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Jurandi Gonçalves de Oliveira
jugo@uenf.br
Isabelle Faria Matos
bellinha.ifm@gmail.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Plant Metabolism and Chemodiversity,
a section of the journal
Frontiers in Plant Science

RECEIVED 05 July 2022
ACCEPTED 31 October 2022

PUBLISHED 23 November 2022

CITATION

Matos IF, Morales LMM, Santana DB,
Silva GMC, Gomes MMA, Ayub RA,
Costa JH and Oliveira JG (2022)
Ascorbate synthesis as an alternative
electron source for mitochondrial
respiration: Possible implications for
the plant performance.
Front. Plant Sci. 13:987077.
doi: 10.3389/fpls.2022.987077

COPYRIGHT

© 2022 Matos, Morales, Santana, Silva,
Gomes, Ayub, Costa and Oliveira. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 23 November 2022

DOI 10.3389/fpls.2022.987077
Ascorbate synthesis as an
alternative electron source for
mitochondrial respiration:
Possible implications for the
plant performance

Isabelle Faria Matos1*†, Luis Miguel Mazorra Morales2†,
Diederson Bortolini Santana1, Gláucia Michelle Cosme Silva1,
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The molecule vitamin C, in the chemical form of ascorbic acid (AsA), is known

to be essential for the metabolism of humans and animals. Humans do not

produce AsA, so they depend on plants as a source of vitamin C for their food.

The AsA synthesis pathway occurs partially in the cytosol, but the last oxidation

step is physically linked to the respiratory chain of plant mitochondria.

This oxidation step is catalyzed by L-galactono-1,4-lactone dehydrogenase

(L-GalLDH). This enzyme is not considered a limiting step for AsA production;

however, it presents a distinguishing characteristic: the L-GalLDH can

introduce electrons directly into the respiratory chain through cytochrome c

(Cytc) and therefore can be considered an extramitochondrial electron source

that bypasses the phosphorylating Complex III. The use of Cytc as electron

acceptor has been debated in terms of its need for AsA synthesis, but little has

been said in relation to its impact on the functioning of the respiratory chain.

This work seeks to offer a new view about the possible changes that result of

the link between AsA synthesis and the mitochondrial respiration. We

hypothesized that some physiological alterations related to low AsA may be

not only explained by the deficiency of this molecule but also by the changes in

the respiratory function. We discussed some findings showing that respiratory

mutants contained changes in AsA synthesis. Besides, recent works that also

indicate that the excessive electron transport via L-GalLDH enzyme may affect

other respiratory pathways. We proposed that Cytc reduction by L-GalLDHmay

be part of an alternative respiratory pathway that is active during AsA synthesis.

Also, it is proposed that possible links of this pathway with other pathways of
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alternative electron transport in plant mitochondria may exist. The review

suggests potential implications of this relationship, particularly for situations

of stress. We hypothesized that this pathway of alternative electron input would

serve as a strategy for adaptation of plant respiration to changing conditions.
KEYWORDS

alternative oxidase, L-galactone-1,4-lactone dehydrogenase, respiration, cytochrome c,
mETC, mitochondrial alternative pathway
Introduction

Ascorbic acid (AsA), commonly called vitamin C, is an

important antioxidant essential to animal and plant

metabolism (Figure 1). The pathways of AsA synthesis have

not been fully elucidated in plants. Indeed, four possible

pathways have been proposed, with the so-called “Smirnoff-

Wheeler” or “D-mannose/L-galactose” pathway being the best

characterized. In plant cells, AsA synthesis includes the

conversion of sugars related to the metabolism of cell walls

(D-mannose and L-galactose) into the immediate AsA

precursors, L-galactono-1,4-lactone (L-GalL) and L-gulono-1,4-

lactone (L-GulL) through reactions of isomerization,

phosphorylation, epimerization, and oxidations (Smirnoff,

2001; Smirnoff, 2018). In the past, most studies have focused
02
on elucidating the key enzymes that catalyze these reactions as

well as the regulation and the physiological roles of AsA

synthesis (Horemans et al., 2000; Imai et al., 2009; Hemavathi

et al., 2010; Cruz-Rus et al., 2011; Zhou et al., 2012; Gallie, 2013;

Castro et al., 2015). There is considerable consensus in the

literature about the regulation of key biosynthetic enzymes by

light, the roles of this molecule as an antioxidant or as an

enzymatic co-factor and its implication in essential processes

of plant growth and development, particularly under stress

conditions (Gatzek et al., 2002; Mastropasqua et al., 2012;

Wheeler et al., 2015; Ntagkas et al., 2018; Bulley et al., 2021).

The concentrations of AsA in different cel lular

compartments can be quite variable (Palma et al., 2006;

Luschin-Ebengreuth and Zechamann, 2016). AsA is not

synthesized by chloroplast, but AsA mostly accumulates in
FIGURE 1

General overview of the functions of AsA in animal (orange) and plant (green) metabolism. Black arrows represent common molecular functions
in both human and plant metabolism.
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this organelle. It is evident that this molecule is implicated in

events related to light capture and electron transport by

photosynthetic pigments, the AsA-GSH cycle in chloroplast,

and other processes (Yabuta et al., 2007; Nunes-Nesi et al.,

2008; Zheng et al., 2021). On the other hand, there are data

showing that AsA accumulates in mitochondria at lower

concentrations than in chloroplasts (Zechmann et al., 2011).

However, the last step of AsA synthesis is linked with a

mitochondrial-localized enzyme called L-GalL dehydrogenase

(L-GalLDH, EC 1.3.2.3) (Bartoli et al., 2000). This enzyme

catalyzes the last oxidation reaction during AsA synthesis and

is strongly induced by high light (Bartoli et al., 2006). Humans

do not produce AsA because L-GulL oxidase (L-GulLO) was

lost during evolution (Wheeler et al., 2015). This enzyme is not

considered to be a limitation for AsA production (Gatzek et al.,

2002; Fenech et al., 2021). Thus, L-GalLDH has received

relatively less attention as compared to other key

biosynthetic enzymes. However, an aspect of the action of L-

GalLDH could have unexpected implications for the function

of plant mitochondria and consequently overall plant

physiology: This enzyme is able to introduce electrons into

the mitochondrial respiratory chain using cytochrome c (Cytc)

as a direct electron acceptor (Leferink et al., 2008). The plant

mitochondria are also unique in that they can receive electrons

through alternative pathways of NAD(P)H oxidation

(Rasmusson et al., 2020). Thus, plant mitochondria can

partition the electron flux towards the alternative pathways,

which is particularly evident under stressful conditions. The

mitochondrial alternative pathway is the most light-responsive

component of the mitochondrial respiratory chain

(Vishwakarma et al., 2014; Jiang et al., 2019). It is thought

that these pathways of alternative electron entry can be

connected to the electron movement through ubiquinone

(UQ) and the alternative oxidase (AOX). However, there has

been little debate in the literature regarding a possible link of

electron transport with the L-GalLDH, especially the

implications of the L-GalLDH’s ability to introduce electrons

through Cytc and not through UQ. Observations from studies

with respiratory mutants and L-GalLDH deficient plants have

shown how the amount of AsA changes when the electron flux

is altered through mitochondrial respiration (Vidal et al., 2007;

Meyer et al., 2009). In addition, it is not yet well-understood

why increases in the alternative respiration enhance AsA under

light (Bartoli et al., 2006) or if this positive relationship may

also occur under conditions in which AsA synthesis is

decreased. This review is an attempt to offer a new

perspective to explain the possible inter-dependency between

AsA synthesis and mitochondrial respiration. To this end, the

review hypothesizes that the alternative introduction of

electrons into the respiratory chain via L-GalLDH can

influence the function of the mitochondrial electron transport.
Frontiers in Plant Science 03
Overview of the pathways of
AsA synthesis

In addition to the previously mentioned Smirnoff-Wheeler

pathway, three other pathways for AsA synthesis have been

described (Figure 2).The Smirnoff-Wheeler is the main pathway

of AsA production plants, being the best described pathway,

consisting of 10 steps until AsA synthesis from the glucose

molecule (Figure 2). However, as the two initial steps utilize

substrates from the cellular hexose phosphate pool and,

therefore, are not exclusive to the AsA synthesis pathway, the

Smirnoff-Wheeler pathway properly initiates from the activity of

mannose-6-phosphate isomerase. The first nine steps of this

pathway occur in the cytosol and culminate in the formation of

the precursor L-GalL, which is converted to AsA by L-GalLDH

within the mitochondria (Wheeler et al., 1998). For some

authors, L-GalLDH in plants (and in Euglena) is highly specific

for L-GalL (Ôba et al., 1995; Yabuta et al., 2000; Smirnoff, 2001;

Leferink et al., 2008), not using L-GulL (Wheeler et al., 2015) or

using L-GulL at a low rate in bean shoots, strawberry fruit, and

potato tuber tissues (Baig et al., 1970; Ôba et al., 1995) (Figure 2).

As L-GalLDH is mitochondrial and introduces electrons

directly to the Cytc (Figure 3), the possible implications of this

link will be of interest to this review. In addition, L-galactone-

1,4-lactone is synthesized from the oxidation of L-galactose (L-

Gal) by the NAD-dependent L-galactose dehydrogenase (L-

GalDH). The enzyme L-GalDH generates cytosolic NADH,

which has to be re-oxidized to allow the availability of NAD+

and therefore sustain the reaction (Figure 3). Potentially, the

regeneration of NAD+ may be accomplished through external

mitochondrial NADH dehydrogenases (NADHDHs) (Figure 3).

L-Galactose is generated from D-mannose-1-phosphate by the

conversion of guanosine diphosphate (GDP)-D-mannose to

GDP-L-galactose by GDP-mannose-3’,5’-epimerase which

is then converted to L-Gal. D-Mannose-1-phosphate is

synthesized from mannose-6-phosphate which is formed by

mannose-6-phosphate isomerase from fructose-6-phosphate.

Fructose-6-phosphate is the result of the action of glucose-6-

phosphate isomerase on D-glucose-6-phosphate, generated from

D-glucose by the action of hexokinase. According to Bulley et al.

(2009) GDP-L-galactose phosphorylase catalyzes the main

control point of AsA biosynthesis through the Smirnoff-

Wheeler pathway in plants (Figure 3).

As shown in Figure 2, the “D-galacturonate” pathway uses

products from the degradation of cell wall pectins and also leads

to the formation of the same precursor of the D-mannose/L-

galactose pathway, L-GalL (Agius et al., 2003). The other two

possible pathways of AsA synthesis culminate in the formation

of the precursor L-gulono-1,4-lactone (L-GulL) instead of L-GalL.

L-GulL is utilized by L-GulL-1,4-lactone oxidase (L-GulLO: L-

GulL oxidase or L-GulL dehydrogenase, EC 1.1.3.8). It is
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attributed to the location of L-GulLO in the lumen of the

endoplasmic reticulum (ER) (Wheeler et al., 2015), but

evidence of this location in the cellular environment is lacking.

Between these two pathways, the “D-Gulose” pathway uses GDP-

L-Gulose formed from GDP-D-mannose (Figure 2), whose

formation follows the same route as described in the D-

mannose/L-galactose pathway for AsA production (Jain and

Nessler, 2000). Finally, the last known possible pathway is

called the “myo-inositol pathway” (Figure 2), where glucose is

used for the production of myo-inositol, which through other

steps will be converted into the precursor L-GulL (Lorence et al.,

2004). However, some questions about this route are still open

(Kavkova et al., 2019).
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Proteins regulating AsA synthesis

Plant AsA biosynthesis regulation is multifaceted, occurring

at many levels and in response to several stimuli (Conklin et al.,

2013). This Section will only offer an overview about this aspect

of AsA synthesis as it has been reviewed previously (Foyer et al.,

2020; Rosado-Souza et al., 2020; Viviani et al., 2021). Several

proteins that directly regulate AsA synthesis at both

transcriptional and post-transcriptional level have been

discovered. It includes AMR1 (ascorbic acid mannose pathway

regulator 1), which transcriptionally represses GDP-L-galactose

phosphorylase (GGP) VTC2 (Zhang et al., 2009). AMR1 also

inhibits AsA synthesis during leaf aging and in response to
FIGURE 2

Possible pathways for AsA synthesis in plants indicating the potential interaction points. Adapted from Smirnoff (2018). The possibility that
L-GalLDH uses L-GulL as a substrate to form AsA (Leferink et al., 2008) is indicated with an asterisk (*) in the D-Gulose pathway.
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FIGURE 3

Representative scheme of the D-mannose/L-galactose pathway of ascorbic acid synthesis and its connections with the mETC. The yellow boxes
represent the enzymes involved in the 10 steps of the pathway. The black box has the GDP-L-galactose phosphorylase, the enzyme that
catalyzes the limiting step for AsA synthesis. The substrates of the enzymatic reactions are described between the boxes. The dotted black
arrows represent the path of electrons in the mETC. In green are the respiratory complexes indicated by Roman numerals corresponding to the
I-IV Complexes. The shaded green is indicative of respiratory protein components not directly engaged with electron flux during the synthesis
of ascorbic acid in light. In purple are the alternative NAD(P)H dehydrogenases, highlighting the external NAD(P)H dehydrogenase as the
location of the potential regeneration of NAD+. The alternative oxidase is in red and Cytc is in pink. The ubiquinone pool is represented in
magenta. NAD+ and NADH are represented by spiked outlines. The substrate L-galactone-1,4-lactone (L-GalL) (in light orange) is oxidized by
L-GalLDH using Cytc as the electron acceptor to produce ascorbate (Asc) (in dark orange). GPI: Glucose-6-phosphate isomerase. MPI:
Mannose-6-phosphate isomerase. PMM: Phosphomannose mutase. GMPP, GDP-mannose pyrophosphorylase; GME, GDP-mannose-3’-5’-
epimerase; GGP, GDP-L-galactose phosphorylase; GPP, L-galactose-1-phosphate phosphatase; L-GalDH, L-galactose dehydrogenase; L-GalLDH,
L-galactono-1,4-lactone dehydrogenase; L-GalL, L-Galactono-1,4-lactone; Asc, Ascorbate; NAD+, Nicotinamide adenine dinucleotide oxidized;
NADH, Nicotinamide adenine dinucleotide reduced; Cyt cox, Cytochrome c in oxidated state; Cyt cred, Reduced cytochrome c; AOX, Alternative
oxidase; UQ, ubiquinone; I, NADH-ubiquinone oxidoreductase; II, succinate-ubiquinone oxidoreductase; III, ubiquinol-cytochrome c
oxidoreductase; IV, cytochrome c oxidase; H+, proton; e-, electron.
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ozone (Zhang et al., 2009). Overexpression of AMR1 in

Arabidopsis causes a decrease in AsA levels and sensitivity to

ozone, while the amr1 mutant contained higher AsA levels and

ozone tolerance than the wild-type (Zhang et al., 2009). The

regulatory factor, ABI4, also transcriptionally represses VTC2

(Zhang et al., 2009). It was further demonstrated that ABI4 is

required for the regulation of growth and jasmonate-dependent

defense signalling pathways by AsA (Kerchev et al., 2011). It is

known that ABI4 is a component mediating ABA signaling and

it also regulates the mitochondrial retrograde response in plants

(Giraud et al., 2009). In addition, the PTPN protein, encodes an

enzyme with nucleotidase activity. It is required to regulate AsA

biosynthesis via VTC2 (Zhang et al., 2020). Another regulator is

AtERF98, which enhances expression of AsA synthesis genes in

the D-mannose/L-galactose (D-Man/L-Gal) AsA pathway and salt

resistance (Zhang et al., 2012). At post-transcriptional level, the

photomorphogenic factor COP9 signalosome subunit 5B

(CSN5B) can interact with the VTC1 protein and promote

degradation of AsA biosynthetic gene (VTC1) via the 26S

proteasome pathway when plants are grown in the dark

(Wang et al., 2013).
The alternative electron entry into
plant mETC

Although the mETC of plants shares similar features with

the mETC of animal mitochondria, there are critical differences

in composition and functions (Møller et al., 2021). The classical

view is that electrons from the matrix NADH oxidation in

Complex I are transferred to the UQ, reducing it to UQH2,

while protons are transported to the inter-membrane space

(IMS) (Møller, 2001; Ghifari and Murcha, 2020) (Figure 4A).

Electrons from the oxidation of succinate to fumarate, which

occurs through FADH2 by succinate dehydrogenase, or simply

by the mETC Complex II are also transferred via UQ

(Figure 4A). Although, beyond the classical Complexes I and

II found in animal mitochondria, plant mitochondria present

alternative pathways for the entry of electrons. Three alternative

NAD(P)H dehydrogenase [NAD(P)H DH] are facing the matrix

(NADH DHs: NDA1-2 and NADPH DH: NDC1) and four

others the intermembrane space (NADH DHs: NDB2-4 and

NADPH DHs: NDB1) (Rasmusson et al., 2020). Thus, mETC in

plants has alternative external and internal NADH DH

(Figure 4B) that can directly use the matrix or cytosolic NAD

(P)H and therefore they can be an alternative electron source. It

is believed that these alternative matrix or cytosolic NAD(P)H

DH are competing with the activity of Complex I, and some are

activated even when Complex I is inhibited (Gazizova et al.,

2020). The role of alternative NADH DH is not fully defined;

however, they may be linked with plant responses to stress. A

major external NADH DH, Arabidopsis NDB2, is linked with
Frontiers in Plant Science 06
plants more tolerant to drought and high light (Sweetman

et al., 2019).

On the other hand, plant mETC also contains an electron-

transfer flavoprotein/electron-transfer flavoprotein:ubiquinone

oxidoreductase (ETF/ETFQO) Complex, which can directly

entry electrons into mETC through UQ (Araújo et al., 2010).

As it can be noted, all these enzymes related to alternative

electron input pathways have in common that transfer electrons

to the ubiquinone (UQ). In this review, the reduction of UQ via

these matrix and cytosolic NAD(P)H DH will be called the

“alternative UQ reduction” (Figure 4B) to differentiate it from

the main UQ reduction by electrons from Complexes I and

II (Figure 4A).

The origin of NAD(P)H as substrates for these alternative

dehydrogenases is diverse. The mitochondrial matrix NADH

can come from the TCA cycle or the photorespiratory process.

NADPH can be generated by the isocitrate dehydrogenase,

mainly in photosynthetic tissues (Igamberdiev and

Gardeström, 2003). Cytosolic NADH and NADPH can come

from the glycolytic activity and the pentose phosphate pathway

(PPP) that occurs in the cytosol and plastids (Rasmusson

et al., 2020).

A possible link of the L-GalDH enzyme with the alternative

electron entry may be speculated (Figure 3). As mentioned

above, NADH can be also generated in the cytosol via the

oxidation of L-Gal by L-GalDH (Smirnoff, 2010). This enzyme

needs NAD+ to function and it has been suggested that the re-

oxidation of NADH to NAD+ may limit the reaction (Gatzek

et al., 2002). Indeed, the increase in L-GalDH activity does not

lead to a proportional increase in the conversion of L-Gal to AsA

(Gatzek et al., 2002). The hypothesis of that the NADH

generated during the action of this enzyme may be re-oxidized

by external NADH DHs is plausible (Figure 3). Intriguingly,

many external NADH DHs and AsA biosynthetic enzymes are

highly responsive to common stimulus such as drought and

light. However, this link remains speculative considering that

direct demonstration of an involvement of external NADH DHs

on re-cycling the NADH derived from L-GalDH is still lacking.
The L-GalLDH: A direct link between
AsA synthesis and the mETC

There are other enzymes that can serve as electron sources

but do not channel the flux via UQ (Millar et al., 2003). Instead,

they deliver electrons directly to Cytc. Two known examples of

enzymes that introduce electrons directly to mETC via Cytc are

the L-GalLDH (Bartoli et al., 2000) (Figure 4B) and the proline

dehydrogenase (ProDH) (Launay et al., 2019; Han et al., 2021).

This Section will focus on the L-GalLDH of the AsA synthesis

pathway and the possible functional implications of the link

between this enzyme and the mETC.
frontiersin.org
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The entry of electrons via Cytc by the L-GalLDH, without the

direct delivery to UQ, is a crucial difference between the

alternative NADH DHs and the L-GalLDH enzyme

(Figure 4B). In addition, the L-GalLDH enzyme also

differentiates from the Complex III because L-GalLDH does

not seem to require UQH2 as carrier to transfer electrons to

Cytc. By contrast, Complex III needs UQH2 (Millar et al., 2003).

Here, we called the alternative cytochrome c reduction pathway

(“ACR pathway”), the pathway of introduction of electrons

through L-GalLDH (Figure 4B). It is to differentiate the ACR

pathway from the “classical” mechanism of Cytc reduction via

Complex III (Figure 4A).

The reaction of the L-GalLDH reduces Cytc but it is not the

limiting step of AsA synthesis (Leferink et al., 2008; Morales

et al., 2022). As mentioned above, the enzyme GDP-L-galactose

phosphorylase may be apparently acting in coordination with

the other biosynthetic enzymes to limit the availability of

substrates (Bulley et al., 2009; Viviani et al., 2021). The total

AsA amount indicates mitochondrial capacity for Cytc

reduction by L-GalLDH (Alhagdow et al., 2007; Morales et al.,

2014; Morales et al., 2022). However, the amount the total AsA

does not reflect the rate of Cytc reduction. Analysis of plants

with silenced L-GalLDH activity shows that the level of AsA does

not correlate with the rate of electron flux from L-GalL to Cytc

(Alhagdow et al., 2007). L-GalL or L-GulL are considered

substrates for the L-GalLDH activity (Wheeler et al., 2015).

Without the provision of substrates by up-stream enzymes,

obviously the L-GalLDH may not transfer electrons to Cytc
Frontiers in Plant Science 07
and consequently produce AsA. It is suggested that in mutants

with low levels of AsA biosynthetic enzymes and substrate

availability, the actual electron transfer through Cytc is

expected to be limited.
The mETC and the alternative Cytc
reduction under the regulation of
AOX pathway

With independency of the input pathway by which electrons

are introduced via UQ, this electron carrier must be reduced. It

is known that in plant mitochondria, the re-oxidation of UQH2

can be done by Complex III (Figure 4A) or by AOX pathway

(Figure 4B). When Complex III is active, it in turn reduces Cytc,

concomitantly with the proton transport into the IMS

(Figure 4A). AOX and Complex III may be seen as

competitors for the same substrate UQH2 (Rasmusson et al.,

2020). This hypothesis implicitly considers that there is a pool of

UQ and that there are not separate UQ pools for the entry of

electrons through distinct sources. Thus, the more UQ pool

engagement with alternative NADH DHs and AOX (Figure 4B),

less availability of UQ for Complexes I and II (Figure 4A).

Unlike Complex III, the AOX pathway is by far the most

regulated component of the electron transport chain. The UQH2

produced by the alternative NADH DHs can be preferably re-

oxidized by the AOX (Figure 4B) whereas UQH2 produced by
FIGURE 4

Illustrative scheme of the main (A) and alternative (B) pathways of Cytc reduction with the transport of electrons and proton pumping in mETC.
In the main pathway (A), electrons enter the mETC through Complexes I and II and may be used for UQ reduction. This is commonly referred to
as the main pathway of UQ reduction by Complexes I and II. Then, UQH2 can reduce Cytc, passing electrons through Complex III. Cytc is re-
oxidized transferring electrons to Complex IV, which can reduce molecular oxygen. In the alternative pathway (B), electrons enter the mETC
through alternative NAD(P)H dehydrogenase [NAD(P)H DH] and through L-GalLDH. Electrons entering through alternative NAD(P)H DH are
mostly transferred to AOX via UQ/UQH2, reducing molecular oxygen. This is called the alternative pathway of UQ reduction by alternative NAD
(P)H dehydrogenases. Electrons entering through L-GalLDH are not engaged with UQ/UQH2 and are directly transferred to Cytc, and this is thus
called the alternative pathway of Cytc reduction by L-GalLDH. Finally, Cytc would be re-oxidized by Complex IV coupled with reduction of the
molecular oxygen. The black dotted arrows indicate the electron transport pathways within the mETC. The brown arrows represent the site of
proton transport that occurs from the matrix to the mitochondrial intermembrane space. The transmembrane location of the L-GalLDH enzyme
is indicated by the yellow folded shape, and the enzyme activity shows the association of the enzyme with electron flow in the mETC. In green
are the four mETC Complexes indicated by the corresponding Roman numerals, I-IV. AOX is represented in red and the internal and external
NADP(H) dehydrogenases in purple. The ubiquinone pool and cytochrome c are represented in magenta and pink, respectively.
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Complex I or II can be more linked with the Complex III

(Figure 4A) (Rasmusson et al., 2020). In support of this

hypothesis is that, when the AOX and alternative NADH DHs

are repressed, electron flux from Complex I via Complex III

continues (Rasmusson et al., 2020). By contrast, the chemical

blocking of Complex III leads to increase of AOX, alternative

NADH DHs and AsA synthesis (Bartoli et al., 2000).

Dysfunctions of Complexes I, II and III often parallel with

enhanced AOX (Liu et al., 2010).

Some findings also suggest a tight positive link of AsA

synthesis with AOX and negative with the main electron

transport pathway. For instance, increased AsA content is

found in tobacco CMSII mutant with impaired Complex I

(Dutilleul et al., 2003). The Arabidopsis mutant of Complex I

(ndufs4) with low phosphorylation efficiency has elevated AsA

synthesis (Meyer et al., 2009). The Arabidopsis ppr40-1 mutant,

with strongly reduced mETC through Complex III, presents

higher AsA synthesis and increased L-GalLDH activity

(Zsigmond et al., 2011). Plants exhibiting a down-regulation of

mitochondrially localized enzymes (aconitase and malate

dehydrogenase), and displaying up to 50% reduction in dark

respiration, contained increased levels of total ascorbate and

improved plant performance (Carrari et al., 2003; Nunes-Nesi

et al., 2005; Urbanczyk-Wochniak et al., 2006). It is supposed

that the alternative Cytc reduction is a prerequisite for the

enhanced synthesis of AsA in these mutant plants.

These facts are consistent with the main hypothesis of this

review: plant mitochondria present the “classical” pathway of

Cytc reduction via Complex III (Figure 4A) competing with the

ACR pathway (Figure 4B). At low levels of electron transport via

the main pathway, the way for reducing Cytc and thus

supporting some proton pumping and phosphorylation would

be by using the ACR pathway. It is believed that the enzyme L-

GalLDH may influence the respiratory process (Bartoli et al.,

2000; Millar et al., 2003), bypassing the phosphorylating

respiratory Complexes I and III (Figure 4B).

L-GalLDH activity also competes to reduce Cytc, thus a tight

coordination with Complex III via the main respiratory

transport chain may likely exist. The blocking of Complex III

with a specific inhibitor, antimycin A, enhances AsA synthesis

capacity (Bartoli et al., 2000). These facts are consistent with a

key hypothesis of this review emphasizing the negative inter-link

between the “classical” pathway of Cytc reduction (UQH2 to

Cytc) and the ACR pathway. Both Complex III and L-GalLDH

use the same substrate Cytc, thus hypothetically a high Complex

III activity may be a limitation for the alternative entry of

electrons through Cytc (Figure 4B). The decrease of electron

movement from UQH2 to Cytc through Complex III may

indirectly allow the ACR pathway to proceed and,

consequently, up-regulate AsA synthesis.

The joint function of alternative NADH DHs and AOX is

considered a non-phosphorylating mechanism. In relation
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with the activity of L-GalLDH, it has not been demonstrated

if or not this enzyme leads to ATP synthesis. Complex IV is

proton-pumping and there is the possibility of some proton

gradient formation coupled with the alternative Cytc re-

oxidation (Figure 4B). More ACR pathway may contribute to

energy provision through some phosphorylating cytochrome c

oxidase (COX) activity. Because of the bypass of major

phosphorylating Complexes, it is likely a low efficiency of

phosphorylation during AsA synthesis. An elevated activity

of the non-phosphorylating AOX pathway is generally coupled

with higher AsA synthesis (Bartoli et al., 2006). Enhanced

activity of Complex IV and AOX respiratory activities were

found in CMSII mutant plants with dysfunctional Complex I

(Priault et al., 2007). As this co-operation has been found

under light, one may suggest that the joint action of the

alternative pathways of UQ and Cytc reduction may be a

feature of plant response to light. Under light conditions, the

changes in the main respiratory pathway and Krebs cycle and

the possible decline in ATP synthesis may be, in part,

compensated with an increase of AsA synthesis. Otherwise, if

the alternative NAD(P)H dehydrogenases together with AOX

(non-phosphorylating pathways) are active under light but lack

the ACR pathway, ATP synthesis would not be formed.

Limited alternative Cytc reduction and possible low energy

provision would be the case occurring in plants with silenced

L-GalLDH and high AOX capacity, which presented growth

defects (Alhagdow et al., 2007). Interestingly, respiratory

mutants of Complex I such as ndufs4 and CMSII mutants

have lower ATP in dark (as expected due to the dysfunctional

Complex I), however, they show higher ATP level and AsA

accumulation under conditions with light (Szal et al., 2008;

Meyer et al., 2009). Unfortunately, the ATP production

capacity in low AsA mutants has not yet been examined.

The hypothesis of a tight co-operation between the

alternative pathways is also supported by further correlative

findings. Studies have showed that lower AOX contribution

increases the energy efficiency of respiration under light-

limiting conditions (Noguchi et al., 2001). Increased carbon-

use efficiency was observed under phosphorus/nitrogen stress in

AOX-suppressed cells of N. tabacum (Sieger et al., 2005).

Limitations of light and phosphorus are conditions that affect

AsA synthesis (Zhang et al., 2020; Maruta, 2022). It is speculated

that low AOXmay improve plant performance under conditions

where the ACR pathway is expected to decline.
Cytochrome c and COX may not be
main limitations for AsA synthesis

As mentioned above, the enzyme GDP-L-galactose

phosphorylase is considered the limiting factor for AsA
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synthesis. It was here suggested that the low availability

of precursors of AsA (particularly, L-GalL) may limit the

L-GalLDH activity. On the other hand, the enzyme COX

catalyzes the reaction by which electrons in the Cytc are

transferred to oxygen. As suggested above, Complex III may

be a limitation for alternative Cytc reduction. A low amount of

Cytc and COX activity may also limit the rate of alternative

Cytc reduction. The absolute need of Cytc for AsA synthesis is

now under debate. When redox status of mETC is high, i.e.,

when Cytc is completely reduced in active mitochondria, the

AsA synthesis by the enzyme is not observed (Millar et al.,

2003). However, it has been seen that in CYTC mutants of A.

thaliana lowing Cytc in mETC, AsA accumulation is not

affected. Even an increase of approximately 3-fold in AsA

accumulation in response to the high light cycles is found,

although there is a 60% reduction in L-GalLDH activity of these

mutant plants (Welchen et al., 2012). Furthermore, in fruit

mitochondria, the block of Complex IV (cyanide-sensitive

respiration) maintains significant AsA synthesis capacity

(Morales et al., 2022), further suggesting that AsA synthesis

may function with lower Cytc availability. The discrepancy

between the Millar’s experiments and the others may be

explained due to AOX capacity. All experiments in which

Cytc was not a limitation for AsA synthesis showed higher

AOX capacity. According to our model, one possible

explanation for enhanced AsA synthesis is that the effect of

Complex III limitation for alternative Cytc reduction is weak

when AOX is present.

A new perspective about the functioning of mETC may be

under scrutiny in the future. The most accepted view is that, in

parallel with Complex IV activity, AOX activity is able to correct

metabolic imbalances that occur during phosphorylation at high

availability of reduced equivalents or excessive ATP production

(Vanlerberghe et al., 2020). However, we added to this

predominating view the fact of that plant mitochondria

alternatively receive electrons directly from AsA synthesis via

Cytc. Unexpectedly, it was demonstrated that the excessive rate

of alternative Cytc reduction can alter the “typical” respiratory

pattern of plant mitochondria (Morales et al., 2022). Imbalance

can be caused by this alternative source of electrons via L-

GalLDH. The role of AOX may also imply the protection

against imbalanced ACR pathway. Interestingly, several

respiratory mutants such as CMSII that enhance AsA level

lack the typical electron partition to AOX (Vidal et al., 2007).

It is plausible that the proposed ACR pathway can help explain

why the control respiratory does not play a significant role in

plants or why the over-expression of AOX can lead to increase of

COX under specific stress conditions (Dahal and Vanlerberghe,

2017). AOX can act to maintain the COX function (Dahal and

Vanlerberghe, 2017) and this effect may occur with the

participation of L-GalLDH activity.
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The electron transport and the
generation of ROS associated with
the alternative Cytc reduction

It is known that some ROS is unavoidably produced when an

unbalanced electron flux takes place. The mitochondria

represent the most active ROS-generating center in

heterotrophic plant cells; between 2 to 5% of all O2 consumed

by the organelle is used for the production of ROS (Gupta et al.,

2015). The mETC activity is responsible for ROS generation (i.e.

H2O2 and O2
•-), mainly through Complexes I (NADH-

ubiquinone oxidoreductase) and III (ubiquinone: cytochrome c

oxidoreductase) (Møller, 2001; Sweetlove and Foyer, 2004;

Gupta and Igamberdiev, 2015). In isolated plant mitochondria

with available ADP and in the presence of uncouplers, H2O2

accumulation correlates negatively with electron transport rates

(ETR) and positively with membrane potential (Purvis, 1997;

Møller, 2001).

The O2
•- generated by unbalanced mETC activity or

spontaneously from O2 with the participation of Fe-S proteins,

can also be dismutated into H2O2 by the enzyme mitochondrial

superoxide dismutase (Mn-SOD) (Gill and Tuteja, 2010). The

generated H2O2 can be dismutated into H2O and O2 through

catalase, present mainly in the peroxisome and possibly also in

the mitochondria (Scandalios et al., 1980; Heazlewood et al.,

2004; Mhamdi et al., 2010). H2O2 can cross membranes by its

interaction with aquaporins (Bienert et al., 2007). H2O2 and O2
•-

interact and lead to the generation of other ROS such as

hydroxyl radical, OH•, more deleterious to cell metabolism.

This is one of the most reactive ROS, which can oxidize

nucleic acids and proteins and lead to lipid peroxidation (Rigo

et al., 1977; Foyer et al., 1997; Sharma et al., 2012). OH• has a

half-life of 10-9 s and it is quite reactive.

The likelihood of an oxidative stress enhances if unbalanced

electron fluxes occur. An uncoupling between the electron

transfer to Cytc via L-GalLDH and the mETC may potentially

lead to electron leakage to oxygen. The excess of electron flux

through the ACR pathway may be a ROS generator in plant

mitochondria (Han et al., 2021; Morales et al., 2022). Substrates

such as L-GalL and proline induce the mitochondrial ROS

formation. Indeed, a recent work demonstrates that an over-

reduction of Cytc by excessive L-GalLDH activity can generate

ROS (Morales et al., 2022).

The mechanism of electron transfer by L-GalLDH may

explain the observation of ROS formation during an increase

of the rate of alternative Cytc reduction. L-GalLDH is a FAD

sugar oxidoreductase or aldonolactone oxidoreductase enzyme

from the vanyl-alcohol oxidase (VAO) family of flavoproteins

(Leferink et al., 2008). It is believed that L-GalLDH does not

generate H2O2 during its action (Smirnoff, 2018). However,
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because the mechanism of electron transfer may imply two-

electron to one-electron transfer (between FAD and Cytc),

theoretically ROS might be generated. ROS may affect the

enzyme because the L-GalLDH requires redox-sensitive thiol

for optimal AsA synthesis (Leferink et al., 2009). A proposed role

of AOX is to act as an antioxidant, reducing the possibility of

ROS production. AOX receives electrons directly from UQH2,

transferring them to O2 without passing through Complexes III

and IV. Electrons are transferred through UQH2 to the partial

O2 reduction that results in O2
•- generation by Complexes I and

III, due to the interaction of these Complexes with UQH2

(Goncalves et al., 2015; Patterson et al., 2015). Thus, the

greater the UQH2 pool, the greater is ROS production, which

can be even higher when Complex III is inhibited (Goncalves

et al., 2015). By limiting the electron entry to Cytc from UQH2

through Complex III, the AOX can decline the likely ROS

preventing Cytc over-reduction.

AOX uncouples UQH2 reoxidation from cytochrome

reduction (Vanlerberghe et al., 2016; Del-Saz et al., 2018).

Thus, AOX strongly controls the production of ROS in the

cellular environment (Maxwell et al., 1999; Amirsadeghi et al.,

2006; Yoshida et al., 2007; Vanlerberghe, 2013; Garmash, 2021).

It was demonstrated that the in vitro ROS level induced by the

AsA substrate, L-GalL, declines if AOX is activated. On the other

hand, when AOX is inhibited by SHAM, both L-GalLDH activity

and AsA production are negatively affected (Morales et al.,

2022). According to the hypothesis we arise in this review,

when AOX is active, the main electron flow via complex III

declines, keeping Cytc oxidized and available to receive electrons

through the alternative pathway from L-GalLDH (Figure 4B).

AOX has been associated with enhance of L-GalLDH activity

under light conditions (Bartoli et al., 2006). However, when

AOX is inactive, L-GalLDH activity may generate ROS in view of

the greater probability of excessive reduction of Cytc by

Complex III. Unfortunately, there are no data evaluating the

effect of in vivo suppression of AOX on L-GalLDH activity. Thus,

the view is that in plant mitochondria the redox state of mETC

also depends on the rate of alternative electron entry during

AsA synthesis.

Some mutants of mETC with low levels or dysfunctional

Complexes I and III often show elevated AsA synthesis and

concomitantly enhanced ROS production and higher AOX

expression (Meyer et al., 2009). The stress severity in these

mutants largely depends on light. A reduced light period

alleviates stress and long light exposure accelerates stress (Liu

et al., 2010). In general, they have greater ROS level and higher

AOX expression, which correlates with higher tolerance to

different stress for cases in that it was measured (Liu et al.,

2010; He et al., 2012; Yang et al., 2014). Greater ROS production

was observed into the mitochondrial intermembrane space of

the mosaic MSC16 mutant, which presents a dysfunctional

Complex I and enhanced AsA level (Szal et al., 2009). Both

some mutants with low AsA and also respiratory mutants have
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signs of ROS over-production. Besides, both types of mutant

plants present clear growth defects. However, the difference is

that many respiratory mutants with higher AsA level and

enhanced ROS show tolerance to abiotic stress whereas the

low AsA mutants are stress- sensitive. If or not AOX is

involved in defining the difference in stress sensitivity has not

been yet examined. AOX1 can be induced by various stresses

and is a marker for mitochondrial retrograde response (Giraud

et al., 2009). Likely, the induction of ROS during imbalanced

AsA synthesis can lead to such response of AOX.

Morales et al. (2022) also observe that in vitromitochondrial

ROS production can occur in parallel with significant AsA

synthesis and altered mETC. The supposition of that an

imbalanced ACR pathway concomitantly with the AsA

synthesis leads to ROS over-production is consistent with the

hypothesis of that the rate of electron entry during AsA synthesis

is likely an important determinant of mitochondrial redox state

overall and the amount of ROS produced. The production of

ROS is higher under stress conditions (Møller, 2001; Blokhina

and Fagerstedt, 2010), which should demand greater antioxidant

activity of AsA (Foyer and Noctor, 2011; Rosado-Souza et al.,

2020). However, the higher AsA amount in the respiratory

mutants was not able to efficiently overcome the endogenous

ROS stress observed (Meyer et al., 2009). The ACR pathway

would be co-operating with the activity of Complex IV, but at

the expense of lower electron flux via Complex III, which would

lead to an increase in the UQH2 pool. This means that if there is

a very intense stimulus to AsA synthesis, the respiratory process

via Complex III can be negatively influenced, i.e., a lower

oxidative phosphorylation, which could even increase the

production of ROS if enough AOX is not ensured (Wheeler

et al., 1998; Bartoli et al., 2000; Millar et al., 2003; Morales et al.,

2022). Under normal conditions this possibility is quite remote,

but under stressful conditions that stimulate L-GalLDH such as

high light, it is likely (Bartoli et al., 2000; Morales et al., 2022).
Defects of biosynthetic mutants
with low AsA: Possible links
with mETC

The production of defective mutants for enzymes of this

pathway has shown limiting steps in the AsA synthesis pathway

(Radzio et al., 2003; Conklin et al., 2006; Linster et al., 2007).

Mutants such as vtc1 (defective in GDP-mannose phosphorylase),

vtc2 and vtc5 (defective in GDP-L-galactose phosphorylase), and

vtc4 (defective in L-galactose-phosphate phosphatase), accumulate

about 20 to 80% of the accumulated AsA by wild plants. Until now,

no viable plant that totally lacks AsA has been identified.

All these mutants show multiple defects and have their

metabolism compromised, especially when exposed to stressful

conditions, such as exposure to intense light or ozone (Veljovic-
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Jovanovic et al., 2001; Müller-Moulé et al., 2003; Müller-Moulé

et al., 2004; Dowdle et al., 2008). As AsA is the antioxidant more

abundant in plant tissue, authors have suggested that such

defects may be primarily caused by a low antioxidant capacity

and altered redox regulation in plants with low AsA content

(Kiddle et al., 2003). However, it is now recognized that other

metabolic and signal pathways may also mostly contribute to the

phenotype of vtcmutants (Kerchev et al., 2011). Some features of

these mutants do not seem to be fully specific of a low AsA level

so there are defects cannot be explained by the AsA deficiency

per se (Barth et al., 2010). In addition, although studies have

shown that the phenotype of low AsA plants can be rescued by

the supplementation of AsA precursors, some responses to AsA

or L-GalL precursor are quite different in terms of gene

expression (Bulley et al., 2021) and when examined using in

vitro mitochondria (Morales et al., 2022). Furthermore,

antioxidant compensatory mechanisms under AsA deficit

(example, enhanced glutathione content) can be expressed in

these mutants (Smirnoff et al., 2000; Pavet et al., 2005), which

can mask the AsA-specific response.

However, in this section of the review, we will attempt to

connect some defects observed in low AsAmutants with possible

changes in the respiratory pathways. According to the proposed

hypothesis, it becomes clear that the alterations of low

AsA mutants may also be explained by changes in the

respiratory pathways.

The first two mutants, vtc1 (Conklin et al., 1996) and vtc2

(Jander et al., 2002), were isolated because of their sensitivity to

ozone. This effect was initially attributed to a lack of antioxidant

protection in tissues with low AsA. However, ozone sensitivity

may be also result of imbalances in the respiratory pathways and

ROS production under a low AsA synthesis background. It is

known that a profound decrease of COX pathway is

accompanied by an increase in AOX activity.

This same rationality can be applied to the analysis of other

stresses. For example, salt and drought decline AsA content

(Smirnoff et al., 2000). Increased sensitivity to salinity/drought

and higher stress-induced ROS production was also found in low

AsA mutants (Huang et al., 2005; Niu et al., 2013). Salt and

drought enhance AOX pathway (Clifton et al., 2006). Based on

the hypothesis, it may be speculated that a low AsA during stress

in cooperation with enhanced AOX generate ROS. As was

suggested above, an increase of AOX under a context of low

AsA synthesis may be negative for plant performance.

By contrast, high light stress in plants can induce AsA

synthesis and the effect of this type of stress may be quite

distinct. Unlike ozone or salt stress, light enhances both AsA

synthesis and AOX1 (Strodtkötter et al., 2009; Garmash et al.,

2020). It is well-known that high light up-regulates several

genes related to AsA synthesis (Tabata et al., 2002). According

to the proposed model, the occurrence of alternative Cytc

reduction together with the increase of AOX may become

plants with better capacity to acclimate to light conditions.
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As cited above, the co-regulation of AsA and AOX under light

conditions contribute to a better growth performance (Bartoli

et al., 2006).

At present, it can be only speculated that AOX may have

different effects under conditions linked with low or high AsA

synthesis. A published study shows that higher AOX capacity

and stress signs are present in the tomato plant with silenced L-

GalLDH enzyme (Alhagdow et al., 2007). However, to the best of

our knowledge, there are not works showing in vivo evidence of

the activity of AOX pathway in low AsA mutants.
Final considerations and future
prospects

In this review, we seek to open a new perspective to focus the

known link between the mitochondrial function and AsA

synthesis. The tight relationship between the AsA synthesis

and the mitochondrial electron transport chain has been

previously proposed (Bartoli et al., 2000; Millar et al., 2003).

However, we stressed the potential implications of this this link

for plant mitochondria. This is an issue that has received

relatively little attention in previous reviews. The last step of

the AsA synthesis, catalyzed by the L-GalLDH enzyme (Bartoli

et al., 2006), can be considered as an extra-mitochondrial source

of electrons for the mETC. We argument that the provision of

electrons via L-GalLDH is unique in terms of that the electron

supply is introduced directly to the Cytc. This feature of plant

mitochondria is likely to have an impact in plant respiration as

evidenced by phenotypes showing both altered respiratory

activity and AsA synthesis capacity. Also, alterations of AsA

synthesis with specific mitochondrial inhibitors have allowed to

suggest possible connections of mitochondria with AsA

synthesis (Bartoli et al., 2006; Morales et al., 2022).

Despite plants with low AsA have been characterized in the

last years (Veljovic-Jovanovic et al., 2001; Müller-Moulé et al.,

2003; Müller-Moulé et al., 2004; Dowdle et al., 2008), a few

studies have focused in-depth analysis of mitochondrial

functions in these mutants. We considered that future works

should attempt to obtain a better understanding about

mitochondria function in the context of low AsA synthesis.

The observed phenotypes of low AsA mutants may likely be

result of long-lasting effects of mutations on the respiratory

activity, particularly the alteration of the alternative pathways.

Phenotypes such as sensitivity to ozone, salinity, high light,

photo-inhibition, accelerated senescence and others may reflect

compensatory mechanisms of the mitochondrial respiration in

response to endogenous low AsA synthesis rather than the lack

of AsA-antioxidant capacity. In addition, double mutants with

defects in genes related to AsA synthesis, transcriptional factors,

hormone synthesis and signaling, and ROS signaling may be

needed to dissect the specific regulatory cross-talks between the
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components of the respiratory pathways and plant signaling

during AsA synthesis.

Finally, it is hoped that this review can inspire new

discussions and open new research avenues that relate AsA

synthesis with its functions in plant metabolism. The genetic and

chemical manipulation of the mitochondrial activity may be a

useful tool to improve the AsA synthesis and eventually the

tolerance of plants to abiotic and biotic stress. Modifying AsA

synthesis and respiratory activity might be a strategy for the

conservation of plant products, particularly in the case of

products of commercial interest (Dusenge et al., 2018; Collalti

et al., 2019; Jalali et al., 2020). In conclusion, the involvement of

AsA in regulating multiple plant functions goes beyond simply

its roles as antioxidant and co-factor molecule.
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et al. (2011). Enhanced activity of galactono-1,4-lactone dehydrogenase and
ascorbate–glutathione cycle in mitochondria from complex III deficient
Arabidopsis. Plant Physiol. Biochem. 49 (8), 809–815. doi: 10.1016/
j.plaphy.2011.04.013
frontiersin.org

https://doi.org/10.1111/ppl.12451
https://doi.org/10.1104/pp.010141
https://doi.org/10.1105/tpc.106.044461
https://doi.org/10.1016/j.plaphy.2014.01.019
https://doi.org/10.12871/00021857202124
https://doi.org/10.4161/psb.24536
https://doi.org/10.1016/j.bbabio.2012.04.008
https://doi.org/10.7554/eLife.06369
https://doi.org/10.1038/30728
https://doi.org/10.1093/jxb/erm124
https://doi.org/10.1093/pcp/41.6.666
https://doi.org/10.1093/pcp/41.6.666
https://doi.org/10.1371/journal.pgen.1004791
https://doi.org/10.1371/journal.pgen.1004791
https://doi.org/10.1093/pcp/pcm033
https://doi.org/10.1016/j.molp.2020.02.005
https://doi.org/10.1104/pp.109.138453
https://doi.org/10.1111/j.1365-313X.2012.04996.x
https://doi.org/10.1111/j.1365-313X.2012.04996.x
https://doi.org/10.1016/j.molp.2020.02.005
https://doi.org/10.3390/horticulturae7060130
https://doi.org/10.1007/s10535-012-0119-x
https://doi.org/10.1007/s10535-012-0119-x
https://doi.org/10.1016/j.plaphy.2011.04.013
https://doi.org/10.1016/j.plaphy.2011.04.013
https://doi.org/10.3389/fpls.2022.987077
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Ascorbate synthesis as an alternative electron source for mitochondrial respiration: Possible implications for the plant performance
	Introduction
	Overview of the pathways of AsA synthesis
	Proteins regulating AsA synthesis

	The alternative electron entry into plant mETC
	The l-GalLDH: A direct link between AsA synthesis and the mETC
	The mETC and the alternative Cytc reduction under the regulation of AOX pathway
	Cytochrome c and COX may not be main limitations for AsA synthesis
	The electron transport and the generation of ROS associated with the alternative Cytc reduction
	Defects of biosynthetic mutants with low AsA: Possible links with mETC
	Final considerations and future prospects
	Author contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


