrations in M. lutarioriparius and environmental parameters in the
field investigation.

Environmental parameters N concentration P concentration

Unstandardized coefficients t-Statistic Unstandardized coefficients t-Statistic

C 4.720 0.158 –1.27 –0.404

PE –0.292 –1.186 0.068 2.631*

SM 0.08 0.444 –0.045 –2.369*

SpH 2.237 0.603 –0.018 –0.047

SEL –0.00008 –0.01 –0.001 –1.564

SOM –0.091 –0.473 0.049 2.41*

SAN –0.011 –0.214 –0.01 –1.88

STN 3.749 0.637 0.384 0.622

SAP 0.172 0.884 –0.01 –0.471

STP –13.292 –1.53 0.329 0.361

STK –0.192 –0.772 0.057 2.197*

R2 0.308 0.599

P 0.805 0.131

*P < 0.05. PE, plot elevation; SM, soil moisture; SpH, soil pH; SEL, soil electrolyte leakage; SOM, soil organic matter; SAN, soil alkali–hydrolyzable nitrogen; STN, soil total nitrogen; SAP,
soil available phosphorus; STP, soil total phosphorus; STK, soil total potassium.
Bold values indicate significant correlations.

increased in the period from the 0th to the 30th day, decreased
from the 30th to the 210th day (flood period), and then
increased from the 210th to the 330th day (backwater period).
The relative release index of phosphorus in the leaves and
stems increased in the period from the 0th to the 30th
day, decreased from the 30th to the 210th day, and then
increased from the 210th to the 330th day. At the end of
the in situ decomposition experiment, the relative release
indices of nitrogen and phosphors were greater than zero
(Figure 3).

Nitrogen and phosphorus sinks in the
scenario of harvest and non-harvest of
the plant

In the scenario of the harvest of the plant, the nitrogen
and phosphorus sinks increased linearly over time (Figure 6).
In the scenario of non-harvest, the nitrogen and phosphorus
sinks gradually increased during the period from the first year to
the fifth year after non-harvest. However, after the fifth year of

non-harvest, the element sinks reached a constant value (4,300 t
for nitrogen sinks and 411 t for phosphorus sinks). The nitrogen
and phosphorus sinks therefore greatly decreased after the non-
harvest of M. lutarioriparius for 5 years compared to the harvest
scenario.

Discussion

Amount of nitrogen and phosphorus
fixed in plants in the field investigation

This study showed that element concentrations differed
across plant organs. The concentrations of both nitrogen and
phosphorus were the highest in the leaves, intermediate in
the roots, and lowest in the stems, which was consistent
with observations from previous studies on the wetland plant
P. australis (Song and Shan, 2012). One possible reason for
this may be that leaves are the main photosynthetic organ,
with vigorous metabolism and high demand for nitrogen and
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Dynamics of mass residual ratio in the leaves and stems in the in situ experiment.
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Concentrations (means ± SD) of nitrogen (N) and phosphorus (P) in the leaves and stems in the in situ experiment.

phosphorus. Another possible reason could be that leaves
can absorb some elements from water during prolonged
flood periods (Bonanno and Giudice, 2010). Combined with

the biomass of plant organs, the amount of nitrogen and
phosphorus fixed in the three plant organs was the highest in
the roots, intermediate in the stems, and lowest in the leaves. In
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Nitrogen and phosphorus sinks in the scenarios of harvest and non-harvest of M. lutarioriparius in the Dongting Lake wetlands over time.

Dongting Lake, the annual amount of nitrogen and phosphorus
fixed by the aboveground parts of M. lutarioriparius reached
4,168 and 404 t, respectively. M. lutarioriparius demonstrated
great potential for removing nitrogen and phosphorus from the
lake as industrial raw materials.

Since elements in plants come from their environment, there
is an obvious relationship between the contents of elements
in the plants and their environment (Fernández-Aláez et al.,
1999; Baldantoni et al., 2004; Chen et al., 2015). However, in
this study, we found that the mean nitrogen and phosphorus
concentrations in plants were not significantly correlated with
their concentrations in soil. Kern-Hansen and Dawson (1978)
also found that nutrient concentrations in plants had no
obvious correlation with the concentrations in environments.
The possible reasons for this may be as follows. Large amounts
of nitrogen and phosphorus are deposited in the lake during
the flood period from April to October in Dongting Lake,
which changes the concentrations of nitrogen and phosphorus
in soils and thus weakens the relationship between the element
concentrations in plants and those in soils. On the other
hand, during the flood period, plants can absorb nitrogen
and phosphorus from the water, reducing the links between
the element concentrations in plants and soils. Additionally,
significant regression coefficients were observed between the

mean phosphorus concentrations in plants with plot elevation,
soil moisture, soil organic matter concentration, and soil total
potassium in this study.

Amounts of nitrogen and phosphorus
released in the in situ experiment

In this study, the decomposition rate of stems was
significantly lower than that of leaves. Similar results were
obtained from a study on Salix triandroides, a native plant
species in the Dongting Lake wetlands (Bian, 2020). Compared
with leaves, stems and branches contain higher concentrations
of lignin and cellulose, which contribute to the lower
decomposition rate in these plant organs (dos Santos Fonseca
et al., 2013). The stems, therefore, require a longer time to
complete decomposition compared to the leaves (Xie et al.,
2017). It was found that the half decomposition time was
1.12 years for stems and 0.61 years for leaves, and the
complete decomposition time was 4.95 years for stems and
2.83 years for leaves. Unlike the stems on the soil surface
designed in the in situ experiment, some stems in the field
remained standing in the non-harvest scenario. These stems
that remain standing are often colonized slowly by decomposing
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organisms (Mäkinen et al., 2006); hence, standing stems have a
lower decomposition rate than that of fallen stems. Therefore,
the half and complete decomposition time for the stems of
M. lutarioriparius would be slightly longer than the estimated
time.

The relative release indices changed obviously over time. For
leaves, the relative release indices of nitrogen and phosphorus
were above zero, indicating that there was a net release of
nitrogen and phosphorus. This result is consistent with previous
research conducted on the wetland plant Carex cinerascens
(Zhang et al., 2020). Litters were buried during flooding,
and many decomposition products were either absorbed on
soil exchange surfaces or remained available for direct root
uptake (Shure et al., 1986). For stems, the relative release
indices of nitrogen and phosphorus were lower than zero
in the middle stage of the experiment and higher than
zero in the early and later stages, indicating a net fixation
of nitrogen and phosphorus in the middle stage. Unlike
other experiment conditions, the litter in situ experiment
in this study was in a special environment condition with
alternate flooding and non-flooding. During the long flood
period, large amounts of nutrients, such as phosphorus,
were carried by water into the lake and deposited into the
sediment (Huang et al., 2022). Meanwhile, some nutrients were
partially absorbed by the litter (Wang et al., 2018). Exogenous
nitrogen and phosphorus supplementation, therefore, leads to
increased concentrations of nitrogen and phosphorus in litters
in the flood period (Figure 5) and contributes to negative
relative release indices of the two elements in the period
(Figure 3).

After litter decomposition of 1 year, the relative release
indices of nitrogen and phosphorus in the leaves reached
87.2 and 78.4%, and those in the stems reached 39.7 and
48.6%, respectively. Combined with the distribution area of
M. lutarioriparius in the Dongting Lake wetlands and the plant
biomass in the unit area, the release amounts of nitrogen and
phosphorus from the aboveground parts in the first year after
the non-harvest of the plant were 2,394, and 232 t, respectively.

Nitrogen and phosphorus sinks
between harvest and non-harvest

In the harvest scenario, the aboveground parts of
M. lutarioriparius were harvested and removed from the
Dongting Lake wetlands, and annual element sinks were 4,168
t for nitrogen and 404 t for phosphorus. In the non-harvest
scenario, considering that the aboveground parts were not
harvested and would decompose in the wetland ecosystems,
the element sinks in the first year after the non-harvest were
1,774 t for nitrogen and 172 t for phosphorus. Based on the
model of mass residual ratio in litters in the in situ experiment,
it was found that the nitrogen and phosphorus sinks increased

greatly over time in the harvest scenario, while they increased
gradually from the first year to the fifth year in the non-harvest
scenario and reached a maximum value after the fifth year.
Nitrogen and phosphorus sinks therefore greatly decreased
after the non-harvest of M. lutarioriparius compared to
that after harvest.

Besides nitrogen and phosphorus, plant harvest also
removes several other pollutants, such as heavy metals. A study
conducted by Yao et al. (2018) demonstrated that 0.7 t
cadmium, 22.9 t copper, 77.5 t manganese, 3.1 t lead, and
95.9 t zinc were removed per year from the Dongting Lake
wetlands through the annual harvest of the aboveground
parts of M. lutarioriparius. Additionally, a large amount of
the fixed elements (nitrogen, phosphorus, heavy metals, etc.)
would be released into the environment, leading to new
ecological and environmental problems in the non-harvest
scenario. A new study demonstrated that the decomposition of
M. lutarioriparius consumed the dissolved oxygen and increased
the carbon, nitrogen, and phosphorus concentrations in the
water (Zhao et al., 2021). The non-harvest of M. lutarioriparius
may therefore have far-reaching impacts on the Dongting
Lake wetlands. On the other hand, M. lutarioriparius is used
to make diverse products, such as acetylated lignin, 2,5-
furandicarboxylic acid, and particleboard (Chen et al., 2018;
Chai et al., 2021; Liao et al., 2021). It is therefore recommended
to continue to harvest M. lutarioriparius for ecosystem health
and stability.
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