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For continual learning in the process of plant disease recognition it is

necessary to first distinguish between unknown diseases from those of

known diseases. This paper deals with two different but related deep

learning techniques for the detection of unknown plant diseases; Open

Set Recognition (OSR) and Out-of-Distribution (OoD) detection. Despite

the significant progress in OSR, it is still premature to apply it to fine-

grained recognition tasks without outlier exposure that a certain part of

OoD data (also called known unknowns) are prepared for training. On the

other hand, OoD detection requires intentionally prepared outlier data during

training. This paper analyzes two-head network included in OoD detection

models, and semi-supervised OpenMatch associated with OSR technology,

which explicitly and implicitly assume outlier exposure, respectively. For

the experiment, we built an image dataset of eight strawberry diseases. In

general, a two-head network and OpenMatch cannot be compared due

to different training settings. In our experiment, we changed their training

procedures to make them similar for comparison and show that modified

training procedures resulted in reasonable performance, including more than

90% accuracy for strawberry disease classification as well as detection of

unknown diseases. Accurate detection of unknown diseases is an important

prerequisite for continued learning.

KEYWORDS

continual learning, plant diseases, Open Set Recognition, Out-of-Distribution
detection, two-head network, OpenMatch, strawberry disease classification

Introduction

Plant disease monitoring is a critical means of improving productivity and
enhancing crop quality. The traditional methods for diagnosis of plant diseases–visual
analysis by a professional farmer or inspection of a sample in a laboratory–generally
requires extensive professional knowledge and high costs. For this reason, an automated
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disease monitoring process will prove to be a valuable
supplement to the labor and skill of farmers (Kim et al., 2021).

A number of research studies have applied deep learning
techniques to automatic plant disease monitoring (Liu and
Wang, 2021). However, most of the studies have been based
on closed set recognition (CSR), which is prone to erroneous
decisions when an unknown disease sample is detected because
it must be classified into one of known classes. Moreover,
discriminating images of plant diseases (or disorders) is a
difficult task for computer vision, categorized into a fine-grained
task involving both easy and hard problems.

In contrast, a human expert can naturally accumulate
knowledge to improve their ability to accurately recognize plant
diseases or disorders in an increasing number of categories. In
order to program a machine to be similar to a human expert,
it is necessary to continuously increase the amount of data and
the number of categories it has access to. Open Set Recognition
(OSR) and Out-of-Distribution (OoD) detection technology are
used for continual machine learning and can be applied to plant
disease recognition in order to differentiate unknown diseases
and disorders from known diseases.

Generally speaking, for continual learning of open world
tasks, both detection of unknown diseases and incremental
active learning with unknowns should be addressed. However,
unknowns need to be correctly identified before commencing
active and incremental learning, so that their detection is
essential to lifelong or continual learning for the performance
of open world tasks.

Figure 1 shows the continual learning process for plant
disease monitoring. The unknowns should be identified in
the inference stage, and then a second round of training is
performed with additional known and unknown disease data,
with (or without) increased number of categories.

Automatic detection of unknowns has been a traditional
field of research (Scheirer et al., 2012) in computer vision
and has recently received attention due to deep learning
technology’s increasing popularity (Cardoso et al., 2015). In
general, however, unknowns are not available in the learning
process. In conventional CSR, the unknowns must be classified
into a known class during the inference process, which degrades
performance. To avoid such degradation, OSR should have a
proper structure and be carefully trained.

There has been a large volume of research on OSR since
it was formalized by Scheirer et al. (2012). Unfortunately,
OSR technology in its current state is unable to be practically
applied to fine-gained plant disease monitoring due to poor
performance without assuming outlier (sometimes called
known unknowns) exposure. OoD detection technology is
closely related to OSR, but outliers can be partly assumed and
prepared for training differently from OSR. In general, OoD
detection encompasses all forms of distributional shift, while
OSR specifically refers to semantic novelty (Vaze et al., 2021).
However, in plant disease recognition based on image analysis,

OSR is similar to the OoD detection when there is no severe
distribution shift in captured image data, and a set of outlier
data is assumed in the training (outlier exposure). Figure 1
assumes outlier exposure from the first round of training
of the prototype model, because unknowns are incorporated
with.

The goal of this paper is finding the practical solutions to
detect unknowns for continual learning as shown in Figure 1,
where a part of outliers is assumed to be prepared for training.
For this purpose, the paper evaluates (Yu and Aizawa, 2019)
a two-head network that uses OoD detection, and Saito et al.
(2021) semi-supervised OpenMatch that uses OSR technology,
both of which show reasonable performance for known plant
disease recognition as well as unknown disease detection.

It is generally it is not appropriate to compare OoD and
OSR because they require different settings for training. In
order to change the semi-supervised OpenMatch into OoD
detection similar to the two-head network, OpenMatch can
be disassembled into two stages; one training stage to learn
the One versus All (OVA) and softmax classifiers with labeled
and OoD data, and another stage to learn the semi-supervised
setting of OpenMatch with unlabeled samples including both
inliers and outliers. Also, the two-head network can be retrained
with FixMatch and fine-tuned after finding high confidence
pseudo inliers and outliers from the inference process. After
these modifications, the two different models can be comparable
in terms of the performance for detecting and classifying both
unknown and known diseases.

As shown in Figure 1, these two different modified models
of OpenMatch and the two-head network are related with
continual learning, because inliers and outliers of unknowns
can be effectively recognized, and the results can be used for
second round training to continuously improve the models’
performance.

The contributions of this paper can be summarized as
follows:

1. The difficulty recognizing unknown plant diseases is
related to continual learning and the progressive evolution
of machine performance. We chose two different types
of techniques, OpenMatch using OSR, and a two-head
network using OoD detection, which are closely related
technologies. To the best of our knowledge, this might be
the first article to examine OSR and OoD detection for
plant disease monitoring. In addition, this paper shows
that OSR outlier exposure is a necessary assumption to
adequately detect unknowns.

2. Open Set Recognition and Out-of-Distribution detection
are difficult to compare. After the proper modifications,
we compared OpenMatch with the two-head network to
classify unknown strawberry diseases and related both
classification models with continual learning. In addition,
our results show that the contrastive regularization in
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FIGURE 1

Unknown detection and continual learning for plant disease monitoring.

FixMatch developed for semi-supervised OpenMatch was
successfully applied to the two-head network to improve
its performance.

3. We constructed an image dataset of strawberry diseases
to validate OSR with assumed outlier exposure. The result
of our experiment shows that both the two-head network
and OpenMatch can provide reasonable performance for
classifying the aforementioned eight strawberry diseases as
well as detecting unknowns.

Related works

In this section we summarize the use of OSR and
OoD detection for continual learning and DNN-based plant
disease monitoring.

Open Set Recognition and
Out-of-Distribution detection for
continual learning

Recently, open world vision has received considerable
attention in the field of computer vision, because it has the
potential to resolve many realistic problems such as open
set recognition, long-tailed distribution, and limited ontology
of labels for life-long or continual learning (Open World
Vision, 2021). Open world vision is also related to active or
incremental learning because unknowns can be grouped to
obtain labels, or should be learned with increased number
of categories without catastrophic forgetting (Parisi et al.,
2019).

An important task in open world vision is properly
differentiating unknowns from known classes. In the inference
phase of CSR, a sample should be classified into known classes
included in the training phase. When using OSR, however, a
classification model must be able to distinguish between the
training classes, and indicate if an image comes from a class it
has not yet encountered (Scheirer et al., 2012). This implies that
unknowns are not exposed to the model during OSR training.

There are several types of deep learning-based OSR models.
OpenMax (Bendale and Boult, 2016) is an extension of SoftMax
that uses probability adapting Meta-Recognition concepts to
activate patterns in the penultimate layer to recognize unknown.
There are many generative models of OSR based on auto-
encoders or GANs (Generalized Adversarial Networks). G
(Generative)-OpenMax is an extension of OpenMax, in which
unknown unknown class samples are artificially generated with
GANs and are used for fine-tuning OpenMax (Ge et al.,
2017). A class-conditioned Auto-Encoder for OSR is another
kind of generative model in which an encoder/decoder model
is used to classify known classes and unknowns (Oza and
Patel, 2019). Outlier exposure is a necessary assumption to
improve OCR performance, but there is a risk of overfitting,
because only a limited amount of the voluminous outlier
data is available for training. OpenGAN is the most recent
generative model in which outlier exposure is assumed, but
additional GANs are applied to supplement outlier data to
prevent overfitting (Kong and Ramanan, 2021). OpenHybrid
framework consists of an encoder to encode the input data
into a joint embedding space, a classifier to classify samples
to inlier classes, and a flow-based density estimator to detect
whether a sample belongs to the unknown category (Zhang
et al., 2020). There are many recent papers continuously
being published with tutorials in OpenSetRecognition_list
(2022).

While OSR is closely related to OoD detection (Hendrycks
and Gimpel, 2016), OoD settings permit the use of additional
data as examples of “OoD” data during training (Chen et al.,
2021). Many deep leaning-based OoD detection methods have
been developed. The maximum softmax probability is the
simplest one to decide if something is an inlier or outlier.
Generalized ODIN (Hsu et al., 2020), an extended version of
ODIN, uses the decomposed confidence model, temperature
scaling, and modified input preprocessing strategies (Liang et al.,
2017). Also, many OoD detection methods were introduced by
Salehi et al. (2021) including the two-head network that we
consider in this paper.

The two-head network in the paper was published by Yu
and Aizawa (2019) to find OoD samples. In plant disease
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monitoring, the set of OoD samples can included unknown
diseases or disorders, as well as other images irrelevant to the
task. When unknowns are included in OoD detection training
data, they are called known unknowns. The set of OoD data
prepared for training is a type of bias (Hsu et al., 2020), and
reasonable OoD data should be chosen in two-head network
training.

The OSR algorithm OpenMatch in the paper was released
in 2021 (Saito et al., 2021), and an advanced modified version
was published which added contrastive loss (Lee et al., 2022).
The networks in OpenMatch are trained in a semi-supervised
setting, which is different from OoD-based detection of the
two-head network. However, semi-supervised learning can be
treated as a method to expose outliers for training, because
unlabeled data can include OoD samples as well as unlabeled
inliers.

Due to (a priori) known unknowns in the training phase, it
is hard to directly compare OoD detection with OSR. However,
in practice, the distinction between OSR and OoD detection is
not important if the outlier images are well prepared.

Related works of deep learning-based
plant disease monitoring

There are two types of deep learning models for plant
disease monitoring: classification and deep object detection. The
classification model can be used to find the name of a disease
after an image is manually taken by a camera (Mohanty et al.,
2016). In contrast, the deep object detection model can place
the diseased area in a bounding box, so that it can be applied
to automatic disease monitoring if the imaging apparatus is
equipped with a mobile robot. There are excellent studies
reported by Kim et al. (2021) and Liu and Wang (2021).

The following discussion focuses on the classification model,
as we tried to apply said model to recognize the diseases with
unknowns. In general, unknown object detection is a much
more complicated task than object identification (Joseph et al.,
2021).

There have been a number of deep neural network
(DNN)-based classification approaches used to identify plant
diseases and disorders. The DNN usually consists of a
multilayer convolutional neural network (CNN)-based feature
representation block (backbone), and a softmax classification
block (head). Table 1 displays several selected applications
of plant disease classification. The backbone network can
be used depending on requirements of the applications. If
fast recognition speed is required to scarify the accuracy,
then a light DNN model like MobileNet may be a prudent
choice (You and Lee, 2020). If the accuracy is more
important than the speed, then a complex DNN backbone
like ResNet might be optimal (He et al., 2016). There
are numerous CNN-based off-the-shelf DNN backbones one
can choose according to specific requirements (Tan and
Le, 2019). A transformer-based backbone is another option
to select as a DNN backbone (Dosovitskiy et al., 2020).
Note that the backbone can be constructed to obtain better
performance by including multiscale methods (Lin et al.,
2017).

The head structure of softmax classifiers is similar to each
other, where the conditional probability distribution of class
labels for given input image. Note that there might be multi-
label classifiers which have more than one head. In this case,
each separate head can be constructed using separate softmax
classifiers to share the DNN backbone during multitasking and
by sigmoid classifiers. In this paper, the K-OVA block in the
OpenMatch structure has K separate softmax classifiers that
share the backbone.

TABLE 1 Deep neural network (DNN)-based classification approaches for identification of plant diseases.

References Network models Dataset for
pre-training

Plants Dataset for
fine-tuning

Disease
classes

Barbedo, 2018 GoogleNet ImageNet 12 spices 12

Ferentinos, 2018 AlexNet, GoogleNet, Overfeat,
VGG16, AlexNetOWTBn

25 species PlantVillage 58

Liu et al., 2017 AlexNet ImageNet apple Collected from fields 4

Mukti and Biswas, 2019 AlexNet, VGG16,19, ResNet50 ImageNet 38 species PlantVillage 38

Saleem et al., 2019 AlexNet, LeNet, VGG, GooLeNet,
ResNet, DenseNet

ImageNet 38 species PlantVillage 38

Kumar et al., 2020 ResNet34 ImageNet 14 species New Plant Diseases
Dataset

38

Rangarajan et al., 2018 AlexNet, VGG 16 ImageNet 7 species Tomato crop 6

Aquil and Ishak, 2021 Vgg16,19, ResNet18,34,50,101,
DenseNet120, SqueezeNet

PlantVillage 44 species tomato leaves 9

Rao et al., 2022 VGG, ResNet based on Bi-CNN 38 species PlantVillage 38

Rehman et al., 2022 MobileNetv2, DenseNet201 ImageNet citrus citrus diseases 6
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Transfer learning is widely used due to the lack of
training data in many application areas, including plant disease
monitoring, where a pre-trained backbone with a huge amount
of data in the general domain is initialized to be fine-tuned
in a specific application domain. For this purpose, a set of
pre-trained parameters for the specific backbone model with
an ImageNet dataset is available for constructing the classifier.
However, the ImageNet dataset is so general that the domain-
specific dataset such as LifeClEF 2017 might be the better choice
for a backbone to be used for a specific application (Joly et al.,
2017).

Many initial DNN-based plant disease monitoring systems
were developed using the PlantVillage dataset which included
a diverse group of crops. However, the success of DNN-
based monitoring has resulted in diverse datasets built
for various crops.

However, it is difficult to find previous research concerning
the detection of unknown diseases, except cassava disease
classification using CropNet (CropNet, 2020), where the
network tried to classify four major cassava diseases on diseased
leaves, normal leaves, and unknown. The detection technology
of CropNet cannot be identified in detail, but presumably it is
not a very complex algorithm.

Meanwhile, there are more than 70 diseases and disorders
introduced in Strawberry Diseases (2022), and it is difficult
to paper sufficient data for all of them at once. Therefore,
the probability of continual learning for detecting diseases and
disorders increases with the increased number of classes and
corresponding data. Figure 2 shows images of the 8 classes
of known diseases and several unknown disorders. Note that
the plant parts including fruit, leaves, runners, and flowers are
easy to differentiate, while diseases of the same plant part are
difficult to discern. As a result, the disease recognition task is
fine-grained, having both easy and hard problems.

Materials and methods

In this section, we introduce the two-head network (Yu
and Aizawa, 2019) and OpenMatch (Saito et al., 2021) which
were used in the experiments. We discuss how the two-head
network can be implemented to recognize unknowns such as
OoD, and how semi-supervised learning can be performed to
better identify unknowns. In addition, we review how to change
the networks so they can be compared, and how we can use them
for continual learning.

Two-head network

The two-head network uses two different randomly
initialized softmax heads, F1 and F2, that provide the same
decision for labeled data, but different probability distribution

for OoD data. Figure 3 shows the structure of a two-head
network that shares a backbone. Originally there are two stages
of training: pre-training with only labeled inlier data (ID), and
fine-tuning with unlabeled OoD data. The training loss for
labeled ID in the first stage is given by the cross-entropy:

Ltwocross(X) = −
1
X

∑
xb∈X

2∑
i = 1

log(pi(yb|xb)) (1)

where {xb, yb} is the labeled ID samples, and index i is
the head number.

In the second fine-tuning stage, the discrepancy loss is as
follows:

Ltwodis (O) = max

{
m−

1
µO

∑
xo∈µO

d(p1
(
y|xo

)
, p2

(
y|xo

)}
(2)

d
(
p1
(
y|xo

)
, p2

(
y|xo

))
=

K∑
i = 1

∣∣p1
(
yi|xo

)
− p2

(
yi|xo

)∣∣ (3)

where d (·) is the L1 loss, and O = {xo}
µO
o = 1 is the

set of unlabeled OoD data. In Eq. 2, m is a margin to
prevent overfitting.

The OoD can be any irrelevant data to ID; it can be healthy
leaves, fruit, runners or other images for strawberry disease
recognition. Note that this OoD data is a type of bias that is
inevitable in the OoD detector. Therefore, it is important to
use them to increase the network’s performance. In Section
“Experimental results of the two-head network,” we discuss the
OoD data in more detail.

For continual learning, as displayed in Figure 1, the model
can be retrained after performing an inference of unlabeled data.
The inference process differentiates ID from OoD data. In the
second-round training for continual learning, ID and OoD data
are augmented by adding ID and OoD data.

Semi-supervised OpenMatch

OpenMatch uses semi-supervised learning to improve OSR,
where labeled and unlabeled data are mixed to create training
data. Figure 4 shows the structure of the OpenMatch model.
The base classifier consists of K one-vs-all (OVA) sub-classifiers
Dj (·) , j ∈ {1, . . . ,K}, that share the feature extractor F(·), each
of which determines whether it is an inlier or not with respect to
the class. There is one more closed set classifier C(·), which gives
the class label ŷ in one of K classes for an input sample. The final
unknown decision of whether it is an inlier or outlier is based on
Dŷ (·). The training of OpenMatch includes several losses and
tries to minimize them. One of the losses is the cross-entropy
loss for a closed set classifier:

Lcross(X) = −
1
B

∑
xb∈X

yblog(p
(
y|xb

)
) (4)
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FIGURE 2

Prototypical images of known diseases and unknown diseases.

FIGURE 3

Two-head network for Out-of-Distribution (OoD) detection.

For a given batch of known data, X =
{(
xb, yb

)}B
b = 1. In Eq. 4,

p(yb|xb) is the probability of softmax output y for xb from closed
set classifier C(·). Another loss for the OVA outlier detection is
defined as:

LOVA(X) =
1
B

B∑
b = 1

−log
(
pyb

(
t = 0|xb

))
−mini6=yb

log
(
pi
(
t = 1|xb

))
(5)

where pi(t = 0|xb) and pi(t = 1|xb) represents the
probabilities of xb being an inlier or outlier for class i. For
unlabeled data U = {(ub)}

µB
b = 1, there is another loss for OVA

called entropy minimization, defined as:

Lem (U) = −
1

µB

µB∑
b = 1

k∑
j = 1

pj
(
t = 0|ub

)
log

(
pj
(
t = 0|ub

))
+ pj

(
t = 1|ub

)
log

(
pj
(
t = 1|ub

))
(6)

Equation 7 is the soft open set consistency regularization
(SOCR) loss for the OVA classifier to encourage the consistency
of the output logits over any augmentation A to enhance the
smoothness:

LOC (U,A) = −
1

µB

µB∑
b = 1

k∑
j = 1

∑
t∈{0,1}

∣∣pj (t|A1(ub)
)

− pj
(
t|A2(ub)

) ∣∣ (7)

which emphasizes the consistency of OVA for differently
augmented A1 and A2 unlabeled data.

During semi-supervised learning, unlabeled samples are
taken as pseudo inliers to supplement the set of labeled data, if
pŷ
(
t = 0|ub

)
= τ, where ŷ = argmaxj C(F(ub))), after the

training is stabilized.
The learning related to these pseudo inliers is called

FixMatch (Sohn et al., 2020), and there is another corresponding
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FIGURE 4

OpenMatch with softmax and One versus All (OVA) classifiers.

loss to be minimized Lfm. FixMatch is a combination of
two approaches to semi-supervised learning: consistency
regularization and pseudo-labeling (Sohn et al., 2020).
Consistency regularization utilizes unlabeled data by relying
on the assumption that the model should output similar
predictions when fed perturbed versions of the same image
(weak augmentation and strong augmentation). Pseudo-
labeling leverages the idea of using the model itself to obtain
artificial labels for unlabeled data. FixMatch progressively
improves the performance of semi-supervised training (so-
called curriculum learning) using pseudo-labeled data, where
strong augmented pseudo inliers follow weak augmented ones.
The FixMatch process can extend the decision boundary of
known classes to allow the strongly augmented inliers to train
models. Here, the corresponding loss can be described as:

Lfm = −
µB∑

b = 1

I
(
pŷ
(
t = 0|ub

)
> τ

)
log p

(
ŷ|A (ub)

)
(8)

where I() is a set indicator function, and A (ub) stands for the
strong augmented data for the pseudo inlier. Note that Lfm is the
same as the cross-entropy losses except that they are calculated
for pseudo inliers labeled by ŷ.

A contrastive loss can also be applied to OpenMatch to
improve the accuracy and speed of the FixMatch training
process (Sohn et al., 2020). FixMatch only considers consistency
regularization between each high confidence pseudo inlier(
pŷ
(
t = 0|ub

)
> τ

)
and its strong augmented version A (ub)

by curriculum learning. On the other hand, contrastive
regularization builds a pool of strong augmented samples
of pseudo inliers where both positive and negative samples
for pseudo-labeled data are included, and then tries to
minimize the contrastive loss. In order to implement contrastive
regularization, a pool of strong augmented unlabeled ID

Am (U) =
{
u′|ub ∈ U, pŷ

(
t = 0|ub

)
> τ, u′i = A (ub) ,

1 ≤ i ≤ m
}

(9)

is first built, in which the average contrastive loss is calculated
using the positive and negative pairs. In Eq. 9, m strong
augmented data for each pseudo inlier is included in Am (U).

The contrastive loss for a sample u
′

in Am (U) can be calculated
by:

r
(
u
′
)
=
−1∣∣∣P̂(u′)

∣∣∣
∑

p′∈P̂(u′ )

log
exp

(〈
zu′ , zp′

〉
/T
)

∑
v′∈Am(U)/u′ exp

(〈
zu′ , zp′

〉
/T
)

(10)
where P̂

(
u
′
)
=

{
p
′

|p
′

∈ Am (U)/u
′

, q̂p′ = q̂u′
}

is a set of p
′

which makes so-called pseudo positive pairs with u
′

, that has the
same pseudo label q̂p′ as q̂u′ . In Eq. 10, T is temperature scaling
parameter, and zu′ is a normalized vector of the projection head.

Figure 5 shows OpenMatch with FixMatch-included
contrastive regularization. In semi-supervised training, the
degree of confidence in ID or OoD data is determined by OVA
classifiers and its pseudo label assigned by the softmax classifier,
as demonstrated in Eq. 8. In Figure 5, FixMatch uses the pairs
of weak and strong augmented pseudo inliers for consistency
regularization of the softmax classifier, and the pool of strong
augmented pairs of pseudo-inliers are utilized for the contrastive
regularization of feature embedding as demonstrated in Eqs
9, 10.

Discussions and comparison models

Outlier exposure
The two-head network explicitly includes OoD data with

ID in its training for fine-tuning. On the contrary, OpenMatch
improves OSR performance using semi-supervised learning,
where the unlabeled data implicitly includes OoD data to better
learn OVA according to the losses in Eqs 6, 7. OpenMatch
assumes outlier exposure implicitly in unlabeled data.

As aforementioned, the set of OoD data prepared in the
training process can be considered as a type of bias and a reason
for overfitting, because it cannot include the large amount
of OoD data; so-called unknown unknown space. Therefore,
preparing an adequate and efficient set of OoD data for a
specific domain is important. This is further discussed with the
experimental results in the Section “Experimental results of the
two-head network.”

Comparison models and continual learning
Two-stage training of the two-head network may be

merged into single stage semi-supervised training, which
starts with labeled and unlabeled data in the same manner
as semi-supervised OpenMatch. In this case of two-head
network, unlabeled ID can be treated as pseudo-labeled
inliers after stabilizing the second stage of the fine-tuning
process. Also, FixMatch with additional loss Lfm may be
applied in the two-head network with contrastive regularization.
However, this semi-supervised alignment of two-head network
and OpenMatch is not intuitive. Therefore, we considered
another modification to make a comparison between the
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FIGURE 5

FixMatch with contrastive regularization in OpenMatch.

two-head network and semi-supervised OpenMatch, as shown
in Algorithm 1.

Step 1: Train two classifiers with ID

and perform fine-tuning with OoD data.

Step 2: Inference unlabeled data

including ID and OoD data.

Step 3: Perform FixMatch with

pseudo-labeled data in Step 2.

Step 4: Perform fine-tuning with OoD

data in Step 1 and Step 2.

Algorithm 1: Modified two-head network.

In Algorithm 1, the two-head network is retrained
using FixMatch similar to OpenMatch in Step 3. FixMatch
can be performed with pseudo-labeled data to improve the
performance of the two-head classifier after the inference
process of unlabeled data in Step 2, in the same manner as in
the semi-supervised OpenMatch. Note that the high confidence
pseudo inlier can be detected by Eq. 3, however, the discrepancy
must be smaller than the threshold for unlabeled ID data. The
set of ID samples with pseudo labels obtained from the softmax
decision can then be used for FixMatch (with contrastive
regularization), as shown in Figure 6. Each softmax classifier
head is separately adjusted for consistency loss in FixMatch, and
the backbone can learn contrastive loss.

Finally, the outliers in the inference process of Step 2
can be used to fine-tune the two classifier heads in Step 4.

Instead of inherent inference and FixMatch in the training
loop of semi-supervised OpenMatch, the two-head network
performs FixMatch and fine-tuning after explicit inferencing
of unlabeled data.

Also, in order to compare semi-supervised OpenMatch
with the two-head network, OpenMatch can be disassembled
into two stages; one training stage to learn the One versus
All (OVA) and softmax classifiers similar to OoD detection,
and a second stage to conduct semi-supervised learning of
OpenMatch with labeled and unlabeled samples. In the second
stage, the same OoD data used in the first stage is included
in the outlier data. OSR does not intentionally include OoD
data in the training phase, but the data was prepared for
the two training stages of the disassembled OpenMatch.
So, OpenMatch can also be treated as an OoD detector.
Algorithm 2 summarizes the disassembled training process of
OpenMatch. Note that the first training stage is prepared only
for comparing the OoD detection capability with the two-head
network.

Step 1: Train softmax classifier

and k-OVA classifiers with labeled

ID and OoD data.

Step 2: Perform semi-supervised

training with labeled ID, unlabeled

data, and OoD data from Step 1.

Algorithm 2: Modified semi-supervised OpenMatch.
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FIGURE 6

FixMatch with contrastive regularization in two-head network.

TABLE 2 Image dataset of strawberry diseases and unknown diseases.

Name of disease Total no. of images Training images Validation images Test images

Angular leafspot (ALS) 818 498 184 136

Anthracnose fruit rot (AFR) 188 137 32 19

Anthracnose runner (AR) 232 129 33 70

Blossom blight (BB) 1,898 1,410 264 224

Gray mold (GM) 1,303 1,003 171 129

Leaf spot (LS) 2,299 1,703 360 236

Powdery mildew fruit (PML) 397 236 77 84

Powdery mildew leaf (PML) 1,738 1,257 232 249

Unknown or OoD diseases or disorders 4,216 1,346 1,435 1,435

Total 13,089 7,719 2,788 2,582

FIGURE 7

Three types of Out-of-Distribution (OoD) data.
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After the modifications, OpenMatch and the two-
head network had approximately the same conditions for
comparison, including the same data for training, inference, and
retraining. Note that Steps 2 through Step 4 in Algorithm 1 are
included in the semi-supervised training loop of OpenMatch,
which closely aligns the two models.

As well, both Algorithm 1, 2 are associated with continual
learning, because they include an inference process of unlabeled
data, and the results are utilized to improve the performance
of OSR or OoD detection. The two-head network explicitly
improves the performance by adding Step 2s through Step 4
in Algorithm 2, while semi-supervised OpenMatch includes
continual learning inherent in Step 2 of Algorithm 2.

The continual learning process that utilizes each of the
two different models as a whole is possible as follows: When
training a two-head network using Algorithm 1, it can be used
to determine inliers and OoD data during the actual inference
performed in Step 2. We can then use the classified unlabeled
data with high confidence as pseudo labeled data for performing
FixMatch in Step 3. The supplemented OoD data can then be

continuously added to fine-tune the model in Step 3 to improve
the performance. If it is necessary to cluster OoD data to obtain
new labels, then the retraining from Step 1 is possible with the
new head structure.

On the contrary, OpenMatch trained by Algorithm 2
can be used to recognize unknowns of OoD data and ID
in the real inference process. As shown in Figure 1, an
increased amount of labeled and unlabeled data, including
confident ID and OoD data, can then be prepared for
Step 2 in Algorithm 2. In this process, the unknowns of
OoD data can be clustered to give new labels and include
them for incremental learning. In this case, retraining from
Step 1 is necessary to adjust the extended structure of the
model.

Complexity of the two models
The complexity of the two-head network and OpenMatch

is comparable, because the two-head network includes
two softmax classifiers, while OpenMatch includes one
softmax classifier and k-OVAs. If the number of class

TABLE 3 Performance of the two-head network with different experimental settings.

1st 2nd Improved 2nd

Irrelevant Normal Unknowns
(diseases/
disorders)

I + N N + D I + N + D Using
pseudo label

Without
contrastive

regularization

With
contrastive

regularization

Accuracy

0.785 0.855 0.865 0.858 0.862 0.861 0.883 0.901 0.924

AUROC

0.828 0.917 0.919 0.912 0.926 0.923 0.940 0.951 0.972

1st: 1st round training followed by fine-tuning. 2nd: 2nd round without FixMatch followed by fine-tuning. Improved 2nd: 2nd round FixMatch-CR followed by fine-tuning. I + N: Fine-
tuning OoD data is a mix of irrelevant and normal data. N + D: Fine-tuning OoD data is a mix of normal and diseases data. I + N + D: Fine-tuning OoD data is a mix of irrelevant, normal,
and diseases data.

FIGURE 8

Two-head network for experiment.
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K is large, then the two-head network is simpler than
OpenMatch; otherwise, OpenMatch is preferable in
term of complexity.

Experimental results

To conduct the experiment, we constructed a small dataset
of strawberry diseases with unknowns that were used for
training, validating the results, and testing. The experiments
analyzed the effect of different types of OoD data, and

the improvements of performance by adding technological
components such as FixMatch with contrastive regularization.

Dataset of strawberry diseases with
unknowns

This paper considers a two-head network and OpenMatch
classifiers for monitoring strawberry diseases. For validation
purposes, we built a strawberry disease dataset which included
eight disease categories: angular leafspot, anthracnose (fruit rot,

FIGURE 9

Comparison of cluster structures using t-SNE.
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runner), blossom blight, gray mold (fruit), leafspot, powdery
mildew (fruit, leaf); as well as unknown diseases and/or
disorders. Reportedly there are more than 70 strawberry diseases
or disorders (Strawberry Diseases, 2022); however, only eight
diseases are considered as known diseases in our work. Other
diseases or disorders we do not consider in the experiment were
treated as unknowns for continual learning. There are 13,089
images including 8,873 known diseases and 4,216 unknown
diseases, as displayed in Table 2. Figure 2 shows prototypical
images of known and unknown diseases. All the images were
captured in more than 6 greenhouses by cellular phone cameras,
because the system pursues a mobile application.

Experimental results of the two-head
network

Training the two-head network for comparison
with OpenMatch

The training of the two-head network consisted of two
stages: the pre-training of each head of softmax classifiers, and
fine-tuning with OoD data. To compare the two-head network
with semi-supervised OpenMatch, and to show the applicability
of continual learning, we added several steps in the training of
the two-head network, as shown in Algorithm 2.

Step 1 trained the two heads of softmax classifiers with
labeled ID and performed fine-tuning using OoD data to
maximize the discrepancy between the decisions in the two
heads. As explained in Section “Materials and methods” Step
2 performed the inferencing of unlabeled data in the same
manner as in semi-supervised training of OpenMatch. After
the inference, the pseudo inliers or outliers were obtained
from the trained two-head network. The high confidence
labeled pseudo inliers were then used by FixMatch with
contrastive regularization, as displayed in Figure 6. Finally,
Step 4 performed fine-tuning with the original OoD data one
additional time.

Algorithm 1 used the same labeled and OoD data for
training, inferencing to find the pseudo inliers, and fine-tuning,
similarly to the disassembled OpenMatch in Algorithm 2, in
order to compare the two different models.

To train model, the original dataset in the second column
of Table 2 was divided into training, validation, and test data.
The training was performed using a random online selection
of (weak) augmented data, visually rotated at 90, 180, and 270
degrees. For the intermediate inference stage, we used 2,659
unlabeled inliers and OoD data.

As previously discussed, in the fine-tuning stage in Step 1
of Algorithm 1, there were several possible ways to build OoD
data, because it could draw from a large unknown data space.
One way was to include only irrelevant data randomly selected
from the ImageNet dataset, such as bugs, food, and trees.
Another method was to include normal (healthy) strawberry
data such as flowers, leaves, runners, and fruit. In addition, we
could include unknown diseases or disorders that were not part
of the known classes. We prepared the same amount of three
types of OoD data: irrelevant data, healthy strawberry data, and
unknown suspected disease data. Figure 7 shows the different
types of OoD data samples used to train the models. The effects
of the three different types of OoD data on the performance
of the models is compared in Table 3 and discussed in Section
“Experimental results and discussion.”

For FixMatch, we required sets of weak and strong
augmentation to gradually improve classification performance.
In the experiment, the geometrically transformed images,
as previously mentioned, were used for weak augmentation.
For strong augmentation, images with color and brightness
changes and different degrees of rotations were included, and
an augmentation was randomly chosen among 36 different
alternatives during FixMatch training.

The precise structure of the two-head network used in the
subject experiment is shown in Figure 8. ImageNet pre-trained
by ResNet34 was selected as a backbone for simplicity, and there
were two eight-way softmax classifiers.

TABLE 4 Confusion matrix of the final two-head network (Fixmatch-CR).

ALS AFR AR BB GM LS PWF PML OoD Recall

Angular leaf spot (ALS) 122 0 0 0 0 0 0 0 14 0.897

Anthracnose fruit rot (AFR) 0 17 0 0 0 0 0 0 2 0.895

Anthracnose runner (AR) 0 0 68 0 0 0 0 0 2 0.971

Blossom blight (BB) 0 0 0 222 0 0 0 0 2 0.991

Gray mold (GM) 0 0 0 0 120 0 0 0 9 0.930

Leaf spot (LS) 0 0 0 0 0 235 0 0 1 0.996

Powdery mildew fruit (PMF) 0 0 0 0 0 0 76 0 8 0.905

Powdery mildew leaf (PML) 1 0 0 0 0 0 0 166 82 0.667

Unknowns (OoD) 8 0 1 0 10 24 0 30 1,362 0.949

Precision 0.931 1.000 0.986 1.000 0.923 0.907 1.000 0.847 0.919
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FIGURE 10

Recognition results of correct and incorrect classification.

To train the two-head softmax classifiers, an SGD optimizer
was selected with a learning rate that decayed from 0.01. For
fine-tuning, the fixed learning rate was set to 2 = 10−4

using the same SGD optimizer. The batch size was 64 and the
number of epochs for pre-training and fine-tuning were 300 and
10, respectively.
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Experimental results and discussion
We used classification accuracy with unknown disease and

AUROC as evaluation metrics. TP, TN, FP, FN are used to denote
true positives, true negatives, false positives, and false negatives,
respectively. Accuracy is the ratio of correctly classified samples
(TP + TN) to the total number of samples. AUROC is the Area
Under the Receiver Operating Characteristic curve and can be
calculated by the area under the FPR (FPR = FP/(FP + TN))
against the TPR (TPR = TP/(TP + FN)) curve. We also used
precision and recall in the confusion matrix. Precision refers
to the proportion of the true positive class (TP) among all
judged positive classes (TP + FP). Recall refers to the proportion
of all true positive classes (TP + FN) that are judged as
positive classes (TP).

Table 3 shows the performance of the pre-training and
fine-tuning of the two-head network. In Table 3 we compare
performance from the different types of OoD data with the
same labeled inlier training data. The combined OoD data, using
normal (healthy) strawberry parts including leaves, flowers,
fruit, and runners, as well as unknown diseases (or disorders),
resulted in satisfactory performance recognizing diseases as well
as unknowns. Note that irrelevant OoD data was not helpful to
train the two-head network, even though it was included in the
mixed OoD data of normal and unknowns, displayed in the sixth
column of Table 3. The results in Table 3 show that OoD data

selected from healthy plant parts can be helpful, which is useful
for practical applications of plant disease monitoring.

Note that the selection of OoD samples is a bias in
OoD detection. Biased will inevitably be introduced if the
successful performance of the model requires outlier exposure.
Generalized ODIN, a similar OoD detector without the bias,
demonstrated 81.9% accuracy and 0.894 of AUROC using the
same strawberry data. The set of OoD samples, composed
of healthy parts and unknowns, might be an inevitable but
reasonable bias to enhance the performance of fine-grained
unknown disease detection in plants.

Figure 9 shows t-SNE images taken after different kinds
of OoD data was trained. Figure 9B shows a more compacted
cluster structure of different classes than Figure 9A, which
correspond to the first and fifth columns of Table 3, respectively.
The t-SNE images demonstrate why irrelevant outliers are not
helpful in judging OoD, even if they are exposed during the
training of an OoD detector. The irrelevant OoD samples cannot
be used as hard negative samples to help the ID class become
compact. Therefore, we built the OoD data using normal healthy
parts and unknown diseases (or disorders) of strawberries for
the rest of experiments.

In the inference stage, we prepare 2,659 images of inliers
and OoD data, and select 1,350 high-confidence inliers with
pseudo-labels. In order to find the required confident ID, we

FIGURE 11

Experimental OpenMatch design.

TABLE 5 Performance of disassembled OpenMatch with different experimental settings.

OpenMatch as OoD detector OpenMatch without FixMatch Semi-supervised training with FixMatch

Using pseudo label Without CR With CR

Accuracy 0.865 0.888 0.900 0.922

AUROC 0.928 0.944 0.951 0.971
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FIGURE 12

Comparison of cluster structures of disassembled OpenMatch using t-SNE.

used two thresholds: the threshold of L1 distance in Eq. 3, and
the maximum class probability of two softmax classifiers. The
former threshold was determined using a grid search on (0,1) to
identify the maximum detection accuracy of OoD in the fine-
tuning stage of Step 1, and the latter was 0.95; the same value as
in Yu and Aizawa (2019).

The pseudo inliers were used to perform FixMatch
with contrastive regularization in order to upgrade the

performance of the two closed-set classifiers. Thereafter, the
two-head network was fine-tuned with supplemented OoD data
determined in the inference stage. The final result of the fine-
tuning is shown in the last two columns of Table 3. Note that
there was approximately a 3.6 (5.9) % gain using FixMatch (with
contrastive regularization) and fine-tuning. When pseudo-ID
obtained from the inference stage was used to train the two-
head classifier without FixMatch of Step 3 in Algorithm 1, the
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performance decreased, as displayed in the seventh column of
Table 3.

The t-SNE in Figure 9 shows that FixMatch with contrast
regularization can make the intra-class distance more compact
and the inter-class distance larger.

Note that this sequence of inferencing unknown data,
using FixMatch with pseudo inliers, and fine-tuning with
outliers, can be repeated to continuously improve the
performance of the network.

Table 4 shows a confusion matrix after FixMatch with
contrastive regularization followed by fine-tuning. Note that
the class label was given only when the decisions from the
two heads were consistent. Otherwise, the input image was
treated as unknown. Leaf diseases like angular leafspots and
powdery mildew (leaf) had reduced recall due to confusion with
unknowns. Furthermore, the leaf diseases of angular leafspots,
leaf spot, and gray mold (fruit) were inaccurately identified due
to confusion with unknowns. The unknown detection results
included 94.9% recall and 91.9% precision.

Figure 10 shows samples of recognition results. In
Figure 10, all the true negatives (TNs) of leaf and fruit diseases
were categorized as unknowns. Note that there were many
false positives (FPs) and TNs due to image quality problems
including bad illumination and blurring. In addition, some
diseases featured small-sized symptoms which were difficult to
discern and hard to differentiate, even by human eyes. There
were no FPs of flower or runner diseases, due to their distinct
shape compared to leaf or fruit diseases.

Experimental results of OpenMatch

Training of OpenMatch for comparison with
the two-head network

We dissembled the end-to-end semi-supervised learning
into Algorithm 2 in order to compare OpenMatch with the
two-head network, as described in Section “Discussions and
comparison models.” In the first stage, OpenMatch was trained

with the same labeled and unlabeled OoD data, similar to
the first stage of the two-head network. The OpenMatch
was initially treated as if it was an OoD detector. We then
performed the semi-supervised OpenMatch training which
included inferencing unlabeled data to find the pseudo inliers,
as well as using FixMatch with contrastive regularization.

To ensure a fair comparison with the two-head network, the
same data and the same weak (strong) augmentation methods
at each training stage were used. The precise structure of
OpenMatch used in the experiment is shown in Figure 11;
ImageNet pre-trained ResNet34 was selected again as a DNN
backbone, and there was an eight-way softmax closed-set
classifier and 8 OVA classifiers, due to the identification of eight
strawberry diseases.

Experimental results and discussion
To train OpenMatch classifiers, an SGD optimizer was

selected with a learning rate that decayed from 0.01. For fine-
tuning, the fixed learning rate was set to 2 = 10−4 using
the same SGD optimizer. The batch size was 64 and the
number of epochs for pre-training and fine-tuning were 300 and
10, respectively.

Table 5 shows the performance of the disassembled
OpenMatch across different experimental settings. As a dataset
of healthy parts and unknown diseases was identified as the most
helpful OoD data, only those samples were used in order to
simplify the experiment.

In the second semi-supervised training stage of OpenMatch,
the same 2,659 images of inlier and OoD data used in the
inference stage of the two-head network were prepared. During
second stage training, the high confidence pseudo inliers were
detected and applied to perform FixMatch with contrastive
regularization, in order to upgrade the performance of the
disassembled OpenMatch classifiers. In the experiment, the
threshold τ in Eq. 8 was 0.95 to detect pseudo inliers. The result
of the training is shown in Table 5.

Using OpenMatch without the semi-supervised method as
the OoD detector yields an accuracy of 86.5%, as shown in

TABLE 6 Confusion matrix of the retrained OpenMatch-CR.

ALS AFR AR BB GM LS PWF PML OoD Recall

Angular leaf spot (ALS) 121 0 0 0 0 0 0 0 15 0.890

Anthracnose fruit rot (AFR) 0 16 0 0 0 0 0 0 3 0.842

Anthracnose runner (AR) 0 0 69 0 0 0 0 0 1 0.986

Blossom blight (BB) 0 0 0 222 0 0 0 0 2 0.991

Gray mold (GM) 0 0 0 0 119 0 0 0 10 0.922

Leaf spot (LS) 0 0 0 0 0 235 0 0 1 0.996

Powdery mildew fruit (PMF) 0 0 0 0 0 0 77 0 7 0.917

Powdery mildew leaf (PML) 5 0 0 0 0 0 0 153 91 0.614

Unknowns (OoD) 3 0 1 0 5 14 0 41 1,371 0.955

Precision 0.831 0.950 0.986 0.991 0.899 0.946 0.974 0.931 0.898
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FIGURE 13

Recognition results of correct and incorrect classification.

the first column of Table 5. Note that only the OoD samples
were fed as unlabeled data, similar to the fine-tuning stage of
the two-head network. The performance of OpenMatch as an
OoD detector was comparable with the 86.2% accuracy of the
two-head network.

Usually, OSR does not make use of unknowns in the
training phase, so that there is no bias regarding the
type of unknowns. While OpenMatch with OoD data
samples was biased due to unknown exposure during
training, it was an inevitable but reasonable bias, similarly
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observed in the two-head network. When we applied
OpenMax, a well-known OSR technique, the accuracy
and AUROC were 70.1% and 0.812, respectively. The
outlier exposure provided a significant 16.4% increase
in accuracy, even though the OpenMax and OpenMatch
structures were different.

By combining the semi-supervised training of OpenMatch
with FixMatch (with contrastive regularization), accuracy
improved as much as 3.5 (5.7) %, as displayed in Table 5,
which was comparable with the accuracy of the retrained
two-head network. The accuracy improvement might have
been a result of semi-supervised learning with unlabeled
inliers and outliers. The semi-supervised setting without
FixMatch, where the high confident pseudo inliers were
included in the semi-supervised OpenMatch, provided a small
2.3% gain in accuracy, as shown in the third column of
Table 5. It can be seen from Table 5 that adding the
contrast regularization technique can effectively improve the
performance of FixMatch.

Figure 12 shows t-SNE images after OpenMatch training.
The more compact cluster structure of classes was a result of
the semi-supervised learning of OpenMatch and contrastive
regularization in Figures 12B,C, respectively.

Table 6 shows the confusion matrix for the best
experimental performance, which featured semi-supervised
OpenMatch with contrastive regularization. The unknown
detection results included 95.5% recall and 91.3% precision,
which was comparable with the two-head network. Similar
to the results of the two-head network, leaf diseases such as
angular leaf spots, powdery mildew, and gray mold fruit were
confused with unknowns.

Figure 13 shows samples of recognition results. In
Figure 13, all the TNs of leaf and fruit diseases were categorized
as unknowns, similar to the results of the two-head network.
Image quality was the primary reason for misclassification of FPs
and TNs, as seen in Figure 13.

Conclusion

For continuous learning in the plant disease identification
process, an unknown disease or condition should first be
distinguished from a known disease. This paper examined
with two different but related deep learning-based techniques
the detection of unknown plant diseases, including OSR
and OoD detection. We chose the two-head network using
OoD detection and semi-supervised OpenMatch using OSR
technology, which explicitly and implicitly assume outlier
exposure, respectively.

We carefully review the two models, and performed
modifications in order to compare their performance classifying
known diseases as well as detection of unknown diseases.

For the experiment, we built an image dataset of eight
strawberry diseases. Experiments on the dataset show that
assuming outlier exposure during training is helpful for
detecting unknown diseases. The experimental results also
demonstrated that a careful selection of OoD samples
for training is important to achieve better performance.
Additionally, we demonstrated that FixMatch in semi-
supervised OpenMatch can be successfully added into
a two-head network, with contrastive regularization, to
improve performance. Both OoD detection and OSR provided
reasonable and comparable performance, as they were
more than 92% accurate classifying the eight strawberry
diseases and detecting unknown diseases. We believe the
methods used in our experiment are general in nature,
allowing them to be effectively applied to any type of plant
disease monitoring.
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