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Copper (Cu2+) toxicity can inhibit plant growth and development. It has been

shown that silicon (Si) can relieve Cu2+ stress. However, it is unclear how Si-

nanoparticles (SiNPs) relieve Cu2+ stress in wheat seedlings. Therefore, the

current study was conducted by setting up four treatments: CK, SiNP: (2.5 mM),

Cu2+: (500 µM), and SiNP+Cu2+: (2.5 mM SiNP+500 µM Cu2+) to explore

whether SiNPs can alleviate Cu2+ toxicity in wheat seedlings. The results

showed that Cu2+ stress hampered root and shoot growth and accumulated

high Cu2+ concentrations in roots (45.35 mg/kg) and shoots (25.70 mg/kg) of

wheat as compared to control treatment. Moreover, Cu2+ treatment inhibited

photosynthetic traits and chlorophyll contents as well as disturbed the

antioxidant defense system by accumulating malondialdehyde (MDA) and

hydrogen peroxidase (H2O2) contents. However, SiNPs treatment increased

root length and shoot height by 15.1% and 22%, respectively, under Cu2+

toxicity. Moreover, SiNPs application decreased MDA and H2O2 contents by

31.25% and 19.25%, respectively. SiNPs increased non-enzymatic compounds
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such as ascorbic acid-glutathione (AsA-GSH) and enhanced superoxide

dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbic peroxidase

(APX) activities by 77.5%, 141.7%, 68%, and 80%, respectively. Furthermore,

SiNPs decreased Cu2+ concentrations in shoots by 26.2%, as compared to Cu2+

treatment alone. The results concluded that SiNPs could alleviate Cu2+ stress in

wheat seedlings. The present investigation may help to increase wheat

production in Cu2+ contaminated soils.
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Introduction

In agroecosystems, heavy metals are continuously

accumulated in the soil and water. The phenomenon can be

attributed to several anthropogenic activities. This includes

modern farming practices, such as extensively exploiting the

resources of the earth and industrialization (Zhang et al., 2019a).

Copper (Cu2+), as a micronutrient, is essential for plant growth

and development (Droppa and Horváth, 1990) and has a wide

range of applications in metal manufacturing and pesticide

production, which has attracted much attention in recent years

(Saleem et al., 2020). Cu2+ is essential for metabolism, enzymes,

and proteins, and maintains structural and catalytic activity

during normal plant growth (Emamverdian et al., 2015). In

addition, the accumulation of Cu2+ in plants has the potential to

pose a serious threat to human health through the food chain.

Cu2+ is ranked fourth among the most widely distributed

inorganic pollutants according to a report published by the

Chinese Ministry of Environment Protection. The assessment

of agricultural soil for Cu2+ contamination at 1731 sites

nationwide found that 21.02% of the sampling sites surpassed

the screening value (50 mg/kg) (Li et al., 2020). In soil, Cu2+

concentrations are in the range of 14–109 mg/kg while 5–30 mg/

kg Cu2+ of plant DW is regarded as ideal for crop productivity

(Kabata-Pendias, 2000). However, Cu2+ toxicity can negatively

affect the cellular and physiological developmental processes of

plant metabolism (Peñarrubia et al., 2015). Cu2+ toxicity not

only leads to the accumulation of reactive oxygen species (ROS)

but also hinders plant growth (Hall, 2002; Adrees et al., 2015a).

Cu2+ stress induces oxidative stress (oxidative metabolism) and

destroys macromolecules and even causes cell death in severe

cases (Noctor et al., 2018). Sulfhydryl groups in membrane

proteins can be affected by excessive Cu2+ stress, resulting in

the deformations of cell membranes (Emamverdian et al., 2015).

The only way for organisms to survive deleterious oxidative

stress is through evolving an effective and efficient system of

antioxidants, e.g., superoxide dismutase (SOD), catalase (CAT),
02
peroxidases (POD), proline, carotenoids, glutathione (GSH) and

ascorbic acid (AsA) (Das and Roychoudhury, 2014; Hasan et al.,

2018; Ali et al., 2022). For optimal growth, it is essential to

coordinate antioxidants (enzymatic and non-enzymatic) to

maintain ROS levels at stable levels, especially under metal

contaminations (Noctor et al., 2018). Consequently, the

defense system is enhanced in the plant body with the help of

exogenous chemicals (Gill and Tuteja, 2010) which is an effective

way of fighting unnecessary ROS levels caused by metal

contamination (Yi et al., 2018; Zhang et al., 2019b). Therefore,

it is necessary to implement remedial measures and/or strategies

to reduce Cu2+ accumulation and uptake in plants, thus ensuring

crop productivity and reducing possible health risks caused by

Cu2+ accumulation.

Silicon (Si) accounts for 28% of the earth’s crust and is found

as silica, silicic acid, and silicates (Singer and Munns, 1987). It

has been reported that exogenous Si treatment ameliorates heavy

metal stress by inducing antioxidative responses in the plant

body (Emamverdian et al., 2018; Bhat et al., 2019). Silicon

improves the defense system by reducing ROS and oxidative

stress (Adrees et al., 2015b; Anwaar et al., 2015; Sabir et al.,

2022). Silicon addition increased plant growth, development,

and membrane stability under heavy metal stress (Rahman et al.,

2017). As a regulator, Si reduces metal uptake and transport by

plants and improves physiological adaptability and resource

usage under heavy metal stress (Ahmad et al., 2021).

Nanotechnology has become a valuable tool for agriculture

(Jiang et al., 2021). There is no doubt that it has found

widespread application in agriculture due to sustainable

agriculture and precise farming (Prasad et al., 2017). Several

studies have demonstrated the potential benefits of silicon

nanoparticles (SiNPs) in the past few years on plant growth by

mitigating abiotic and biotic stresses occurring in plants due to

adverse environmental factors (Roychoudhury, 2020). It has

been shown that SiNPs can be more effective in reducing

heavy metal toxicity in plants in comparison with normal Si

(Bhat et al., 2019).
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Throughout the world, wheat (Triticum aestivum L.) is the

second most cultivated crop and is found in almost all countries.

Cu2+ is important in wheat production. However, Cu2+ toxicity

can inhibit wheat productivity and Cu2+ can be readily

transferred to the grain. In contrast, little information is

available on the role of SiNPs in plant tolerance to Cu2+. The

mechanism for reducing Cu2+ toxicity in wheat seedlings

through SiNPs application remains unknown. Silicon can play

a significant role in soil remediation, hence a deeper knowledge

of SiNPs and Cu2+ absorption and combined action is needed.

Therefore, the objectives of this study were to investigate how

SiNPs can play a beneficial role in reducing Cu2+ toxicity by

enzymatic (SOD, POD, CAT) and non-enzymatic (AsA-GSH)

antioxidant defense systems, and to study how SiNPs can reduce

Cu2+ concentrations in plant tissues, which may help to reduce

Cu2+ toxicity in wheat seedlings by improving growth

parameters. The results of this study may help to increase the

yield of wheat in Cu2+ contaminated soil.
Methods and materials

Plant material and experimental
procedures

Wheat (Triticum aestivum) “cultivars-97003” was used as

test material. The wheat seedlings were grown in hydroponics at

South China Agriculture University, China. The seeds were

washed with 10% H2O2 for 20 min and then rinsed with

distilled water three times. Seeds were spread on wet clothes

for germination. After one week of emergence, seedlings were

transferred to pots filled with ¼ nutrient strength for a week and

then subsequently 1/3 and finally to full strength nutrient

solut ion (mM); “2.0 (NH4)2SO4, 12 .0 NaNO3, 1.0

NaH2PO4·2H2O, 3.0 K2SO4·5H2O, 3.0 MgSO4·2H2O, 4.0

CaCl2, (mM), 9.15 MnCl2·4H2O, 0.32 CuSO4·5H2O, 0.77

ZnSO4·7H2O, 0.02 (NH4)6Mo7O24·4H2O, 46.26 H3BO3, and

20.0 FeSO4·7H2O-EDTA”. The 12 seedlings were planted in a

2 litter pot, totaling 16 pots. The following treatments were set

up in the experiment, (i) CK: normal nutrient solution; (ii) SiNP:

2.5 mM; (iii) Cu2+: 500 µM (iv) SiNP+Cu2+: 2.5 mM+500 µM.

Copper was applied as CuSO4.5H2O. The experiment had 4

treatments and each treatment was replicated four times in a

completely randomized design. The experimental treatments

were selected based on our trial experiments where we used

different concentrations of Cu2+ and SiNP and then finally

selected suitable treatments (500 µM Cu2+ and 2.5 mM SiNP)

for the current experiment. During the present study, we used

silicon nanoparticles (SiNPs), which have been characterized in

our previous study (Riaz et al., 2022). The morphology of SiNP

was almost spherical and its size was between 12-17 nm. Every

three days, the nutrient solution was changed throughout the

experiment, pH was maintained at 6.5 daily and samples were
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taken out after two weeks. In order to clean the roots of the

seedling, distilled water was used to wash the surface after taking

out the seedlings. The water in the roots of the seedlings was

gently blotted with absorbent paper, and the junction of the

rhizomes and stems was used as the node to measure the plant

height and root length of each wheat plant and recorded in cm.

Wheat seedlings were separated from the junction of rhizomes

and stems, into the aerial parts and underground parts, and fresh

weight (FW) was measured. The samples were stored at -80°C

and the remaining samples were oven-dried at 68° C until

constant weight.
Photosynthetic parameters involved in
gas exchange

A portable infrared gas analyzer was used to record the

parameters related to gas exchange “Li-6400, Li-Cor, Inc.,

Lincoln, NE, USA”. We selected only the leaves that were fully

expanded. We measured net photosynthetic rates (Pn),

transpiration rates (Tr), internal CO2 concentrations (Ci), and

stomatal conductance (gs). During measurements, 360 µmol

mol-1 was CO2 concentrations and 1000 µmol m-2 was

photosynthetic photon flux density s-1 at 25 °C.
Chlorophyll contents in wheat plants

Chlorophyll contents in leaves were determined by the

method of Lichtenthaler (1987). As part of the investigation,

we determined the contents of chlorophyll in fully expanded leaf

tissues. The 200 mg wheat leaf samples after rinsing with

deionized water were chopped and treated with 95% alcohol.

The mixture was centrifuged at 3000 rpm for 5 min and then

chlorophyll contents were measured by a spectrophotometer at

665, 649, and 470 nm wavelengths.
Contents of MDA and H2O2

To determine the MDA content in the samples, the method of

De Vos et al. (1991) was used. The 0.5 g of root sample was

measured and after homogenizing the samples, 8 mL of 50 mmol/

L PBS (PH=7.8) was added and centrifuged at 10000 r/min for

10 min. Next, 2.5 ml of TBA solution was added and plugged with

a stopper, placed in boiling water for 20 min at 98 °C, and

centrifuged at 4000 r/min for 10 min after cooling. The

absorbance values were measured at 532, 600, and 450

nm wavelengths.

For the measurement of H2O2 content, the method reported

by Velikova et al. (2000) was used. Briefly, liquid nitrogen was

used to crush fresh root samples (0.2 g) and homogenized with a

trichloroacetic acid solution of 0.1% (1 mL) and after that
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homogenate was centrifuged at 12,000 r/min for 20 min (4°C)

and the supernatant was collected. In the reaction mixture, 1 mL

of BPS (pH 6.8, 100 mM) was added, as well as 0.5 mL of

supernatant containing 1 mL of KI (1M). The contents of H2O2

were measured employing a spectrophotometer (UV-VIS 2550,

Shimadzu, Japan) at 390 nm wavelength.
The determination of SOD, POD, CAT,
and APX activities

The superoxide dismutase (SOD) activity was determined

according to the method of Beauchamp and Fridovich (1971).

The 0.5 g root sample was homogenized with PBS (PH 7.8) and

centrifuged at 10,000 r/min for 10 min at 4°C. Subsequently,

supernatant and reagents were mixed and shaken at 4°C and

placed under fluorescent light for 25 min. The light-proof test

tube was used as a blank, and the absorbance value was

measured at 560 nm by a spectrophotometer.

The determination of POD activity refers to the method of

Cai et al. (2008). The 0.5 g of root samples were taken into a

centrifuge tube and then 10 mL of PBS (PH 7.8) was added and

homogenized by a cooled mortar and pestle. The homogenate

was centrifuged at 8000 r/min for 10 min at 4°C, and then the

supernatant was taken and mixed with the reaction solution. The

absorbance was measured at 470 nm by spectrophotometer, and

the reading was taken at 30s, 90s, and 150s. CAT activity was

measured as described by Aebi (1983).

To determine the activity of APX, the method of Nakano

and Asada (1981) was used. For this, 0.5 g of root sample was

homogenized in a liquid N2 and taken into a 15 mL centrifuge

tube. Then, 10 mL of pre-cooled extract was added with the

reagent and centrifuged at 15000 r/min, 4°C for 15 min, and the

supernatant was used for the determination of APX activity at

290 nm by spectrophotometer.
Measurement of non-
enzymatic antioxidants

Ascorbate (AsA) and contents of dehydroascorbate (DHA)

were measured as reported by Gillespie et al. (2007) with some

modifications. Briefly, the roots were homogenized by adding 1.6

mL of 6% trichloroacetic acid (TCA). Afterward, the

homogenate was centrifuged at 13,000 rpm for 5 min, 4 ◦C.
The absorbance was measured at a wavelength of 525 nm. A

standard curve was used to estimate the total ascorbate content

of the solution, and DHA concentrations were determined based

on deducting the reduced ascorbate value from the total

ascorbate value. The contents of glutathione (GSH) and

oxidized glutathione (GSSG) were assessed, and detection kits

were used for this purpose (A061-1) (Nanjing Jiancheng, China).
Frontiers in Plant Science 04
Measurement of Cu2+ and Si
concentrations in roots and shoots

Oven-dried root and shoot samples of wheat were ground to

a fine powder and then 0.3 g of corresponding samples were put

in a mixture of HNO3:HClO4 (6 mL) (5:1 v/v) overnight and

digested on a hotplate at 120 °C until 1 mL liquid was left (Keller

et al., 2015). The liquid was cooled, and the final volume was

made up to 50 mL by adding deionized water, and Cu2+ and Si

concentrations were measured by Atomic Absorption

Spectrophotometer (AAS) “AA6300C, Shimadzu, Japan”.

Translocation factor of Cu2+ was calculated as “TF = Metal

concentration in shoot (mg/kg DW)/Metal concentrations in

roots (mg/kg DW)”.
Statistical analysis

Data were analyzed by one-way ANOVA, and the significant

differences among different treatments were compared by LSD

test (P<0.05), using the protocols given by Steel et al. (1997).

Values are mean ± standard deviation (SD) of at least four

replicates and graphed using Origin 8.0 software.
Results

Effect of SiNPs on growth traits of wheat
seedlings under Cu2+ stress

The growth characteristic of wheat seedlings under Cu2+

stress is shown in Figure 1. As compared to the control

treatment, Cu2+ stress alone significantly reduced root length

and shoot height by 27.48% and 29.46%, respectively

(Figures 1A, B). On the other hand, under SiNPs+Cu2+

treatment, shoot height increased by 22.04%, and root length

increased by 15.61%. Cu2+ treatment had a significant negative

effect on the fresh biomass of wheat seedlings and decreased the

fresh weight of roots and shoots by 38% and 32.7% respectively.

However, SiNPs+Cu2+ treatment reduced the inhibition effect of

Cu2+ on the growth parameters of wheat seedlings and increased

root and shoot fresh weight (Figures 1C, D).
Chlorophyll contents under Cu2+ stress

Chlorophyll contents in leaves of wheat seedlings under each

treatment are shown in Figure 2. Cu2+ treatment decreased

chlorophyll a by 15.87%, chlorophyll b by 44.68% (Figures 2A,

B), carotenoids by 44%, and total chlorophyll by 23.69%

compared to the control treatment (Figures 2C, D). Compared

to Cu2+ treatment, SiNP+Cu2+ significantly increased
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chlorophyll a, b, carotenoids, and total chlorophyll contents by

6.6%, 46.15%, 50%, and 21.9%, respectively.
Effects of SiNPs on gas exchange traits
of wheat leaves under Cu2+ stress

Compared with the control, Cu2+ treatment alone

significantly reduced gas exchange traits of wheat leaves

(Figure 3) while SiNP+Cu2+ reversed the effect of Cu2+ on

inhibition of gas exchange traits of wheat leaves. SiNPs+Cu2+

treatment increased the Pn (102.63%), gs (71.42%) (Figures 3A,

B), and Tr (69.69%) while decreasing Ci (12.33%) of wheat

leaves, respectively, compared with Cu2+ alone (Figures 3C, D).
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Effects of SiNPs on MDA and
H2O2contents in roots of wheat
under Cu2+ stress

Malondialdehyde (MDA) and H2O2 contents in wheat root

seedlings were determined, which are presented in Figure 4. The

results showed that MDA and H2O2 content were increased by

140.80% and 33.20%, respectively, under Cu2+ treatment alone

in comparison to control treatment. However, SiNP+Cu2+

treatment significantly reduced MDA and H2O2 content by

31.25% and 19.25% in the roots of wheat seedlings,

respectively, compared with Cu2+ treatment alone, indicating

reduced damage to membranes and reduced oxidative

stress (Figures 4A, B).
B

C D

A

FIGURE 1

The growth characters of wheat seedlings under Cu2+ stress. Note “Experimental treatments contained: CK (Control); SiNP (2.5 mM SiNPs); Cu2+

(500 µM Cu2+ alone), SiNP+Cu2+ (2.5 mM SiNPs+500 µM Cu2+). The different letters (a, b, c, d) above bars describe the differences in different
treatments by LSD test at (P ≤ 0.05)”. (A) root length, (B) shoot length, (C) root FW, (D) shoot FW.
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Effects of SiNPs on enzymatic activities
on roots of wheat under Cu2+ stress

Cu2+ treatment decreased the SOD activity in roots by 22.2%

compared to CK (Figure 5). However, SiNP+Cu2+ treatment

increased SOD enzyme activity by 77.5% related to Cu2+

treatment alone (Figure 5A). It can be seen from Figure 5 that

the POD enzyme activity of wheat roots was inhibited under Cu2+

treatment by 42% while SiNPs+Cu2+ treatment increased POD

activity by 141.71% as compared to Cu2+ treatment (Figure 5B).

Moreover, SiNP+Cu2+ treatment increased the activity of CAT

(Figure 5C) and APX enzymes by 68% and 80% respectively, as

compared to Cu2+ treatment alone (Figure 5D).
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Effects of SiNPs on AsA-GSH contents
under Cu2+ stress

To explore the role of SiNPs on AsA-GSH contents under

Cu2+ stress, the contents of non-enzymatic substances in wheat

roots were determined (Figures 7A–D). Compared with control,

Cu2+ stress decreased GSH and AsA contents by 9.87%

(Figure 6A) and 18.42% (Figure 7A) but increased GSSG and

DHA contents by 34.6% and 11.53% in wheat roots. SiNP+Cu2+

treatment significantly increased GSH and AsA contents by

43.39% and 178% and decreased GSSG (Figure 6B) and DHA

contents by 24.83% and 50.34%, respectively as compared to

Cu2+ treatment alone (Figure 7B).
B

C D

A

FIGURE 2

Chlorophyll contents of wheat seedlings under Cu2+ stress. Note “Experimental treatments contained: CK (control); SiNP (2.5 mM SiNPs); Cu
(500 µM Cu2+ alone), SiNP+Cu (2.5 mM SiNPs+500 µM Cu2+). The different letters (a, b, c, d) describe the differences in different treatments by
LSD test at (P ≤ 0.05)”. (A) chlorophyll a, (B) chlorophyll b, (C) carotenoids, (D) total chlorophyll.
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Effect of SiNPs on Cu2+ and Si
accumulation in various wheat tissues

The contents of Cu2+ in each tissue of wheat seedlings are

represented in Figure 8. The results showed that Cu2+

application increased Cu2+ concentration in roots and shoots

and the highest concentrations were found in the treatment of

Cu2+ (Figures 8A, B). However, the Cu2+ contents in leaves were

much lower in SiNP+Cu2+ than that in Cu2+ treatment alone.

SiNP+Cu2+ treatment decreased Cu2+ in leaves by 26.29% as

compared to Cu2+treatment alone. SiNP+Cu2+ treatment

decreased the TF (transfer factor) from 0.56 to 0.31. Moreover,
Frontiers in Plant Science 07
SiNPs addition increased the Si concentrations in both roots and

shoots, however, higher concentrations were found in the roots

(Figures 8C, D).
Discussion

Heavy metal pollution, particularly Cu2+, adversely affects

plant growth and productivity (Keller et al., 2015; Huang et al.,

2021). The results of our study showed that Cu2+ stress resulted

in a significant decrease in the chlorophyll contents as well as

inhibition of root growth compared with the control group. It
B

C D

A

FIGURE 3

Gas exchange traits under Cu2+ stress. Note “Experimental treatments contained: CK (control); SiNP (2.5 mM SiNPs); Cu (500 µM Cu2+ alone),
SiNP+Cu (2.5 mM SiNPs+500 µM Cu2+). The different letters (a, b, c, d) describe the differences in different treatments by LSD test at (P ≤ 0.05)”.
(A) Pn, (B) Gs, (C) Tr, (D) Ci.
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has been reported that photosynthesis is impaired due to the

accumulation of Cu2+ ions and the production of reactive

oxygen species (ROS) (Zeng et al., 2021). These reactive

oxygen species disrupt the structure of chloroplasts and reduce

the activity of key photosynthetic enzymes. Cu2+ toxicity in our

study greatly reduced photosynthetic traits including Pn, Tr, and

gs. Similar findings were reported by Ashraf and Harris (2013),

who observed that photosynthesis was inhibited due to damage

caused by heavy metals to photosynthetic pigments. Consistent

with their findings, our study found that chlorophyll a and

chlorophyll b contents in wheat leaves were significantly reduced

under Cu2+ stress. It has been well established that excessive ROS

production has been shown to lead to chlorophyll degradation

(Tamaka and Tanaka, 2006; Malik et al., 2022). Heavy metal may

cause deficiency of essential nutrients and Fe and Mg

deficiencies resulting from heavy metal stress (necessary for

chlorophyll synthesis) may affect the synthesis of chloroplast

in leaves, which may also lead to a decrease in pigment

concentration (Seregin and Kozhevnikova, 2006; Zeng et al.,

2021). Our results are consistent with the findings of Vieira Filho

and Monteiro (2020) which indicated that Si addition increased

chlorophyll content under Cu2+ toxicity in Panicum maximum

cv. Tanzania. A previous study showed that Si has a significant

role in the alleviation of abiotic stress in plants (Zhang et al.,

2021). In our study, as a result of exogenous SiNPs, wheat

seedlings were able to grow more rapidly and had increased

chlorophyll contents. Plants under Cu2+ stress showed a

significant decrease in root and shoot FW, plant height, and

root length (Figure 1). However, SiNP+Cu2+ treatment increased

the FW of roots and shoots as well as shoot height and root

length of wheat seedlings (Figure 1). The reason for this increase
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in plant biomass might be due to decreased uptake and

translocation of Cu2+ to shoot of wheat plants. Furthermore,

decreased concentration of Cu2+ in wheat tissues also indicates

an alleviating effect of SiNPs on Cu2+ toxicity.

It has been shown that heavy metals such as Cu2+ can

interfere with the normal metabolism of plants, which can

lead to the accumulation of ROS such as O•−
2 and H2O2 (Gill

and Tuteja, 2010). High accumulation of ROS can cause lipid

peroxidation (MDA) and degradation of biological

macromolecules as well as induce a large amount of

unsaturated fatty acid production, which eventually leads to

cellular oxidative damage (Berni et al., 2019). There have been

several mechanisms developed by plants for scavenging ROS

accumulation, including antioxidant defense systems such as

SOD, POD, and CAT which can maintain cellular homeostasis

(Asada, 1992; Li et al., 2011; Antoniou et al., 2017). In addition, it

has been shown that abiotic stress can be alleviated by enzymatic

and non-enzymatic antioxidants involved in the AsA-GSH cycle

(Ahmad et al., 2018). The results of our study demonstrated that

Cu2+ toxicity increased membrane lipid peroxidation (MDA)

and oxidative stress. Similar results were also reported by Zeng

et al. (2021) in wheat under Cu2+ toxicity. In our current study,

SiNPs treatment significantly reduced the production of ROS in

wheat seedlings which are indicated by decreased MDA and

H2O2 contents. The reason for this decrease in MDA and H2O2

contents could be related to the improved antioxidant system

which maintained a balance between the generation of ROS and

the scavenger of free radicals in the plant during growth and

development under heavy metal stress (Singh et al., 2016;

Morkunas et al., 2018; Berni et al., 2019). Our results are in

line with the study of Kim et al. (2014) who reported that Si
BA

FIGURE 4

MDA and H2O2 contents of wheat roots under Cu2+ stress. Note “Experimental treatments contained: CK (control); SiNP (2.5 mM SiNPs); Cu
(500 µM Cu2+ alone), SiNP+Cu (2.5 mM SiNPs+500 µM Cu2+). The different letters (a, b, c, d) describe the differences in different treatments by
LSD test at (P ≤ 0.05)”. (A) MDA contents, (B) H2O2 contents.
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improved the antioxidant defense system and reduced

membrane peroxidation in rice plants under heavy metal stress.

The activity of SOD is considered one of the most important

first-line defenses in plants by dismutating superoxide radicals into

hydrogen peroxide (Saleem et al., 2020; Kamran et al., 2021). SiNPs

increased the activity of SOD under Cu2+ toxicity. A previous study

also reported similar results that Si application under Cu2+ toxicity

in Arabidopsis and cotton (Khandekar and Leisner, 2011; Ali et al.,

2016). The same trend was also evident in our results with regard to

the increase in SOD and CAT activity which could break down

H2O2 into water and oxygen (Das and Roychoudhury, 2014). Our

results showed that SiNP+Cu2+ increased the activities of CAT,

POD, and reduced contents of H2O2 indicating actively converting

H2O2 to H2O, hence reducing the oxidative stress caused by Cu2+.

In addition, Pirooz et al. (2021) exposed salvia to Cu2+ and found
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that 1 mmol L- 1 Si application had a positive response in activating

CAT and SOD activities. Our results are consistent with the study of

Vieira-Filho and Monteiro (2022) that Cu2+ toxicity decreased the

antioxidant defense system while the application of Si increased the

antioxidant defense system in Tanzania Guinea (Panicum

maximum cv. Tanzania) grass. Gilabel et al. (2014) exposed

Tanzania guinea grass plants to Cu2+ up to 1000 mmol L−1 which

resulted in a drastic decrease in biomass production due to oxidative

stress, identified by the increase in the contents of MDA and H2O2.

Similar results were reported in rice plants exposed to 100 mmol L−1

Cu2+ (Kim et al., 2014).

It is crucial to maintain an adequate pool of ascorbate (AsA)-

glutathione (GSH) under stress conditions (Nahar et al., 2016). AsA

is a non-enzymatic and water-soluble antioxidant that interacts

directly with ROS in a cell and can reduce the accumulation of ROS
B
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A

FIGURE 5

Enzymatic activities under Cu2+ stress. Note “Experimental treatments contained: CK (control); SiNP (2.5 mM SiNPs); Cu (500 µM Cu2+ alone),
SiNP+Cu (2.5 mM SiNPs+500 µM Cu2+). The different letters (a, b, c, d) describe the differences in different treatments by LSD test at (P ≤ 0.05)”.
(A) SOD, (B) POD, (C) CAT, (D) APX.
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in the cell (Al Mahmud et al., 2018). GSH is one of the most

important non-antioxidants in the plant body and serves as a stress

indicator. In our study, it is interesting to note that a significant

increase in SOD, POD, and CAT activities was associated with the

increase in AsA-GSH contents under SiNPs (Figure 6). The increase

in GSH contents might be related to the complexation and

detoxification of Cu2+ in the vacuoles which are also evident in

the decreased concentrations of Cu2+ in the upper part of plant

tissues. It is interesting to note that concentrations of Cu2+ in the

roots of the plant in the treatment of SiNP+Cu2+ were higher than

in the treatment of Cu2+ which could be due to the plant tolerance

mechanism. Plants retain a high concentration of heavy metals in

the roots, therefore, resist their movement and translocation to the

upper parts of plants. The non-enzymatic antioxidant glutathione
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(GSH) produces thiol compounds with relatively low molecular

weights (Berni et al., 2019) which not only decrease ROS within the

body (Szalai et al., 2009) but are also involved in the formation of

phytochelatins (PCs), and complexes with toxic metals in the

cytosol. These cytosolic toxins are transported into vacuoles for

detoxification, thus reducing the toxicity (Lin et al., 2012; Seth

et al., 2012).
Conclusion

The results of the current study showed that Cu2+ stress

inhibited root length and shoot height as well as corresponding

fresh weights. Moreover, Cu2+ stress caused membrane
B
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FIGURE 6

GSH contents under Cu2+ toxicity. Note “Experimental treatments contained: CK (control); SiNP (2.5 mM SiNPs); Cu (500 µM Cu2+ alone), SiNP+Cu (2.5
mM SiNPs+500 µM Cu2+). The different letters (a, b, c, d) describe the differences in different treatments by LSD test at (P ≤ 0.05)”. (A) GSH, (B) GSSH,
(C) GSH+GSSH, (D) GSH/GSSH.
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peroxidation (MDA) and high contents of H2O2 in root tissues

which are correlated with high Cu2+concentrations in wheat

tissues. However, SiNPs application improved plant growth

parameters and also reduced the accumulation of MDA and

H2O2 contents by regulating activities of the antioxidant defense
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system. The improved defense system and reduced Cu2+

concentrations might have led to the increasing growth of

wheat seedlings under Cu2+ stress by SiNPs, suggesting a

mitigating effect of SiNPs on Cu2+ toxicity. This study

provides a valuable reference for the application of exogenous
B
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FIGURE 7

ASA contents under Cu2+ toxicity. Note “Experimental treatments contained: CK (control); SiNP (2.5 mM SiNPs); Cu (500 µM Cu2+ alone), SiNP+Cu (2.5
mM SiNPs+500 µM Cu2+). The different letters (a, b, c, d) describe the differences in different treatments by LSD test at (P ≤ 0.05)”. (A) AsA, (B) DHA,
(C) AsA+DHA, (D) AsA/DHA.
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SiNPs to mitigate the Cu2+ toxicity in Cu2+ contaminated soil.

Future research should be focused on the natural environment

and molecular mechanisms involved in the SiNP-induced

alleviation of Cu2+ toxicity should be considered.
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Droppa, M., and Horváth, G. (1990). The role of copper in photosynthesis. Crit.
Rev. Plant Sci. 9 (2), 111–123. doi: 10.1080/07352689009382284

Emamverdian, A., Ding, Y., Mokhberdoran, F., and Xie, Y. (2015). Heavy metal
stress and some mechanisms of plant defense response. Sci. World J. 2015:756120.
doi: 10.1155/2015/756120

Emamverdian, A., Ding, Y., and Xie, Y. (2018). Effects of silicon in the
amelioration of zn toxicity on antioxidant enzyme activities. Toxicol. Environ.
Health Sci. 10, 90–96. doi: 10.1007/s13530-018-0351-7

Gilabel, A. P., Nogueirol, R. C., Garbo, A. I., and Monteiro, F. A. (2014). The role
of sulfur in increasing guinea grass tolerance of copper phytotoxicity. Water Air
Soil Pollut. 225, 1–10. doi: 10.1007/s11270-013-1806-8

Gillespie, K. M., Chae, J. M., and Ainsworth, E. A. (2007). Rapid measurement of
total antioxidant capacity in plants. Nat. Protoc. 2, 867–870. doi: 10.1038/
nprot.2007.100

Gill, S. S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant
machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48,
909–930. doi: 10.1016/j.plaphy.2010.08.016
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