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The common bean (Phaseolus vulgaris L.) is the most important grain

legume in the human diet, mainly in Africa and Latin America. Argentina is

one of the five major producers of the common bean in the world, and

the main cultivation areas are concentrated in the northwestern provinces

of this country. Crop production of the common bean is often affected

by biotic factors like some endemic fungal diseases, which exert a major

economic impact on the region. The most important fungal diseases affecting

the common bean in Argentina are white mold caused by Sclerotinia

sclerotiorum, angular leaf spot caused by Pseudocercospora griseola, web

blight and root rot caused by Rhizoctonia solani, which can cause production

losses of up to 100% in the region. At the present, the most effective strategy

for controlling these diseases is the use of genetic resistance. In this sense,

population study and characterization of fungal pathogens are essential for

developing cultivars with durable resistance. In this review we report diversity

studies carried out on these three fungal pathogens affecting the common

bean in northwestern Argentina, analyzing more than 200 isolates by means

of molecular, morphological and pathogenic approaches. Also, the screening

of physiological resistance in several common bean commercial lines and wild

native germplasm is reviewed. This review contributes to the development of

sustainable management strategies and cultural practices in bean production

aimed to minimize yield losses due to fungal diseases in the common bean.
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Introduction

The American continent is the center of domestication of
many crops that are essential in the diet of human populations,
such as maize (Zea mays L.), tomato (Solanum tuberosum
L.), potato (Solanum lycopersicum L.), and common bean
(Phaseolus vulgaris L.). The common bean is the dry grain
legume most consumed in the world due to its high content
of proteins, carbohydrates, fibers and minerals, being a main
part of the diet of many countries in America and Africa
(Broughton et al., 2003; Gepts et al., 2008). Domestication
of the common bean occurred independently in two regions
throughout the continent. Therefore two major gene pools,
named Mesoamerican and Andean, are recognized in the
population structure of the wild and the domesticated beans
(Papa and Gepts, 2003; Papa et al., 2005, 2007; Rossi et al., 2009;
Cortinovis et al., 2020; Tobar Piñón et al., 2021). Domesticated
beans further diverged into genetically distinct races giving rise
to the diversity of market types known today (Kwak and Gepts,
2009; Tobar Piñón et al., 2021).

Dry beans world production reached 27.5 million tons in
2020 (FAO, 2022). Argentina is among the top five common
bean exporting countries and exports 90% of its production,
supplying the crop to many Latin American countries (FAO,
2022). Bean production is located in the northwestern region
of Argentina (NWA), comprising the provinces of Jujuy,
Salta, Tucumán, Santiago del Estero and Catamarca. These
regions are characterized by a great climatic and environmental
heterogeneity, reaching a common bean production of 633.823
tons per year (FAO, 2022). Within this heterogeneous landscape,
biotic stress is one of the main limiting factors for bean
production (Basavaraja et al., 2020).

The common bean is affected by numerous diseases caused
by fungi, viruses, bacteria and nematodes that affect production
in different ways. To date, more than 200 diseases that
cause significant losses in bean yield have been reported
(Schwartz and Pastor Corrales, 1989; Assefa et al., 2019).
Although NWA presents adequate conditions for common
bean development, its production is constrained by different
phytosanitary problems and the lack of disease resistance
varieties. The main fungal diseases that affect bean production
in the region are white mold [Sclerotinia sclerotiorum (Lib.) de
Bary], angular leaf spot [Pseudocercospora griseola (Sacc.) Crous
and U. Braun], web blight and Rhizoctonia root rot (Rhizoctonia
solani Kühn). These are the most dispersed diseases in the
different bean production areas in the country and are the most
important due to the economic losses they cause (Vizgarra et al.,
2011, 2012).

At the present, the most effective strategy for controlling
these diseases is the use of genetic resistance. In this sense,
population study and characterization of fungal pathogens
are essential for developing cultivars with durable resistance.
In this review we report diversity studies carried out on

these three fungal pathogens affecting common bean in
northwestern Argentina, analyzing more than 200 isolates by
means of molecular, morphological and pathogenic approaches.
Also, the screening of physiological resistance in several
common bean commercial lines and wild native germplasm are
covered in this review.

White mold

White mold (WM) caused by Sclerotinia sclerotiorum is one
of the most destructive fungal diseases of the common bean
worldwide (Boland and Hall, 1994). This necrotrophic fungus
has a broad host range of more than 400 species in 75 plant
families, including field crops, cereals, horticultural crops, trees,
shrubs and several weed plants (Boland and Hall, 1994). Some
of the major economic crops affected include dry bean, potato,
soybean [Glycine max (L.) Merr.], sunflower (Helianthus annuus
L.), canola (Brassica napus L.), lettuce (Lactuca sativa L.), carrot
(Daucus carota L.), and pea (Pisum sativum L.) (Carpenter et al.,
1999; Mert-Türk et al., 2007; Hemmati et al., 2009; Attanayake
et al., 2013; Lehner et al., 2015; Abán et al., 2018; Panullo
et al., 2018). In Argentina, WM has been detected in all bean
production areas, reaching seed yield and quality losses up to
80–100% on susceptible common bean cultivars under favorable
weather conditions (Singh and Schwartz, 2010). WM disease
affects all aerial parts of plants regardless of the growth stages of
the plant. Disease symptoms of WM typically begin with water-
soaked lesions on leaves and stems (Figure 1). As the disease
progresses, a thick white mycelium growth followed by hard
black sclerotia is observed in internal and external tissues of
the plant, which causes distal portions of the plant to wilt and
then become necrotic (Steadman and Boland, 2005). Eventually,
the plant will appear bleached in color, with plant parts showing
shredded characteristics due to tissue breakdown (Purdy, 1979).
Sclerotia can germinate myceliogenically to infect adjacent plant
tissues and carpogenically via apothecia from which ascospores
are dispersed within the crop. Sclerotia eventually fall to the
ground as infected stems dry out and the host plant dies. These
sclerotia serve as the primary source of inoculum of the disease
(Bolton et al., 2006). The longevity of sclerotia in the soil varies
from 1 year (Brustolin et al., 2016) to up to 8 years (Adams,
1979), making this pathogen extremely hard to control in the
field. WM disease can also be spread by the movement of seeds
contaminated and sclerotia mixed with seeds from one field
to another, irrigation runoff water and wind-blown ascospores,
which can travel a considerable distance of 3–4 km between
fields (Cubeta et al., 1997; Steadman and Boland, 2005).

Sclerotinia sclerotiorum is a homothallic and haploid fungus
that can reproduce asexually (clonally) by means of mycelium
or sexually by means of self-fertilization or recombination
(Attanayake et al., 2014) to produce apothecia with ascospores.
However, sexual reproduction in haploid fungi is frequently
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FIGURE 1

White mold symptoms on common bean (A) leaf and (B) stem. (C) Common bean cultivar showing white mold symptoms. (D) Mycelial
compatibility test between three isolates of Sclerotinia sclerotiorum. The arrows indicate incompatible reactions with band of aerial mycelium in
the interaction zone. (E,F) Common bean cultivars showing a susceptible reaction to Pseudocercospora griseola. (G) Andean P. griseola isolate.
(H) Web blight symptoms on common bean leaf. (I) Rhizoctonia root rot symptoms on common bean. (J) Rhizoctonia solani isolates obtained
from common bean seed and soil.

equivalent to clonal reproduction (Billiard et al., 2012) because
the genetic exchange that exists is scarce and is not enough to
break the predominant pattern of clonal population structure
(Tibayrenc and Ayala, 2012). According to recent research,
mycelial compatibility groups (MCGs) are useful as a rough
measure of standing genotypic diversity but are not adequate
to infer population genetic processes (Kamvar and Everhart,
2019; Figure 1). However, other studies have suggested taking
into account the structure imposed by the MCGs in addition
to a set of molecular markers in population analyses (Lehner
and Mizubuti, 2017; Lehner et al., 2019; Silva et al., 2021). Over
the past few years, the population structure of S. sclerotiorum
has been extensively documented from different host crops and

from different regions in the world (Atallah et al., 2004; Sexton
et al., 2006; Hemmati et al., 2009; Ekins et al., 2011; Attanayake
et al., 2013; Clarkson et al., 2013, 2017; Aldrich-Wolfe et al.,
2015; Dunn et al., 2017; Panullo et al., 2018; Faraghati et al.,
2022). In early studies, S. sclerotiorum populations exhibited
a predominantly clonal population structure with low genetic
diversity based on MCGs and DNA fingerprinting genotypes
(Kohli et al., 1992; Cubeta et al., 1997; Hambleton et al.,
2002). However, in subsequent studies, evidence of recombinant
populations and mixed population structures with high rates
of genetic variability have been reported using microsatellite
(SSR) markers and linkage disequilibrium measures (Atallah
et al., 2004; Sexton and Howlett, 2004; Hemmati et al., 2009;
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Attanayake et al., 2014; Panullo et al., 2018). Whether a pathogen
population is clonal or recombining is best addressed by
studying the association of alleles among different loci through
the index of association (IA) (Smith et al., 1993; Milgroom,
1996) based on clone-corrected data to reduce the bias produced
by overrepresented data and to increase sensitivity in the
detection of recombination (Milgroom, 1996). Recombinant
populations with high rates of genetic variability tend to have
a high evolutionary potential and therefore are more likely to
overcome host resistance. Thus, the presence of S. sclerotiorum
recombinant populations in a particular region is of great
interest to the delineation of strategies for WM management and
crucial for breeders seeking to develop new resistant cultivars
(Milgroom, 1996; McDonald and Linde, 2002).

Despite the fact that the bean crop is cultivated in many
countries, the genetic diversity and population structure of
S. sclerotiorum in common bean crops have only been analyzed
in Brazil (Lehner et al., 2015, 2017, 2019; Silva et al., 2021),
the United States (Kamvar et al., 2017) and Argentina (Abán
et al., 2018, 2021). In Brazil, the first study using microsatellite
markers analyzed 79 isolates and reported high genotypic
variability among S. sclerotiorum isolates (Gomes et al., 2011).
However, in a subsequent study using linkage disequilibrium
measures, Lehner et al. (2015) reported that despite the relatively
high genotypic diversity observed among isolates, the SSR loci
were in linkage disequilibrium, and thus, the S. sclerotiorum
population had a clonal genetic structure. These results were
later supported in larger studies, where the pathogen population
of Brazil not only remained clonal but also structured according
to MCGs (Lehner et al., 2019; Silva et al., 2021). Silva et al. (2021)
analyzed 238 isolates, and only 22 MCGs and 64 SSR haplotypes
were found, with no association between SSR haplotypes and
MCGs. Although their clonal lineages were widely distributed
in space and persistent over time, evidence of some degree
of outcrossing was detected (Silva et al., 2021). In the case
of common bean fields in the United States, Kamvar et al.
(2017) reported that S. sclerotiorum populations had a clonal
population structure with low genetic diversity using MCGs and
SSRs. In this study, 366 isolates were analyzed from production
fields and WM screening nurseries from dry bean cultivars
among different geographic locations in the United States (320),
France (22), Mexico (18), and Australia (6). A total of 165 MLH
and 87 MCGs were observed, with no relationship between SSR
haplotypes and MCGs. In contrast to Brazil, the United States
populations from dry bean fields were structured by region, and
no evidence of structuring by MCGs was detected.

In Argentina, the molecular and morphological
identification of 116 S. sclerotiorum isolates from the main
common bean production area was reported by Abán
et al. (2018). Morphological identification was confirmed
by PCR amplification and sequencing of the rRNA ITS
region, which presented 100% similarity compared to
S. sclerotiorum sequences. In addition, a first approach of

the mode of reproduction and population structure was
analyzed by means of MCGs and URPs (Universal Rice
Primers) molecular haplotypes (Abán et al., 2018). A total
of 52 MCGs and 59 URP haplotypes were found. All the
MCGs were location specific, while only 12% of the URP
haplotypes were shared among locations. Moreover, most
of the isolates were highly aggressive, while no variation
among locations was observed. Based on measures of
multilocus linkage disequilibrium, the occurrence of both
clonal and sexual reproduction was suggested in S. sclerotiorum
populations from common bean fields in northwestern
Argentina (Abán et al., 2018). Since most population structure
analyses are based on SSR markers, a later study based on
microsatellite markers was performed (Abán et al., 2021).
In this study, 109 isolates of S. sclerotiorum from six dry
bean fields in the main production area of Argentina were
analyzed using nine microsatellite loci. A total of 30 SSR
haplotypes were identified, of which 18 haplotypes were
unique. Population genetic structure analysis based on linkage
disequilibrium analysis suggested the occurrence of both
modes of reproductive behavior, with sexual recombination
being the most frequent (Abán et al., 2021). The high levels of
recombination and gene flow detected in this study highlighted
the need for breeding programs to develop new cultivars
resistant to WM.

The integrated management of the disease includes the use
of resistant or tolerant cultivars, cultural practices, fungicide
applications during the flowering stage, upright growth habit
plants, wide row spacing in combination with low plant
density (Vieira et al., 2012, 2022), and biological control by
different antagonistic fungi, bacteria and organic amendments,
which has been recently reviewed by Smolińska and Kowalska
(2018). Regarding biological control, different native strains
of the genus Bacillus with the potential to control WM on
bean seeds and seedlings in NWA, was reported by Sabaté
et al. (2018). To date, however, there are no known common
bean cultivars with complete resistance and current biological
control methods are rarely sufficient to completely reduce
the population of the pathogen; thus, fungicide applications
remain the most effective tool for disease control, but overuse
and misuse of fungicides increase the risk of fungicide
resistance emergence (McDonald and Linde, 2002). Moreover,
populations with frequent outcrossing will have relatively
higher levels of genetic diversity; thus, the risk of fungicide
resistance emergence is increased (McDonald and Linde, 2002).
Hence, the best strategy to minimize yield losses and reduce
production costs in a sustainable farming context is the use
of varieties with genetic resistance to WM. When evaluating
genetic resistance to WM, physiological resistance and disease
avoidance traits are considered for the selection of resistant
genotypes. Both characteristics are quantitatively inherited, and
resistance and avoidance QTLs have already been identified
(Mkwaila et al., 2011; Pérez-Vega et al., 2012; Miklas et al., 2013;
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Vasconcellos et al., 2017). A comparative map including 27
QTLs for WM resistance and 36 QTLs for disease-avoidance
traits was developed by Miklas et al. (2013). Vasconcellos
et al. (2017) identified 37 QTLs located in 17 loci, nine of
which were defined as meta-QTLs. These are robust consensus
QTLs representing effects across different environments, genetic
backgrounds and related traits. Moreover, within the confidence
interval for five of the meta-QTLs, candidate genes expressed
under S. sclerotiorum infection, such as ethylene-responsive
transcription factor, peroxidase, cell wall receptor kinase COI1
and MYB transcription factor were found. These nine meta-
QTLs are recommended as potential targets for molecular
marker-assisted selection for partial resistance to WM in the
common bean (Vasconcellos et al., 2017).

Currently, there are no commercial bean varieties available
with WM resistance. In previous studies, however, low levels
of resistance have been reported in genotypes of Mesoamerican
origin (Ender and Kelly, 2005; Pascual et al., 2010; Mkwaila et al.,
2011) and in wild beans (Terpstra and Kelly, 2008; Mkwaila
et al., 2011), and high levels of resistance have been reported
in genotypes of Andean origin (Maxwell et al., 2007; Singh
et al., 2007; Pascual et al., 2010; Mkwaila et al., 2011; Soule
et al., 2011; Pérez-Vega et al., 2012). In addition, higher levels of
WM resistance have been introgressed from interspecific crosses
with secondary gene pool Phaseolus species such as P. coccineus,
P. polyanthus, and P. costaricensis (Schwartz et al., 2006; Singh
et al., 2009, 2013, 2014).

In Argentina, the physiological resistance of 20 common
bean accessions (cultivars and lines) was assessed at 7, 14,
and 21 days post-inoculation with five genetically distinct
isolates of S. sclerotiorum collected from the main common
bean growing area of NWA (Aban et al., 2020). These
isolates were previously characterized using URP and SSR
molecular markers, MCGs and pathogenicity tests (Abán
et al., 2018, Aban et al., 2020). Based on the modified
Petzoldt and Dickson scale (Terán et al., 2006), all cultivars
and lines were susceptible at the end of the assessment,
except line A 195, which was resistant to WM against
the five isolates tested and was significantly different from
all accessions. Line A 195 is a registered WM-resistant
germplasm (Singh et al., 2007) from the Centro Internacional
de Agricultura Tropical (CIAT) in Colombia. In previous
studies, line A 195 showed partial levels of resistance
to different highly and weakly aggressive S. sclerotiorum
isolates (Viteri et al., 2015), including one pathogen isolate
(ARS12D) collected in Salta, Argentina in 2012 (Viteri et al.,
2015). Regional common bean breeding programs aimed at
obtaining broadly adapted cultivars with durable resistance
to WM should account for the regional variation within a
pathogen population to ensure the development and release
of durable WM-resistant common bean cultivars. Line A 195
is a promising parental genotype to be used in regional
breeding programs.

Angular leaf spot

Angular leaf spot (ALS), caused by the ascomycota fungus
Pseudocercospora griseola, is one of the diseases that causes great
economic losses to bean production (Schoch et al., 2009). This
pathogen is an important etiological agent mainly in countries
with subtropical and tropical climates, such as Brazil, Argentina,
Bolivia and African countries (Guzmán et al., 1995; Pastor-
Corrales et al., 1998; Vizgarra et al., 1999, 2011; Ploper et al.,
2002, 2016; Espeche et al., 2018). In recent years, the incidence of
the disease has increased, causing great economic losses, favored
by the monoculture system and the narrow genetic base of the
commercial bean varieties. In Argentina, yield losses in common
bean crops range from 20 to 50% (Stenglein, 2007), and in other
regions, such as Brazil and African countries, yield losses can
reach up to 80% of the total crop production (De Jesus et al.,
2007; Singh and Schwartz, 2010).

ALS disease is mainly destructive in warm and humid
areas, affecting the yield and quality of bean seeds. Symptoms
are visible on leaves and pods, which present angular brown
interveinal spots and circular brown lesions, respectively
(Figure 1). The spots on the leaves eventually coalesce, causing
premature defoliation (Crous et al., 2006). The pathogen conidia
are spread mainly by wind and water droplets. However,
agricultural practices have a great influence on the spread
of the disease, being carried by agricultural implements and
contaminated seeds that facilitate pathogen transmission.

In Argentina, ALS is considered one of the most destructive
and problematic diseases for bean production (Vizgarra et al.,
2011, 2012, 2016; Espeche et al., 2018). In NWA ALS is a widely
distributed fungal disease, particularly in the south of Salta and
southeast of Catamarca, mainly in black bean cultivars and
in seasons with above-average rainfall during the reproductive
period of the crop (Ploper et al., 2016). Under high disease
pressure, a substantial reduction in leaf area is observed and
the photosynthetic capacity of bean plants decreases during
grain filling, when the demand for photosynthates is the highest
(Figure 2; Cole, 1966; Hagedorn and Wade, 1974; Schwartz and
Galvez, 1980; Cardona Mejía et al., 1995).

Knowledge of the genetic variability of the pathogen
population present in each crop-producing region is
extremely important for the development of effective
management strategies. The ALS pathogen is known for
the wide virulence diversity exhibited by isolates from
different locations. P. griseola pathotypes are defined based
on the pathogenicity reaction to a set of 12 common bean
differential genotypes (Pastor-Corrales and Jara, 1995;
Supplementary Table 1). Based on their reaction to ALS
differential cultivars, all P. griseola pathotypes (known as
races) are separated into Andean and Mesoamerican pathotype
groups that correspond to the two common bean gene
pools, sustaining the coevolution of the pathogen with its
common bean host (Guzmán et al., 1995; Mahuku et al., 2002a;
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FIGURE 2

(A) Plants showing angular leaf spot symptoms in a common bean field in northwestern Argentina. (B) Argentinean wild bean exhibiting its
characteristic indeterminate growth habit. (C) Wild bean showing angular leaf spot symptoms.

Stenglein and Balatti, 2006; Rezene et al., 2018). Isolates
obtained from Andean cultivars were virulent only in Andean
bean differential cultivars, which is why these races were
called Andean, while isolates from Mesoamerican cultivars
were virulent in Mesoamerican ones (Beebe and Pastor-
Corrales, 1991; Mahuku et al., 2002a; Stenglein and Balatti,
2006). The existence of a third group of races, named
Afro-Andean group, capable of infecting both Andean
and Mesoamerican differential cultivars has been reported
(Mahuku et al., 2002a,b; Wagara et al., 2004, 2011; Serrato-
Diaz et al., 2020). The set of differential cultivars has been
widely used throughout the world, allowing the comparison
of P. griseola races between different localities, countries
and even continents. The isolation and characterization of
P. griseola in Argentina was first reported by Stenglein and
Balatti (2006). In this study, 45 isolates collected within
the main common bean production area in NWA were
classified into 13 races based on the set of bean differential
cultivars. Some races, such as 63–15 and 63–7, occurred
more frequently than others with the coexistence of different
races in certain areas of production (Stenglein and Balatti,
2006). The most pathogenic race was 63–63 reported in
Zárate, Tucumán. Races that overcome the resistance of
all differential cultivars have been reported in Argentina,
Central America, Brazil, and Africa, suggesting the need to
expand the number of differential cultivars to better identify
these pathotypes (Stenglein and Balatti, 2006; Nay et al.,
2019b). In this sense, new genotypes have been proposed as
candidates to expand the standard set of differential cultivars
(Nay et al., 2019b).

DNA sequence-based comparisons are of great importance
to determine the diversity of a pathogen in a region and
ensure the availability of an up-to-date barcode that provides
meaningful information for plant health (Crous et al., 2013).
The ITS region has been widely used by mycologists as a
standard barcode, and ITS sequences are currently available for
several fungal species identified in public databases (Begerow
et al., 2010; Schoch et al., 2012; Rezaee Danesh and Demir,
2020). With respect to P. griseola, Aparicio (2020) reported
the taxonomical identification of Argentinian pathotypes based
on ITS sequences, differentiating the isolates of P. griseola
f. mesoamericana from the isolates of P. griseola f. griseola,
generating a phylogenetic tree similar to that previously
obtained by Crous et al. (2006). In addition, polymorphic sites
in the sequences of the ITS 1 and ITS 2 regions were identified,
which are useful for the development of diagnostic specific
oligonucleotides based on the single nucleotide polymorphisms
(SNPs) detected.

Several molecular markers have been used to analyze ALS
pathogen variability (Guzmán et al., 1999; Mahuku et al., 2002b,
2009; Stenglein and Balatti, 2006; Abadio et al., 2012; Ddamulira
et al., 2014; Nay et al., 2019a). However, finding genetically
accurate and operationally simple markers for the study of
P. griseola variability is not an easy task (Mahuku et al., 2002b).
In Argentina, high levels of genetic diversity were observed
within the Mesoamerican and Andean groups of the fungus
using dominant molecular markers (Stenglein and Balatti, 2006;
Aparicio, 2020), in agreement with previous reports from
Africa and Brazil (Mahuku et al., 2002b; Abadio et al., 2012).
Molecular analyses of Argentinean P. griseola isolates performed

Frontiers in Plant Science 06 frontiersin.org

https://doi.org/10.3389/fpls.2022.986247
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-986247 August 30, 2022 Time: 16:23 # 7

Taboada et al. 10.3389/fpls.2022.986247

with RAPD and ISSR markers (Stenglein, 2007) significantly
distinguished between the Mesoamerican and Andean isolates;
however, unique band patterns or haplotypes were generated
for less than 50% of the isolates analyzed. Guzmán et al. (1999)
developed specific primers to identify P. griseola isolates of
each gene pool. However, these specific primers were only
efficient in differentiating isolates of Andean origin when used
on Argentinean isolates (Aparicio, 2020), demonstrating the
wide variability exhibited by isolates from different regions. On
the other hand, URP markers were found to be useful tools to
differentiate ALS pathogen isolates, being even more efficient
than RAPD and ISSR markers (Aparicio, 2020).

Diversity studies of isolates from Argentina showed that
P. griseola had great pathogenic variability (Stenglein, 2007;
Aparicio, 2020). Although Mesoamerican isolates of P. griseola
had greater genetic diversity than the Andean isolates (Wagara
et al., 2004), Aparicio (2020) reported a greater diversity in the
Andean group. This may be due to the introgression of genes
from the Mesoamerican to Andean isolates, which was also
suggested by Stenglein (2007), since in this region, both types
of beans (Mesoamerican and Andean) are grown. Moreover,
in the same leaf of a bean plant, isolates belonging to the
Mesoamerican and Andean groups can be found (Guzmán et al.,
1999; Stenglein and Balatti, 2006; Stenglein, 2007; Crous et al.,
2013). Based on what is known about the coevolution between
the gene pools of the host and the pathogen of the common bean
and the high virulence and potential for overcoming resistance
of the pathogen, Andean and Mesoamerican resistance gene
pyramiding would be the most appropriate strategy to generate
cultivars with durable ALS resistance (de Carvalho et al., 1998;
Sartorato et al., 1999; Corrêa et al., 2001; Namayanja et al.,
2006; Gonçalves-Vidigal et al., 2011, 2013; Vizgarra et al., 2011;
Oblessuc et al., 2012, 2013, 2015; Goncalves-Vidigal et al., 2020).

To date, integrated management is the most widely used
strategy for ALS management, which involves cultural methods
(crop rotation, seed sanitation and adequate planting dates),
chemical methods (fungicide use) and biological methods
(resistant genotypes). Numerous studies agree that the most
sustainable strategy to control ALS disease is the use of
resistant cultivars. Many genotypes were evaluated in search
of new sources of ALS resistance, including the identification
of SNP markers to be used in breeding assisted selection and
pyramidization of resistance genes (Singh and Schwartz, 2010;
Nay et al., 2019b). The TUC 550 cultivar, was the first black
bean cultivar with resistance to ALS in Argentina developed
by the Estación Experimental Agropecuaria Obispo Colombres
(EEAOC) from germplasm introduced from CIAT. This cultivar
was released in 2010 and showed resistance to different
races of the pathogen that were the most prevalent in bean
cultivated areas (Vizgarra et al., 2018). These results highlight
the importance of knowing the local variability of P. griseola
isolates to generate genotypes adapted to the region and with
durable resistance over time. Other cultivars, such as MAB 333

and MAB 336, introduced from CIAT reported high levels of
resistance to angular leaf spot in field evaluations (Vizgarra et al.,
2011). Recently, the TUC180 and TUC241 cultivars, that are
red and cranberry type beans, were reported to be resistant to
races 63–7 and 31–0 by Aparicio (2020). These genotypes are
new potential parents for future combinations, considering that
breeding for ALS resistance should be continuous because of the
high pathogenic variability exhibited by the pathogen.

The identification of new resistance genes is a major goal for
geneticists to broaden the common bean genetic base against
the ALS pathogen, to understand the nature of defense genes
and to define haplotypes for marker design to assist in breeding.
Resistance to the ALS pathogen is largely conferred by single
dominant resistance genes, named Phg-1, Phg-2, and Phg-3,
but a quantitative nature of resistance that includes two major
QTLs named Phg-4 and Phg-5 has also been reported (de
Carvalho et al., 1998; Sartorato et al., 1999; Corrêa et al., 2001;
Teixeira et al., 2005; Namayanja et al., 2006; Chataika et al.,
2010; Gonçalves-Vidigal et al., 2011, 2013; Oblessuc et al., 2013,
2012; Keller et al., 2015; Nay et al., 2018, 2019a). The Phg-1,
Phg-4, and Phg-5 loci are from common bean cultivars of the
Andean gene pool, whereas Phg-2 and Phg-3 are from beans
of the Mesoamerican gene pool. The Phg-1 locus mapped on
chromosome Pv01 in the AND 277 cultivar (Gonçalves-Vidigal
et al., 2011), the Phg-2 locus mapped on chromosome Pv08 in
México 54 cultivar and its allele Phg-22 is present in BAT 332
(Sartorato et al., 1999; Namayanja et al., 2006), and the Phg-3
locus mapped on Pv04 in the Ouro Negro cultivar (Corrêa et al.,
2001; Faleiro et al., 2003; Gonçalves-Vidigal et al., 2013). On
the other hand, the major QTL Phg-4 mapped on chromosome
Pv04 in the G5686 and CAL 143 cultivars (Mahuku et al., 2009;
Oblessuc et al., 2012; Keller et al., 2015; Souza et al., 2016), and
the QTL Phg-5 mapped on Pv10 in the CAL 143 and G5686
cultivars (Oblessuc et al., 2012, 2013; Keller et al., 2015; Souza
et al., 2016).

Currently, breeding is based on a few well-characterized
single resistance genes that are easily transferred to elite
commercial cultivars (Nay et al., 2019b). However, due to the
wide virulence diversity of P. griseola, there is a high risk of
losing this resistance. Therefore, new breeding strategies based
on a broad diversity of qualitative and quantitative spectra of
resistance genes are essential for the development of cultivars
with durable resistance (Nay et al., 2019b).

Until a few years ago, most ALS resistance studies were
based on biparental mapping populations with the identification
of associated markers that were often polymorphic only in
segregating populations from specific crosses. Currently, with
the availability of a reference genome of common bean
(Schmutz et al., 2014; Vlasova et al., 2016) and the development
of high-throughput genotyping platforms (Hyten et al., 2010;
Goretti et al., 2014; Gujaria-Verma et al., 2016; Raatz et al.,
2019), genome-wide association studies (GWAS) have become
an efficient and powerful tool for the discovery of novel ALS
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resistance genes (Perseguini et al., 2016; Zuiderveen et al.,
2016; Tock et al., 2017; Fritsche-Neto et al., 2019; Nay et al.,
2019a; Vidigal Filho et al., 2020). Perseguini et al. (2016),
using GWAS with 180 common bean accessions, identified
QTLs controlling resistance to anthracnose and ALS diseases.
A total of 11 SSRs and 17 SNPs associated with resistance to
race 0–39 of P. griseola were detected. The authors reported
three SNP markers, two located on chromosome Pv03 and
one on Pv07, that were associated with both diseases. Nay
et al. (2019a) conducted GWAS in a large common bean
panel, which included the ALS most resistant genotypes
available at CIAT, and tested it under greenhouse and field
conditions at multiple sites in Colombia and Uganda. A major
ALS resistance locus conferring resistance in all trials was
detected on chromosome Pv08, coinciding with the previously
characterized resistance locus Phg-2 (Sartorato et al., 1999).
The resistance locus Phg-4 on chromosome Pv04 was effective
against one particular pathotype. Moreover, DNA sequence-
based clustering identified eleven functional haplotypes at Phg-2;
one conferred broad-spectrum ALS resistance, and six showed
pathotype-specific effects (Nay et al., 2019a). The authors
highlighted the importance of ALS pathotype specificity for
durable resistance management strategies in common bean.
Fritsche-Neto et al. (2019) performed GWAS in 60 inbred elite
lines from Brazil and evaluated them under field conditions,
identifying one SNP associated with ALS resistance loci on
chromosome Pv10 and two SNPs associated with anthracnose
resistance loci on chromosome Pv02. Vidigal Filho et al. (2020)
conducted a GWAS approach using 115 Brazilian accessions
and reported SNP markers associated with resistance to race
31–23 of P. griseola, which mapped on chromosomes Pv02
and Pv04, whereas for race 63–39, SNPs were mapped on
chromosomes Pv03, Pv06, and Pv08. Recently, de Almeida et al.
(2021) performed GWAS and linkage mapping approaches to
identify ALS resistance loci at different plant growth stages.
Different QTLs were detected showing a different quantitative
profile of the disease at different plant growth stages. The
previously reported Phg-1, Phg-2, Phg-4, and Phg-5 loci were
validated, and a new QTL named ALS11.1AM located at the
beginning of chromosome Pv11 was reported (de Almeida et al.,
2021). All these studies, based on high-throughput genotyping
platforms and GWAS, revealed several resistance genes involved
in the ALS response. Molecular markers cosegregating with
these resistance loci and haplotypes represent a powerful tool
for the development of superior varieties with improved levels
of ALS resistance.

Domestication has narrowed the genetic diversity of
common beans and, in recent decades, plant breeding has
accelerated this process decreasing their potential to adapt
to changing conditions of biotic and abiotic stress. Common
bean wild relatives represent a particular source of variability
for many genetically important traits and have been identified
as a source of resistance to some biotic stresses, such as

bruchids (Kornegay et al., 1993; Osborn et al., 2003), white
mold (Mkwaila et al., 2011), common bacterial blight (Beaver
et al., 2012) and web blight (Beaver et al., 2012). NWA
represents the southern limit of the Andean gene pool of
bean and is probably an area of domestication (Figure 2;
Kwak and Gepts, 2009; Rodriguez et al., 2015). High levels
of genetic diversity in Argentinean wild populations have
been reported, suggesting that the Andean gene pool has a
large genetic base in this region (Menéndez-Sevillano, 2002;
Galván et al., 2006, 2010a). A high level of tolerance to
P. griseola races was observed in wild beans from NWA
with the identification of resistance gene analog sequences
(Stenglein, 2007; Galván et al., 2010b). Recent studies based
on 34 wild bean populations evaluated with three of the
most widely distributed races in the main cultivation areas
in Argentina was reported by Aparicio (2020). Resistant
and tolerant genotypes were observed depending on the
pathotype tested. Three wild genotypes resulted resistant to
race 63-7, while the other six genotypes were tolerant. This
wild germplasm represents new sources of Andean resistance
genes and is of great interest to broader the genetic base
of bean cultivars.

Web blight

Common bean web blight (WB), caused by the
basidiomycete fungus R. solani Kuhn [teleomorph
Thanatephorus cucumeris (Frank) Donk] is among the
most economically important epidemics, given its level of
dispersion in bean production areas in the humid tropics
causing significant losses in seed quality and yield (Beaver
et al., 2021). Web blight is a limiting factor in Argentina
(Vizgarra et al., 2012; Spedaletti et al., 2016) and in other
regions of Central America and the Caribbean (Gálvez et al.,
1989; Godoy-Lutz et al., 2008; Mora-Umaña et al., 2013), Brazil
(Alves de Sousa et al., 2014; Boari et al., 2020; Chavarro-Mesa
et al., 2020), and Africa (Wortmann et al., 1998; Masangano and
Miles, 2004). WB epidemics are favored by rainy weather, high
relative humidity (>80%) and high-to-moderate temperature
(30–20◦C) (Gálvez et al., 1989). The WB fungus has a wide
host range and the capacity to survive saprophytically as
sclerotia and mycelium in the soil and on plant debris (Cardoso
and Luz, 1981), limiting the effectiveness of crop rotation to
control the disease. Rain drops are an important source of
WB infection splashing soil particles containing mycelium
and sclerotia of the pathogen. The basidial stage of the WB
pathogen produce basidiospores which are disseminated and
produce small circular lesions on the leaves in the canopy.
Under humid and warm weather conditions, the lesions expand
into irregularly shaped, water soaked lesions and coalesce
giving a scalded appearance to infected plants (Figure 1;
Godoy-Lutz et al., 1996).
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WB pathogen identification resides on assigning R. solani
isolates to anastomosis groups (AGs) based on the mycelial
compatibility between them (Sneh et al., 1991; Carling, 1996).
Currently, 15 AGs, with numerous subgroups, have been
reported (Liu and Sinclair, 1993; Carling, 1996; Carling et al.,
2002; Sharon et al., 2008), of which AG 1, AG 2, and AG 4
have been associated with common bean WB (Galindo et al.,
1982; Gálvez et al., 1989; Tu et al., 1996; Godoy-Lutz et al., 2003,
2008; Yang et al., 2007; Dubey et al., 2014). Some of these AGs
were further divided into intraspecific groups (ISGs) based on
rDNA-ITS sequence analyses, epidemiological differences and
cultural characteristics (AG 1-IA, AG 1-IB, AG 1-IE, AG 1-IF,
AG 2-2IV, AG 2-2WB; Godoy-Lutz et al., 2003, 2008). Web
blight isolates from different regions of Latin America and the
Caribbean, where WB is endemic, have been identified by the
analysis of rDNA-ITS sequences (Godoy-Lutz et al., 2003, 2008;
Spedaletti et al., 2016). AG1 IE and AG-1 IF isolates have been
reported as the most common and aggressive within the AG-
1 complex, infecting common bean cultivars with moderate
levels of resistance (Godoy-Lutz et al., 2008). However, isolates
of AG 2-2WB associated with bean WB in Honduras, Costa
Rica, Dominican Republic and Ecuador, have been reported
(Godoy-Lutz et al., 2003, 2008; Mora-Umaña et al., 2013).

In Argentina, the molecular identification of R. solani
causing WB in cultivated bean fields has been reported by
Spedaletti et al. (2016). In this study 97 isolates recovered
from bean plants showing symptoms of WB were identified
as R. solani AG 2-2WB by means of specific primers and
the phylogenetic analysis of rDNA-ITS sequences. Moreover, a
great variability in virulence was observed among the isolates
in a pathogenicity assay performed in black bean seedlings
using colonized wheat grains as source of inoculum. Thirty-two
percent of the isolates resulted as highly virulent on the basis of
the disease reaction on foliar tissues and no correlation between
virulence and geographical origin was detected. Moreover, a
few isolates were aggressive on hypocotyls supporting previous
observations (Godoy-Lutz et al., 1996; Valentín Torres et al.,
2016). Isolates recovered from wild beans (Phaseolus vulgaris
var. aborigineus) growing in the same area have also been
identified as R. solani AG 2-2WB (Godoy-Lutz et al., 2003, 2008;
Spedaletti et al., 2016).

The use of resistant cultivars is an important factor of an
integrated management of WB disease. Beaver et al. (2021)
recently reviewed the status of breeding for resistance to WB
in common bean and although significant progress has been
made, common bean cultivars with high levels of resistance
to diverse AG groups are still lacking. There are cultivars
that in some countries have moderate levels of resistance to
WB while in other countries they are more susceptible to the
disease (Poltronieri and Ferreira de Oliveira, 1989), emphasizing
the fact that local pathogenic WB isolates, characterized
by their anastomosis group, should be used in germplasm
screening to allow for the identification of sources of genetic

resistance (Beaver et al., 2021). Considering this, 23 common
bean cultivars inoculated with two highly virulent AG 2-2
isolates collected in northwestern Argentina were evaluated
for WB resistance by Spedaletti et al. (2017). Based on the
disease incidence (DI) on foliar tissue, the Leales B30 and
Leales CR5 cultivars, developed by the Instituto Nacional
de Tecnologia Agropecuaria (INTA) from Argentina, were
classified as resistant (1 = DI < 3) to both isolates. The
identification of resistant varieties using isolates identified
in the NWA region represents a significant contribution to
breeding programs aimed at achieving elite cultivars with
durable WB resistance.

Rhizoctonia root rot

Root rot (RR) caused by Rhizoctonia solani is among the
major diseases affecting the common bean in Argentina and
other bean growing areas worldwide (Abawi, 1989; Mathew and
Gupta, 1996; Naseri and Mousavi, 2015), particularly in low
soil fertility regions, with limited crop rotation and intensive
seasonal bean production (Miklas et al., 2006). Rhizoctonia RR
symptoms include sunken, reddish-brown lesions on seedling
roots and stems (Abawi, 1989), resulting in young seedling
damping-off (Figure 1; Reddy et al., 1993; Hagedorn, 1994).
Yield losses, resulting in upward to 100%, have been reported
(Abawi, 1989; Singh and Schwartz, 2010). R. solani is a soil-
borne pathogen that spreads from plant to plant through
the formation of mycelial bridges between roots and infested
soil debris. The pathogen survives on seeds, facilitating long-
distance and overwintering dispersal (Abawi, 1989; Schwartz
et al., 2005).

Root and hypocotyl rot have been reported to be caused by
isolates of R. solani AG 1, AG 2, AG 4, and AG 5 (Galindo et al.,
1982; Abawi, 1989; Tu et al., 1996; Eken and Demirci, 2004;
Nerey et al., 2010; Valentín Torres et al., 2016). Moreover, AG
4 has been reported to be the prevalent group associated with
root and hypocotyl rot in Argentina and other common bean
growing areas worldwide, such as Brazil, Cuba, Iran, Turkey
and the Democratic Republic of the Congo (Muyolo et al.,
1993; Meinhardt et al., 2002; Nerey et al., 2010; Haratian et al.,
2013; Kiliçoǧlu and Özkoç, 2013; Spedaletti et al., 2017). In
Argentina, the presence of various R. solani AGs in seed and
soil samples from bean fields naturally infested with RR has
been reported (Spedaletti et al., 2017). Based on the variability
in the rDNA-ITS sequence, most of the isolates (92%) were
identified as R. solani AG 4, including AG 4 HG-I (20%) and AG
4 HG-III (26%). Moreover, great variability in virulence among
the isolates was observed in a pathogenicity approach under
controlled conditions toward bean seedlings, and four virulence
categories were defined according to the disease reaction on
root and foliar tissues. Considering that seed and soil-borne
inoculum play a significant role in pathogen dispersal in the
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region, the use of certified seeds free of sclerotia is essential to
reducing the incidence of Rhizoctonia RR disease. R. solani AG
4 can affect other commercial crops that are grown in rotation
with beans, such as maize and tobacco (Mercado Cárdenas et al.,
2015). Mercado Cárdenas et al. (2015) identified R. solani AG 4
HG-I and AG 4 HG-III isolates obtained from tobacco plants
with damping-off and sore shin symptoms in different localities
in NWA. This highlights the importance of using non-host
crops in rotational systems that may reduce root rot incidence,
leading to improved control.

However, the most effective strategy for controlling
Rhizoctonia RR is the use of resistant cultivars. Genetic
resistance to R. solani has been reported to be controlled by
major as well as minor genes with additive effects (Zhao et al.,
2005; Oladzad et al., 2019). Thus, screening for resistance to
this soil-borne pathogen is challenging since environmental
factors can greatly affect phenotypic responses. Some studies
on the identification of Rhizoctonia RR-resistant germplasm
have been conducted in common bean (Muyolo et al., 1993;
Peña et al., 2013; Adesemoye et al., 2018; Oladzad et al., 2019).
Peña et al. (2013) identified genotypes with partial resistance
to R. solani by screening 275 bean lines in a greenhouse assay.
Conner et al. (2014) reported five partially resistant cultivars
among 37 common bean lines from different market classes
evaluated under field conditions. Recently, Oladzad et al. (2019)
performed a wide-scale resistance screening across the Andean
(ADP; n = 273) and Middle American (MDP; n = 279) diversity
panels. These diversity panels consist of modern genotypes
commonly used in production fields and have been developed
to represent bean genetic diversity within each gene pool,
facilitating genetic analyses (Cichy et al., 2015; Moghaddam
et al., 2016). The Rhizoctonia RR resistance responses of 28
genotypes of the ADP and 18 of the MDP were similar or
higher than that of the VAX 3 line used as a resistant control.
These new sources of resistance to Rhizoctonia RR will be
useful parents for common bean breeding programs. Moreover,
a GWAS was performed to discover genomic regions associated
with Rhizoctonia RR resistance using the ADP and MDP
(Oladzad et al., 2019). This study provided evidence for the
existence of one major QTL on Pv01 identified in the MDP
and another major QTL on Pv02 in the ADP. These regions
were associated with gene clusters encoding proteins similar
to known disease resistance genes (Oladzad et al., 2019). This
information will be useful to develop molecular markers to
facilitate the introgression of Rhizoctonia RR resistance into
elite cultivars.

Concluding remarks

Nowadays it is challenging to facilitate the improvement of
crops with such global importance like the common bean while
developing cultivars that meet the nutritional requirements
of a constantly growing world population and that can also

adapt to biotic and abiotic stresses, in the current conditions
of climate change.

In this review we described the major fungal disease
problems that affect common bean production with emphasis
in Argentina. Significant advances have been made in pathogen
identification and characterization supplying information on
their variability, population structure and reproductive behavior
in the main common bean production areas in the country.
Furthermore, the selection of representative local isolates
supported germplasm screening in regional common bean
breeding programs for the development of cultivars with
durable resistance.

Managing fungal diseases is complex, so these studies
contribute to sustainable management strategies such as genetic
resistant cultivars, chemical and biological control, and cultural
practices aimed at minimizing yield losses due to WM, ALS,
WB, and Rhizoctonia RR, in the region. This review assembled
information about the best resistant sources of WM (line
A 195), ALS (TUC550, MAB 333, MAB 336, TUC180, and
TUC241) and WB (Leales B30 and Leales CR5) in Argentina,
which is relevant considering that the use of genetic resistant
cultivars is the most promising management tool with the
most negligible environmental impact. Regarding Rhizoctonia
RR, further germplasm screening based on the pathogen
diversity observed in the region, should be performed for
the identification of resistant genotypes. Moreover, wild bean
populations growing in NWA represent a valuable source of
new resistance genes to broaden the common bean genetic
base against these pathogens. All these genotypes are being
considerate as candidates to generate a diverse association panel
for a GWAS approach, that will accelerate the identification
of markers associated to the resistance genes and their use in
bean improvement.
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