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In plant engineering, plastid transformation is more advantageous than nuclear

transformation because it results in high levels of protein expression from

multiple genome copies per cell and is unaffected by gene silencing. The

common plastid transformation methods are biolistic bombardment that

requires special instruments and PEG-mediated transformation that is only

applicable to protoplast cells. Here, we aimed to establish a new plastid

transformation method in tobacco, rice, and kenaf using a biocompatible

fusion peptide as a carrier to deliver DNA into plastids. We used a fusion

peptide, KH-AtOEP34, comprising a polycationic DNA-binding peptide (KH)

and a plastid-targeting peptide (AtOEP34) to successfully deliver and integrate

construct DNA into plastid DNA (ptDNA) via homologous recombination. We

obtained transformants in each species using selection with spectinomycin/

streptomycin and the corresponding resistance gene aadA. The constructs

remained in ptDNA for several months after introduction even under non-

selective condition. The transformants normally flowered and are fertile in

most cases. The offspring of the transformants (the T1 generation) retained the

integrated construct DNA in their ptDNA, as indicated by PCR and DNA

blotting, and expressed GFP in plastids from the integrated construct DNA. In

summary, we successfully used the fusion peptide method for integration of

foreign DNA in tobacco, rice, and kenaf ptDNA, and the integrated DNA was

transmitted to the next generations. Whereas optimization is necessary to

obtain homoplasmic plastid transformants that enable stable heterologous

expression of genes, the plastid transformation method shown here is a novel

nanomaterial-based approach distinct from the conventional methods, and we

propose that this easy method could be used to target a wide variety of plants.
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Introduction

Plastids are plant organelles that can transform their

function and morphology depending on tissue type. For

example, in leaves, plastids known as chloroplasts perform

photosynthesis; in roots and storage tissues, amyloplasts

accumulate starch; and in fruits and flowers, chromoplasts

biosynthesize and store pigments. Plastids possess their own

genomic DNA and gene expression system, distinct from those

of the nucleus. Plastid genomic DNA (ptDNA) is generally

mapped as a 100–200-kb circular structure comprising a large

and a small-single copy region separated by a pair of large

inverted repeats. ptDNA is essential as it encodes components of

the photosynthetic pathway and genes for gene expression in

plastids. The abundance of plastids in cells and multiple plastid

genome copies enable high production of recombinant proteins

in plastids—more than 75% of the total soluble protein (Castiglia

et al., 2016). This protein production is unaffected by gene

silencing, unlike the expression of exogenous genes in the

nucleus. Furthermore, the maternal inheritance of chloroplast

genes prevents the unintended spread of foreign genes by pollen.

Therefore, plastids are often the target of genetic modification

via genetic transformation for the production of valuable

proteins (Bock, 2021). The involvement of plastids in the

production of secondary metabolites also suggests that there is

considerable potential for metabolic engineering of plastids

(Jensen and Scharff, 2019).

The two most common methods of genetic modification in

plastids are biolistic bombardment and polyethylene glycol

(PEG)-mediated transformation. Biolistic bombardment

utilizes submicrometer-sized metal particles coated with DNA;

the particles are shot into plant tissues to deliver the DNA into

plant cells. Plastid transformation via biolistic bombardment has

been established in many plant species, including model plants,

such as tobacco (Nicotiana tabacum (Svab et al., 1990) and

Arabidopsis (Arabidopsis thaliana; (Ruf et al., 2019), and crop

plants, such as tomato (Solanum lycopersicum (Ruf et al., 2001)

and chickpea (Glycine max; (Dufourmantel et al., 2007).

However, efficient plastid transformation methods are still

lacking for many plant species. In particular, homoplasmic

plastid transformation, which is the replacement of all copies

of wild-type plastid genomes with modified plastid genomes, has

not been established in many species. In rice, stable plastid

transformation was achieved via long-term selection with tissue

culture, but the transformants were sterile (Wang et al., 2018).

Furthermore, it was recently discovered that off-target mutations

of nuclear DNA can be induced during biolistic transformation

(Liu et al., 2019), raising concern about nuclear off-target

mutation even for plastid transformation. PEG-mediated

plastid transformation, which introduces DNA into protoplast

cells via the action of PEG, has been established in several plant

species, including N. tabacum (Golds et al., 1993). However, this
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method requires regeneration from protoplasts to obtain

transgenic plants, which limits the number of plants it can be

applied to. In both biolistic bombardment and PEG-mediated

transformation, spectinomycin (Sp) and streptomycin (Str),

which inhibit translation by binding to ribosomes in plastids,

are commonly used for selection in combination with the

resistance marker gene aminoglycoside-3′′-adenylyltransferase,
aadA, driven by a plastid endogenous promoter such as Prrn. In

general, sequences homologous to the plastid DNA (homology

arms; typically longer than 1 kb) are arranged at both sides of the

marker to induce integration of the construct DNA into ptDNA

by homologous recombination. Marker selection is essential for

plastid transformation because a cell contains thousands of

copies of ptDNA. Homoplasmic transformation can be

achieved by selection from transformed cells, in which only a

small amount of ptDNA is assumed to carry the integrated

marker gene.

Funct ional peptides have been used to del iver

biomacromolecules into cells because of their functional

potency and high design flexibility. Fusion peptides are

composed of a combination of functional peptides. Cell-

penetrating peptides (CPPs) are short peptides that can pass

through cell membranes (Di Pisa et al., 2015); polycationic

peptides are short peptides composed of positively charged

amino acids that bind to nucleic acids; and organelle-targeting

peptides are endogenous signal peptides that sort proteins to

organelles (Watanabe et al., 2021). Using fusion peptides as

carriers, DNA (Lakshmanan et al., 2013; Lakshmanan et al.,

2015; Midorikawa et al., 2019; Miyamoto et al., 2019), RNA

(Numata et al., 2014; Thagun et al., 2020), and protein (Ng et al.,

2016; Numata et al., 2016; Guo et al., 2019) can be successfully

delivered into plant cells in a wide variety of tissue types. With

organelle-targeting peptides and polycationic peptides, fusion

peptides selectively deliver DNA into plant organelles, plastids

and mitochondria (Chuah et al., 2015; Yoshizumi et al., 2018).

For plastids, KH-AtOEP34, a fusion peptide composed of the

cationic DNA-binding KH sequence and the plastid-localizing

peptide of outer envelope membrane protein OEP34/TOC34 (Li

and Chen, 1997; Li and Teng, 2013), was developed. This peptide

enables selective delivery of plasmid DNA (pDNA) into plastids

and expression of reporter genes from the pDNA (Yoshizumi

et al., 2018; Thagun et al., 2019).

Here, we develop a peptide-mediated plastid transformation

method using KH-AtOEP34 in combination with Sp/Str

selection in a model plant (tobacco) and a crop plant (rice).

We also tested the peptide-mediated plastid transformation in

kenaf (Hibiscus cannabinus), a fiber-enriched crop plant for

which no plastid transformation method previously existed. We

report the stable integration of a construct DNA into the ptDNA

of all three species by the fusion-peptide-mediated gene delivery

method. The integrated exogeneous genes were successfully

transmitted to the next generations of each plant.
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Materials and methods

Plant materials and growth condition

Tobacco (Nicotiana tabacum ‘Petit Havana SR1’), rice

(Oryza sativa ‘Nipponbare japonica’), and kenaf (Hibiscus

cannabinus) (Fujita Seed Co., Japan) were used in this study.

For tobacco, seeds were sterilized with 70% ethanol for 1 min

followed by 0.5% sodium hypochlorite for 20 min and then

washed with sterilized water. The seeds were cultivated on

rooting medium [Murashige-Skoog (MS) medium (Murashige

and Skoog, 1962) supplemented with 3% sucrose and 0.3%

phytagel (Sigma-Aldrich, USA)] and then cultivated at 25°C

under a 16 h light condition in a growth chamber. For flowering

and seed maturation, tobacco plants were cultivated in a 2:1

mixture of soil and vermiculite at 28°C under a 14 h

light condition.

For rice, peeled seeds were sterilized with 70% ethanol for

1 min followed by 0.5% sodium hypochlorite for 20 min with

rotation and then washed with sterilized water. The sterilized

seeds were cultivated on N6D medium [3% sucrose, 0.03%

casamino acids, 0.4% Chu basal salt mix (Merck, Germany),

0.288% proline, 0.01% myo-inositol, 2 mg/L 2,4-D, 0.5 mg/L

nicotinic acid, 0.5 mg/L pyridoxine HCl, 1 mg/L thiamine HCl, 2

mg/L glycine, 0.4% phytagel, pH 5.8] at 30°C under continuous

light to induce calli. For flowering and seed maturation, rice

plants were cultivated in nursery soil (Honens nursery soil No. 1,

Honen Agri Co., Japan) at 30°C under a 14 h light condition.

For kenaf, seeds were sterilized with 70% ethanol for 20 min

followed by 1% sodium hypochlorite for 30 min and then

washed with sterilized water. Seeds were placed on a rooting

medium [MS medium supplemented with 3% sucrose and 0.3%

phytagel (Sigma-Aldrich, USA), pH 5.8] and then cultivated at

22°C under a 16 h light condition in a growth chamber. For

callus induction, cotyledons of kenaf seedlings were cut and

placed on a callus-inducing medium (CIM) [MS supplemented

with 2% sucrose, 1.5 mg/L 6-benzylaminopurine (6-BAP), 0.01

mg/L indole-3-butyric acid (IBA), pH 5.8]. For flowering and

seed maturation, kenaf plants were cultivated in a 2:1 mixture of

soil and vermiculite at 22°C under an 8 h light condition.
Plasmid construction

Plasmids targeting plastids of each plant were constructed

based on a tobacco plastid transformation plasmid, which is

composed of 1.8-kb left and 1.2-kb right homology arms to

target the trnV-rps12/7 intergenic region (Zoubenko et al., 1994)

and aadA and gfp gene expression cassettes in between the

homology arms (Figure 1A).

For rice, the trnV-rps12/7 region (Hiratsuka et al., 1989)

amplified with primers P1 and P2 (primer sequences are listed in
Frontiers in Plant Science 03
Table S4) was inserted into the BamHI site of pUC19. The aadA

and gfp gene expression cassettes amplified with primers P3 and

P4 from the tobacco plastid transformation plasmid were then

inserted into the BglII site of the rice trnV-rps12/7 region,

resulting in 2.2-kb left and 1.1-kb right homology arms.

For kenaf, the trnV-rps12/7 region amplified with primers P5

and P6 was inserted into pUC19 using an In-Fusion cloning kit

(TaKaRa, Japan). The aadA and gfp gene expression cassettes

amplified with primers P7 and P8 from the tobacco plastid

transformation plasmid were then inserted into the BglII site of

the kenaf trnV-rps12/7 region using an In-Fusion cloning kit,

resulting in 2.0-kb left and 1.3-kb right homology arms.
Peptide-mediated plastid transformation

For tobacco plastid transformation, 10 mg of the targeting

plasmid DNA was mixed with 3.2 mg of the fusion peptide KH-

AtOEP34 [KHKHKHKHKHKHKHKHKHMFAFQYLLVM

(28 a.a., 3650.4 Da)] in 1000 mL solution and then incubated

at room temperature for 30 min. For DNA only treatment, same

concentration of plasmid DNA solution was prepared without

the peptide. Cut tobacco leaf pieces were submerged in the

solution and then subjected to vacuum (-0.08 MPa) for 1 min

followed by pressure (+0.08 MPa) for 1 min. After being washed

with sterilized water, the leaf pieces were cultivated on MSBN

[MS supplemented with 3% sucrose, 1 mg/L 6-BAP, 0.1 mg/L

naphthaleneacetic acid (NAA), 0.3% phytagel, pH 5.8] for 4 d

and then on MSBN medium containing 500 mg/L

spectinomycin. Shoots regenerated from the leaf explants were

subjected for additional two rounds of regeneration cycles to

increase the ratio of the construct DNA-containing ptDNA.

Finally, shoots were transferred to the rooting medium

containing 500 mg/L spectinomycin.

For rice plastid transformation, 10 mg of the targeting

plasmid DNA was mixed with 3 mg of the fusion peptide KH-

AtOEP34 in 400 mL solution and then incubated at room

temperature for 30 min. For DNA only treatment, same

concentration of plasmid DNA solution was prepared without

the peptide. Approximately 200 mg of calli induced from

germinated seeds were submerged in the solution and then

subjected to vacuum (-0.08 MPa) for 1 min followed by

pressure (+0.08MPa) for 1 min. After cultivation on N6D

medium for 5 d, the calli were cultivated on REIII medium

[MS supplemented with 3% sucrose, 3% sorbitol, 0.4% casamino

acid, 0.02 mg/L NAA, 2 mg/L kinetin, 100 mg/L myo-inositol,

0.5 mg/L nicotinic acid, 0.5 mg/L pyridoxine HCl, 0.1 mg/L

thiamine HCl, 2 mg/L glycine, 0.4% phytagel, pH 5.8] containing

200 mg/L Str. Regenerated green shoots of the transformed rice

were cultivated on a rooting medium [MS supplemented

with 3% sucrose, 100 mg/L myo-inositol, 0.5 mg/L nicotinic

acid, 0.5 mg/L pyridoxine HCl, 0.1 mg/L thiamine HCl, 2 mg/L

glycine, 0.4% phytagel, pH 5.8] containing 300 mg/L Str. No
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additional round of regeneration was performed for rice

plastid transformation.

For kenaf plastid transformation, 15 mg of the targeting

plasmid DNA was mixed with 5 mg of the fusion peptide KH-

AtOEP34 in 500 mL solution and then incubated at room

temperature for 30 min. For DNA only treatment, same

concentration of plasmid DNA solution was prepared without

the peptide. Cut cotyledon pieces or calli were submerged in the

solution and then subjected to vacuum (-0.08 MPa) for 1 min

followed by pressure (+0.08 MPa) for 1 min. After being washed

with sterilized water, the cotyledon pieces and calli were

cultivated on CIM containing 100 mg/L Sp and then

transferred to SIM containing 100 mg/L Sp. No additional

round o f r egenera t ion was per fo rmed for kena f

plastid transformation.
Genotyping of transformants

PCR was used for genotyping of transformants using the

primers listed in Table S4. For tobacco, the primers P9 and P10

(Figure 2B) or P11 and P12 (Figures 3B and 4B) were used to
Frontiers in Plant Science 04
determine integration in the left arm, and P13 and P14 were

used to determine integration into the right arm. For rice, P15

and P16 were used to determine integration into the left arm and

P17 and P18 were used to determine integration into the right

arm. For kenaf, P19 and P20 were used to determine integration

into the left arm and P21 and P22 were used to determine

integration into the right arm. Positions of the genotyping

primers are shown in Figure S1.
DNA gel blotting

For gel blotting, genomic DNA was extracted using the

cetyltrimethylammonium bromide (CTAB) method (Murray

and Thompson , 1980) , d ige s t ed wi th SmaI , and

electrophoresed in a 0.75% agarose gel. The genomic DNA

was transferred to a nylon membrane and hybridized with a

probe prepared with a DNA fragment amplified with primers

P23 and P24 (Table S4) with tobacco genomic DNA using the

alkPhos Direct Labelling System (Cytiva, US). The probe was

detected using CDP-Star (Cytiva, US) and an Image Analyzer

LAS-3000 (Fuji Film, Japan).
A

B

FIGURE 1

Peptide-mediated plastid transformation. (A) Construct DNA (above) targeting plastid DNA (below) by homologous recombination. A marker
gene cassette (Prrn-aadA-TpsbA) and a reporter gene cassette (PpsbA-gfp-Trps16) are arranged between the left and right homology arms. Left
and right homology arms are 1.8 and 1.2 kb for tobacco, 1.9 and 1.4 kb for rice, and 2.0 and 1.3 kb for kenaf. The construct DNA is integrated
into plastid DNA via homologous recombination as shown by dashed cross lines. Primes used to test left and right integration are shown by blue
and orange primers, respectively. (B) Scheme for peptide-mediated DNA delivery into plastids. The construct plasmid DNA is complexed with
the fusion peptide KH9-OEP34 that enables delivery of the construct DNA into plastids.
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Observation of GFP fluorescence

Leaves from 10-day-old tobacco T1 seedlings cultivated on

MS supplemented with 3% sucrose, 0.3% phytagel, and 500 mg/L

spectinomycin were observed by confocal laser scanning

microscopy (TCS SP8; Leica Microsystems, Germany). To

eliminate chlorophyll autofluorescence, GFP fluorescence was

observed with gate-on time 0.3-1.2 according to Kodama (2016).
Results and discussion

Peptide-mediated plastid transformation

To target ptDNA via homologous recombination, we

constructed plasmids composed of left and right homology

arms, with a marker and reporter gene cassette between the

homology arms (Figure 1). The left and right homology arms are

1.8–2.2- and 1.1–1.4-kb sequences homologous to ptDNA of

each plant to target a locus between the 16S rDNA genes trnV

and rps12/7, which has been used previously for integration of

exogeneous DNA into ptDNA (Maliga and Tungsuchat-Huang,

2014; Daniell et al., 2016). The marker and reporter genes are

aadA, which conveys resistance to spectinomycin/streptomycin,
Frontiers in Plant Science 05
and GFP genes driven by the endogenous plastid promoters of

rrn and psbA, respectively. We took care in choosing suitable

tissues for peptide-mediated delivery of construct DNA, since

the growth stage and tissue type of plant materials affect

transformation efficiency in general (Figure 2A). For tobacco,

we selected true leaves, as previously used in the biolistic

bombardment method (Maliga and Tungsuchat-Huang, 2014).

For rice, we used the peptide-mediated plastid transformation

method on callus induced from germinated seeds, which is

sufficient for peptide-mediated delivery of plasmid DNA

(Miyamoto et al., 2020) and can regenerate shoots efficiently

(Toki et al., 2006). For kenaf, we selected cotyledons, which can

induce callus efficiently under appropriate hormone treatment

(Odahara et al., 2020).

To deliver construct DNA to plastids, each construct DNA

was complexed with KH-AtOEP34 at an N/P ratio (defined as

molar ratio of cationic peptide nitrogen to anionic pDNA

phosphate) of 0.5, which results in the highest introduction

efficiency (Lakshmanan et al., 2015; Chuah and Numata, 2018).

We submerged plant materials in the construct DNA–peptide

complex solution and then subjected them successively to vacuum

and pressure treatment to facilitate infiltration of the complex. At

3–14 d after infiltration, we evaluated transient integration of the

construct DNA into ptDNA using genotyping PCR covering the
B

C

D

A

FIGURE 2

Transient integration of the construct DNA into plastid DNA. (A). Plant materials used for DNA delivery: tobacco leaf, rice callus induced from
seed, and kenaf cotyledon. Bars, 1 cm. (B–D). Analysis of construct DNA integration into plastid DNA of tobacco (B), rice (C), and kenaf (D). PCR
genotyping of recombination between the construct DNA and the plastid DNA via left and right homology arms. Arrowheads denote positions
of the predicted recombination products: 2.5 and 1.7 kb (B), 2.6 and 1.9 kb (C), and 2.5 and 2.4 kb (D) for the left and right arms, respectively.
Genotyping was performed 11, 3, and 14 d after introduction for tobacco, rice, and kenaf, respectively. WT, wild-type plants without any
treatment. For kenaf, each lane include PCR products from five cotyledon pieces. Primers used in the PCR are shown in each panel, and the
details of the position of the primers are shown in Figure S1.
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junction region between the construct DNA and the ptDNA

(Figure S1). Genotyping PCR of tobacco (Figure 2B) and rice

(Figure 2C) showed amplification of products that corresponded

to the size of the predicted products from the integrated ptDNA,

associated with other multiple products. We confirmed the

predicted products by sequencing (Figure S2) and interpreted

other products to be derived from non-specific amplification as

they were not reproducible or were also amplified from explants

treated with DNA only. For tobacco, the numbers of explants with

successful integration and the amount of the products suggest that

integration of construct DNA into ptDNA via each homology

sequence arm was more efficient in explants and calli treated with

construct DNA and peptides than in those treated with construct

DNA only. For kenaf, genotyping PCR showed inefficient

integration of construct DNA into ptDNA without any

pretreatment even for the explants treated with plasmid DNA

and peptides (Figure 2D). However, pretreating kenaf cotyledons
Frontiers in Plant Science 06
with the surfactant Silwet L-77 likely improved the integration

efficiency as judged by the number of explants with successful

integration and by the amount of the PCR products (Figure 2D),

suggesting water-repellent of kanaf leaf should be alleviated by the

treatment with Silwet L-77. These genotyping results indicate that

the fusion peptide method resulted in efficient gene delivery and

integration of construct DNA into the ptDNA of each plant.

To obtain stable transplastomic plants, we subjected explants

or calli infiltrated with the pDNA–peptide complex to shoot

regeneration under selection for Sp or Str resistance. For tobacco

under Sp selection, 85 shoots were regenerated from ~7000

samples (Figure S3), and the regenerated shoots were subjected

for additional rounds of regeneration to increase ptDNA

containing construct DNA. Most of the tobacco shoots grew

normally under the selection condition, and the plants were

subsequently transferred to soil without any antibiotics

(Figures 3A; S3). We performed PCR genotyping to test the
B

C D

A

FIGURE 3

Genotyping of transformants after long-term cultivation. (A) Transformants of each plant after cultivation for 3–4 months. (B–D). Analysis of
construct DNA integration into plastid DNA of tobacco (B), rice (C), and kenaf (D). PCR genotyping of recombination between the construct
DNA and the plastid DNA via left and right homology arms. Arrowheads indicate the expected product sizes: 3.3 and 1.7 kb (B), 2.6 and 1.9 kb
(C), and 2.5 and 2.4 kb (D) for the left and right arms, respectively. Genotyping PCR was performed 4, 3, and 5 months after construct
introduction for tobacco, rice, and kenaf, respectively. For kenaf, #1–#4-C refer to individual transformants, and numbers under them refer to
different leaves or shoots of the transformants (see Figure S6). #1–3 and #4-C were obtained using cotyledons and calli, respectively. Primers
used in the PCR are shown in each panel, and the details of the position of the primers are shown in Figure S1.
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integration and retention of the construct DNA in the ptDNA of

plants grown in soil. Sixty-eight of the transformants had

construct DNA integrated into both homology arms and 13

had construct DNA in one arm (Figure 3B). This suggests that

the integrated markers were still retained in the ptDNA of

tobacco transformants after 4 months of cultivation. Most of

the tobacco transformants flowered normally and set seed with

more than 80% germination rate (Figure S3).

For rice, since Sp did not effectively inhibit shoot

regeneration, we selected transplastomic plants using Str,

which effectively inhibited shoot regeneration at a

concentration of 200 mg/L (Figure S4). Fifteen shoots were

regenerated from 540 calli under Str selection. Genotyping

showed integration of construct DNA into ptDNA, and three

transformants had construct DNA in both homology arms

under non-selective conditions (Figure 3C; Table S1). This

suggests approximately not all but a part of the rice

transformants maintained the integrated DNA in ptDNA.

These rice transformants grew normally even in the selection

medium; they also flowered and set seed with more than 80%

germination rate after transferring to soil (Figure S5). For

tobacco and rice, we confirmed the products with predicted

sizes to be derived from recombination between ptDNA and the

construct DNA. The remaining multiple PCR products may be

derived from non-specific amplification or unintended

integration of the construct DNA into ptDNA.

For kenaf, Sp selection resulted in regeneration of three

shoots from ~7900 infiltrated cotyledon pieces (#1–3). We also

tested infiltration of the peptide–construct DNA complex

using 1000 calli induced from cotyledons and obtained one

shoot (#4-C). The kenaf transformants obtained from

cotyledons exhibited a partial albino phenotype 4 months

after their introduction (Figure S6). Therefore, we genotyped

several leaves from each transformant to test integration of the

construct DNA into ptDNA. All the transformants showed

integration of construct DNA into at least one homology arm,

and most showed integration into both arms (Figure 3D).

However, not all the leaves of each kenaf transformant had

construct DNA integrated into their ptDNA. These results

suggest that kenaf transformants retained the integrated

pDNA in ptDNA chimerically. The kenaf transformants set

seed normally (Figure S6).

Genotyping of ptDNA showed transformants obtained by

the peptide-mediated method retained the integrated pDNA

with high proportion in each plant species, and transformants

sometimes showed integration of construct DNA via only one

homology arm (Figure 3). Another homology arm may be

integrated into an unspecified loci of ptDNA via

microhomology-mediated recombination, which is also active

in plastids in addition to the homologous recombination

pathway (Kwon et al., 2010).
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Inheritance of the integrated DNA in the
next generation

To test the stability of the transmission of exogenous DNA

into the ptDNA of tobacco, rice, and kenaf integrated by the

peptide method, we genotyped T1 offspring of the transformants.

We cultivated T1 offspring of each plant under appropriate

selection conditions, 500 mg/L Sp for tobacco, 100 mg/L Str

for rice, and 100 mg/L Sp for kenaf, and then analyzed their

genotypes. Tobacco and rice T1 offspring grew normally under

the selection condition, while some kenaf T1 offspring had

partially albino leaves, similar to T0 plants (Figure 4A).

According to PCR genotyping, 14 of the 144 tobacco T1

offspring showed integration of construct DNA via both

homology arms and 41 showed integration for one homology

arm (Figure 4B; Table S2). For rice, 4 and 21 of the 180 T1

offspring tested had construct DNA integrated in both or one

arm, respectively (Figure 4C; Table S3). Multiple PCR products

in the T1 seedlings may be derived from non-specific PCR

amplification since such products were frequently observed in

seedlings lacking the predicted PCR products. For kenaf, one of

the five T1 offspring tested had construct integrated DNA into

both arms (Figure 4D). These genotyping results suggest that

some offspring retained exogeneous DNA in their ptDNA. We

tried to detect the ptDNA harboring the exogeneous DNA by

PCR with primers amplifying the targeting plastid locus,

however, such ptDNA was hardly detectable in each species

(Figure S7), suggesting the exogeneous DNA exist in a small

proportion of ptDNA in the cells. We then further carried out a

DNA gel blot analysis of tobacco ptDNA to confirm the

integration of exogeneous DNA in the T1 offspring ptDNA,

using a probe that hybridizes to the ptDNA target region.

Genomic DNA was digested with SmaI that cut inside and

outside of the construct to show plastid targeting (Figure S8).

The blot showed a discrete 3.2-kb band corresponding to

integration of the plasmid DNA into the target site in the T1

offspring but not in the wild type (Figure 4E; S8). Although the

intensities of the 3.2-kb band against those of the WT 11.1-kb

suggest most of the plastids do not contain the integrated DNA,

the blot confirms that the foreign DNA was integrated and

retained in the tobacco T1 offspring ptDNA. On the other hand,

substantial number of offspring showed resistance to Sp/Str

despite lacking the construct DNA in their ptDNA. This may

be because of integration of the marker gene in the parents’

nuclear DNA in addition to the ptDNA.

Finally, we observed GFP, which is encoded by the

integrated DNA, in the tobacco T1 seedlings. Confocal laser-

scanning microcopy (CLSM) showed no detectable GFP

fluorescence in the WT leaf cells (Figure 4F), by virtue of

elimination of background signal from chlorophyll

autofluorescence by applying time gating (Kodama, 2016).
frontiersin.org

https://doi.org/10.3389/fpls.2022.989310
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Odahara et al. 10.3389/fpls.2022.989310
In the same condition, we observed GFP fluorescence not

homogenously but in a part of leaves of the tobacco T1

seedlings, and the GFP fluorescence exclusively localized in

plastids (Figure 4F). This shows production of GFP from the
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DNA integrated and maintained in the plastid DNA. In

summary, these results show integration and transmission of

fore ign DNA in ptDNA mediated by the fus ion-

peptide method.
B

C

D E

F

A

FIGURE 4

Genotyping of T1 generations. (A) T1 seedlings of tobacco, rice, and kenaf grown on selection medium. (B–D) PCR genotyping of T1 seedlings of
tobacco (B), rice (C), and kenaf (D). Arrowheads indicate the expected product size: 3.3 and 1.7 kb (B), 2.6 and 1.9 kb (C), and 2.5 and 2.4 kb
(D) for the left and right arms, respectively. For kenaf, #1–#4-C refer to T1 of individual transformants, and numbers under them refer to
different offspring of the transformants. Primers used in the PCR are shown in each panel, and the details of the position of the primers are
shown in Figure S1. (E). DNA gel blots of the plastid DNA of tobacco T1 seedlings. WT, wild type. (F). Imaging of GFP in tobacco plastids. GFP
fluorescence from leaves of tobacco T1 and WT seedlings were observed by CLSM. Chlorophyll autofluorescence denotes plastids. Bars, 10 mm.
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Conclusion

Here, we established a stable plastid transformation method

using peptide-mediated gene delivery and Sp/Str selection.

Foreign DNA was successfully integrated into ptDNA,

maintained over long-term cultivation even without selection

pressure, and transmitted to the next generation, while the

transformants possess foreign DNA in ptDNA and maybe in

nuclear DNA. Recent advances in nanomaterial-based methods

have enabled the delivery of biomacromolecules to plant cells

(Torney et al., 2007; Martin-Ortigosa et al., 2014; Mitter et al.,

2017; Demirer et al., 2019; Demirer et al., 2020). For example,

chitosan-complexed single-walled carbon nanotubes enabled

gene delivery to chloroplasts (Kwak et al., 2019); however, this

method is only suitable for transient gene delivery. The method

used here is an important first step for stable plastid

transformation with a biocompatible peptide carrier.

Moreover, we achieved stable plastid transformation in three

diverse plant species, including two dicots and one monocot:

tobacco, rice, and kenaf. For kenaf, to our knowledge, this is the

first report of plastid transformation. Therefore, compared to

other methods, this method is easier and potentially suited to

wider variety of plants. The peptide method does not require any

special instruments, such as biolistic guns or electroporators.

However, transformants obtained by the peptide method were

not homoplasmic despite Sp/Str selection and transmission to

the next generation even in tobacco, in which homoplasmic

plastid transformation is well established (Maliga and

Tungsuchat-Huang, 2014). This may be attributed to the

efficiency and/or manner of the DNA delivery of the peptide

method and could limit the potential of peptide-mediated plastid

transformation. Moreover, the integrated foreign genes in such a

non-homoplasmic transformants should be unstable and be lost

within few generations. Increasing the delivery efficiency by

using an improved peptide or cell wall-loosening reagents

(Miyamoto et al., 2022) in combination with a more efficient

tissue culture and selection system would enable homoplasmic

plastid transformation by fusion peptides.
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