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Soil microbial communities are crucial in ecosystem-level decomposition and

nutrient cycling processes and are sensitive to climate change in peatlands.

However, the response of the vertical distribution of microbial communities to

warming remains unclear in the alpine peatland. In this study, we examined the

e�ects of warming on the vertical pattern and assembly of soil bacterial and

fungal communities across three soil layers (0–10, 10–20, and 20–30cm) in

the Zoige alpine peatland under a warming treatment. Our results showed that

short-term warming had no significant e�ects on the alpha diversity of either

the bacterial or the fungal community. Although the bacterial community in the

lower layers becamemore similar as soil temperature increased, the di�erence

in the vertical structure of the bacterial community among di�erent treatments

was not significant. In contrast, the vertical structure of the fungal community

was significantly a�ected by warming. The main ecological process driving the

vertical assembly of the bacterial community was the niche-based process in

all treatments, while soil carbon and nutrients were the main driving factors.

The vertical structure of the fungal community was driven by a dispersal-based

process in control plots, while the niche and dispersal processes jointly

regulated the fungal communities in the warming plots. Plant biomass was

significantly related to the vertical structure of the fungal community under

the warming treatments. The variation in pH was significantly correlated

with the assembly of the bacterial community, while soil water content,

microbial biomass carbon/microbial biomass phosphorous (MBC/MBP), and

microbial biomass nitrogen/microbial biomass phosphorous (MBN/MBP) were

significantly correlated with the assembly of the fungal community. These
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results indicate that the vertical structure and assembly of the soil bacterial

and fungal communities responded di�erently to warming and could provide a

potential mechanism of microbial community assembly in the alpine peatland

in response to warming.

KEYWORDS

soil microbial community, alpine peatland, community assembly, vertical structure,

warming

Introduction

The greenhouse effect has been increasing over the past

few decades due to the cumulative impact of human activities,

leading to global warming (Zandalinas et al., 2021). The global

average surface temperature in the first 20 years of the twenty-

first century (2001–2020) has increased by 0.99 (0.84–1.10)◦C

compared with that during 1850–1900 (IPCC, 2021). Peatlands

cover only 3% of the Earth’s land surface but contain 1,055

Gt of soil carbon (Nichols and Peteet, 2019), which is roughly

equivalent to 45% of global soil C (Nichols and Peteet, 2019;

Xue D. et al., 2021). Peatlands are a major contributor to

global greenhouse gas emissions (Tiemeyer et al., 2016) with a

function of buffering the effects of climate warming (Frolking

and Roulet, 2007). However, peatlands are suffering massive

degradation under climate change and human disturbance,

which is affecting the global emissions of greenhouse gases

(Chen et al., 2013). Thus, it is necessary to clarify the effects of

warming on peatlands.

Warming accelerates carbon emission from subsurface peat,

leading to a decreased peatland carbon sink (Dorrepaal et al.,

2009; Helbig et al., 2022). The alpine peatlands are more

sensitive to warming due to their high altitude (Mclaughlin and

Webster, 2018; Zhang et al., 2022). Previous studies have shown

that climate warming strongly affects the alpine ecosystem

microbial communities on the Qinghai-Tibet Plateau (Zhao

et al., 2014; Liu et al., 2016; Zhang K. et al., 2016; Kang

et al., 2022). Soil microbes play a vital role in biogeochemical

processes and other ecosystem-level decomposition and nutrient

cycling processes in peatland and the repose of the microbial

community to warming enhances the temperature sensitivity of

soil respiration (Bardgett and Van Der Putten, 2014; Anthony

et al., 2020). Warming has altered the microbial biomass,

community composition, community succession, and network

complexity and stability (Blankinship et al., 2011; Guo et al.,

2018, 2019; Yuan et al., 2021). However, warming affects the

soil bacterial and fungal communities differently. Bacterial

communities are more sensitive than fungal communities in

topsoil (Guo et al., 2019; De Oliveira et al., 2020; Kanzaki

and Takemoto, 2021). Moreover, previous studies focused on

the horizontal structure of the soil microbial communities in

different soil layers (Du et al., 2017; Jiao et al., 2018; Chen

et al., 2020), and the alpha diversity of different microbial taxa

varied by depth (Jiao et al., 2018). Soil pH has been reported

to be the driving factor for the horizontal structure of the

bacterial community (Xia et al., 2016; Liu et al., 2018; Kang et al.,

2021). More dimensions must be considered when studying soil

microbial communities because of the spatial heterogeneity of

the soil and the three-dimensional distribution of microbiomes

in soil (Xue R. et al., 2021). However, the vertical responses of soil

bacterial and fungal communities to warming remain unclear.

Investigating the ecological processes driving community

assembly contributes to disentangling the mechanisms of

the microbial communities in response to climate change

(Ponisio et al., 2019). Traditional niche theory hypothesizes

that community structures are dominated by deterministic

factors, such as environmental conditions and the interactions

between species, which are referred to as deterministic processes

(Chesson, 2000; Fargione et al., 2003; Kraft et al., 2014). In

contrast, the neutral theory holds that community structures

are determined by stochastic processes, such as birth, death,

extinction, speciation, and colonization (Hubbell, 2001; Chave,

2004). The deterministic process and the stochastic process

have been recently determined to jointly regulate community

assembly (Chase, 2010; Chase and Myers, 2011; Stegen et al.,

2016; Cai et al., 2020), but their relative importance in

driving community assembly has not been determined (Vellend

et al., 2014; Zhou et al., 2014; Tonkin et al., 2018). The

dispersal-niche continuum index (DNCI), a standardized effect-

size index, has been used to compare the predominance of

niche-based vs. dispersal-based processes between multiple

datasets (Vilmi et al., 2020), which has a potential ability to

reveal the relative importance of ecological processes across

soil layers.

The temperature of the Zoige alpine peatland, which is

one of the largest and highest plateau peatlands (Chen et al.,

2014) in the northeastern part of the Qinghai-Tibet Plateau,

has increased significantly (average 0.4◦C per decade) (Yang

et al., 2014). To investigate how short-term warming affects the

vertical distribution and assembly of the soil bacterial and fungal

communities, we initiated a field manipulative experiment in

the Zoige alpine peatland. We hypothesize that short-term

warming has no effects on the diversity of bacterial and fungal

communities (hypothesis I); the vertical distribution of bacterial

and fungal communities are both altered after short-term

warming (hypothesis II); the assembly processes of the bacterial
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and fungal communities across soil layers are affected by short-

term warming (hypothesis III).

Materials and methods

Study area and experimental design

This experiment was conducted at the Axi Ranch on

the Zoige National Wetland Natural Reserve (33◦47′56′′ N,

102◦57′28′′ E), which is the largest plateau peat bog in the

world. The study region has a typical plateau monsoon climate.

The annual average temperature ranges from −1 to 3.3◦C, and

the annual average precipitation is 650–750mm. The region

has a long frost period (October–April) and a short growing

season (May–September) (Yan et al., 2021). The dominant

plant species are Blysmus sinocompressus, Carex meyeriana,

Carex muliensis, Carex secbrirostris, Eriophorum gracile, and

Koeleria tibetica.

The warming experiment was initiated in June 2021,

using a completely random design. Two levels of warming

treatments (slight warming, Ws; high warming, Wh) and a

control (CK) were set up with three replicates. The warming

treatments were carried out in open-top chambers consisting

of six transparent acrylic isosceles trapezoidal plates with light

transmittance > 95%. Temperatures measured on average every

10 days in the 0–10 cm soil layer over the entire growing

season (June–September) rose by 0.9 and 1.8◦C on average

in the Ws and Wh treatments, respectively compared to CK

(Supplementary Figure 1).

Plant and soil sampling

The soil and the above-ground plant biomass were sampled

at the end of the growing season in late September 2021 after one

growing-season warming treatment. Plant biomass was collected

using a square frame (0.5 × 0.5m) and dried at 65◦C for 72

hours before being weighed. Five soil cores (5 cm diameter)

were randomly collected at depths of 0–10 cm (up), 10–20 cm

(mid), and 20–30 cm (low) from each plot. Then, samples from

the same depth at each plot were mixed to form a composite

sample. Twenty-seven soil samples (3 treatments× 3 layers× 3

replicates) were taken in total, placed on dry ice, and delivered

by express mail to the laboratory in Beijing, China. A subsample

of soil from each sample was immediately frozen at −20◦C for

microbial community analyses and the other subsamples were

used to determine the soil physical and chemical indicators.

Soil physicochemical characteristics

A soil subsample was air-dried, finely ground, and passed

through a 0.15mm sieve to measure soil organic carbon (SOC),

dissolved organic carbon (DOC), soil pH, total nitrogen (TN),

total phosphorus (TP), available phosphorus (AP), ammonium

(NH+
4 ), nitrate (NO−

3 ), microbial biomass carbon (MBC),

microbial biomass nitrogen (MBN), and microbial biomass

phosphorus (MBP), while another sample was passed through

a 2mm sieve with the roots removed to determine soil water

content (SWC). Soil pH was assessed using a pH electrode

(PB-10, Sartorius, Germany) in a 1:2.5 soil/water solution.

SWC was determined using the oven-drying method. SOC

was determined by the rapid dichromate oxidation-titration

method. DOCwasmeasured on a total organic C analyzer (Vario

TOC Cube, Elementar, Germany). Soil TN was determined full-

automatic Kjeldahl apparatus (KJELTEC 8400, FOSS, Danmark),

and soil TP was determined by spectrophotometer (TAS-

990, Persee, Beijing, China) using the method of Wu et al.

(2017). A spectrophotometer was used to assess soil AP

by molybdenum blue colorimetry (TAS-990, Persee, Beijing,

China). NH+
4 and NO−

3 concentrations were determined by the

extracts of the unfumigated soils using a flow injection auto-

analyzer (SANplus, Skalar, Netherlands). The MBC, MBN, and

MBP contents were evaluated using the chloroform fumigation

extractionmethod (Brookes et al., 1982, 1985; Vance et al., 1987).

DNA extraction and polymerase chain
reaction (PCR) amplification

Microbial community genomic DNA was extracted using

the FastDNA R© SPIN Kit for Soil (MP Biomedical, Irvine,

CA, USA) according to the manufacturer’s instructions. The

DNA extract was checked by 1% agarose gel electrophoresis,

and DNA concentration and purity were determined with

the NanoDrop 2000 UV-vis spectrophotometer (Thermo

Scientific, Wilmington, DE, USA). The hypervariable V4

region of the bacterial 16S rRNA gene was amplified with

the primer pairs 515F (5′-GTGCCAGCMGCCGCGG-3′)

and 806R (5′-GGACTACNVGGGTWTCT-3′), while the

fungal ITS gene was amplified with the primers ITS1F

(5′ CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R

(5′-GCTGCGTTCTTCATCGATGC-3′) using the PCR

thermocycler (GeneAmp R© 9700, ABI, Thermo Fisher). The

reverse primer was combined with the adapter and barcode

sequences for multiplexing, and amplification was performed

in 20 µl reaction volumes containing 2 µl of 10× TransStart

FastPfu Buffer, 0.2 µl of FastPfu Polymerase, 0.8mM of each

primer (5µM), 2 µl of 2.5mM dNTPs, 0.2 µl of BSA, and 10 ng

of template DNA. The PCR program consisted of 30 cycles of

initial denaturation at 95◦C for 3min, 95◦C for 30 s, 55◦C for

30 s, 72◦C for 45 s, and a final extension at 72◦C for 10 min.

Purified amplicons were sequenced in equimolar

concentrations and pair-end read on the Illumina MiSeq

PE300 platform/NovaSeq PE250 platform (Illumina, San Diego,
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CA, USA) according to the standard protocol of Majorbio

Bio-Pharm Technology Co. Ltd. (Shanghai, China).

Bioinformatical analyses

The sequenced reads were demultiplexed, quality-filtered

using fastp version 0.20.0 (Chen et al., 2018), and merged

with FLASH version 1.2.7 (Magoc and Salzberg, 2011) using

the following criteria: (i) only overlapping sequences > 10 bp

were assembled according to their overlapped sequence. The

maximum mismatch ratio of the overlapping region was 0.2.

Reads that could not be assembled were discarded; (ii) Samples

were distinguished according to the barcode and primers,

and the sequence direction was adjusted using exact barcode

matching and 2 nucleotide mismatches for primer matching;

(iii) the 300 bp reads were truncated at any site receiving

an average quality score < 20 over a 50 bp sliding window,

and truncated reads < 50 bp were discarded; reads containing

ambiguous characters were also discarded.

UPARSE version 7.1 (Edgar, 2013) was used to cluster the

operational taxonomic units (OTUs) with a 97% similarity cutoff

(Stackebrandt and Goebel, 1994; Edgar, 2013) and chimeric

sequences were identified and removed. The Ribosomal

Database Project classifier (version 2.2) with database Silva

v138 and UNITE version 10.05.2021 for bacteria and fungi

respectively (http://rdp.cme.msu.edu) was used to assign OTU

representative sequences at a 70% threshold (Wang et al., 2007;

Nilsson et al., 2018).

Statistical analyses

To make abundances comparable between the samples, the

rrarefy function in the R package “vegan” (The R Foundation

for Statistical Computing, Vienna, Austria) was applied. The

effects of treatments and soil layers on soil characters and alpha

diversity of the bacteria and fungi (richness, Shannon index,

and Pielou’s evenness) were tested by two-way nested analysis

of variance (ANOVA) (soil layers nested in the treatments),

followed by multiple comparisons using the LSD method

for the treatments and the soil layers. One-way ANOVA

was applied to test the effects of the warming treatments

on plant biomass. Bray–Curtis metrics were calculated to

determine the dissimilarities in themicrobial communities at the

taxonomic level across soil layers (vegdist function in R package

“vegan”). Non-metric multidimensional scaling analysis was

conducted to visualize distances between communities with the

Bray–Curtis dissimilarity measurements (metaMDS function

in R package “vegan”). Permutational multivariate analysis of

variance (PERMANOVA) and ANOSIM was conducted (adonis

and anosim function in R package “vegan”) to assess the

effects of the treatments and soil layers on the taxonomic

composition of the microbial communities. The Mantel test

was performed to reveal the relationship between the microbial

communities and the environmental variables (mantel function

in R package “vegan”).

The dispersal–niche continuum index (DNCI) was

calculated between soil layers and the entire microbial

community across soil layers to reveal the ecological processes

driving the microbial community across soil layers under the

different treatments. Significant positive DNCI values indicate

that the community is driven predominantly by the niche

process, whereas significant negative values indicate a dispersal-

dominated ecological process. If the DNCI distribution does

not significantly differ from 0, the dispersal and niche processes

were assumed to contribute equally to the community. DNCI

analyses were carried out using the R package “DNCImper”

available on Github (Vilmi et al., 2020) with 1,000 permutations.

Moreover, for each variable (e.g., soil pH), the variation (e.g.

|SWCa–SWCb|, where a and b represent samples) and the mean

(e.g. [SWCa + SWCb]/2) of each pair of samples was used to

calculate Pearson’s correlation with the DNCI.

Results

Vertical distribution and variation of
environmental variables

In addition to soil SWC, MBC/MBP and MBN/MBP were

significantly affected by warming (p < 0.05). The majority

of the soil characters (SWC, SOC, TN, TP, AP, DOC, and

NH+
4 ) differed more significantly between soil layers (p <

0.05) (Table 1). SWC in the 0–10 cm soil layer decreased by

8.36% and 12.86% in the Ws (p > 0.05) and Wh (p < 0.05)

plots, respectively, compared to CK. Soil NO−
3 concentrations

decreased significantly (p < 0.05) by 66.55% and 57.10% in

the Ws and Wh plots, respectively. Neither Ws nor Wh had

significant effects on other soil characters. None of the soil

characters in the mid (10–20 cm) or lower (20–30 cm) soil

layers were significantly affected by the warming treatments.

Plant biomass was not significantly affected by the warming

treatments (p > 0.05) (Table 1).

Composition of soil bacterial and fungal
communities

Approximately 1,365,171 and 1,562,875 sequences (27

samples, average 50,562 and 57,884 sequences) were obtained

for the bacterial and fungal communities, respectively. A total

of 11,108 bacterial and 3,693 fungi OTUs were obtained at the

97% similarity level based on these sequences.

The dominant groups (>10%) in the bacterial community

were Proteobacteria and Actinobacteriota, which were 28.57
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TABLE 1 Results of two-way nested ANOVAs for the e�ects of

treatment and soil depth (nested within treatments) on soil characters

and the results of one-way ANOVA for plant biomass a�ected by the

treatments.

Treatments Layers

F Pr (>F) F Pr (>F)

SWC 5.011 0.019* 4.830 0.004**

pH 0.880 0.432 2.308 0.079

SOC 0.074 0.929 14.879 0.001***

TN 0.024 0.976 8.724 0.001***

TP 0.741 0.490 4.892 0.004**

AP 0.278 0.760 4.779 0.004**

DOC 0.153 0.859 10.002 0.001***

NH+
4 0.056 0.946 3.824 0.012*

NO−
3 2.255 0.134 2.467 0.064

MBC 2.015 0.162 6.938 0.001**

MBN 0.177 0.839 5.493 0.002**

MBP 1.416 0.268 4.322 0.007**

MBC/MBN 1.088 0.358 2.744 0.045*

MBC/MBP 3.906 0.039* 2.046 0.112

MBN/MBP 4.555 0.025* 1.780 0.160

Biomass 3.383 0.104 / /

MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial

biomass phosphorous; Biomass, plant biomass; *0.01 < p < 0.05; **0.001 < p < 0.01;

***p < 0.001.

and 25.69% of the total (Figure 1A, Supplementary Figure 2),

respectively. The relative abundances of Actinobacteriota,

Crenarchaeota, Firmicutes, MBNT15, and Verrucomicrobiota

were affected by the warming treatments, and the

majority of the groups differed significantly (p < 0.05)

in the soil layers (Supplementary Figure 3). Ascomycota

(64.02%), Basidiomycota (12.91%), and Mortierellomycota

(10.59%) were the dominant fungal groups (Figure 1B,

Supplementary Figure 2). The relative abundance of

Mortierellomycota was significantly different between the

treatments but no significant effects were observed between the

soil layers of the other groups (Supplementary Figure 4).

Alpha and beta diversity of soil bacterial
and fungal communities

OTU richness, the Shannon diversity index, and Pielou’s

evenness were used as indicators of alpha diversity. The results

of two-way nested ANOVA showed that the warming treatments

had no significant effects on alpha diversity of either the

bacterial or the fungal community (p > 0.05) but the soil layers

had significant effects on richness (p < 0.01) of the fungal

community (Figure 2).

The Bray-Curtis index for the bacterial communities

between mid and low soil layers decreased with temperature,

and the dissimilarity of the bacterial communities increased

with distance (Supplementary Figure 5A). No significant

differences in the Bray-Curtis index of the fungal communities

were observed between the treatments or by distance

(Supplementary Figure 5B). The results of PERMANOVA

and ANOSIM revealed a significant difference between the

upper layer (0–10 cm) and the mid (10–20 cm) or lower (20–30)

layer bacterial communities, while no significant difference

was detected between the mid and lower layers (Figure 3A,

Supplementary Tables 2, 3). The fungal communities were

significantly different (p < 0.01) under the different treatments

(Figure 3B). However, the bacterial communities under the

different treatments and the fungal communities at different soil

depths were not significantly different (Figure 3).

Ecological processes and factors
influencing the microbial communities

In the CK plots, SOC, DOC, NO3-, SWC, TN, AP, MBC,

MBN and MBP were the important factors contributing to

variation in soil bacterial community structure (Figure 4A,

Supplementary Table 1). SWC, pH, SOC, TN, DOC, TP, AP,

and MBC were the important factors contributing to variation

in soil bacterial community structure in Ws plots (Figure 4B,

Supplementary Table 1). SWC, SOC, DOC, TN, TP,MBC,MBN,

andMBP were the important factors contributing to variation in

soil bacterial community structure in the Wh plots (Figure 4C,

Supplementary Table 1). In contrast, the vertical structure of the

fungal communities in all plots was not significantly affected

by the soil characters (Figure 3), while plant biomass was an

important factor related to the fungal communities in the

Ws and Wh plots (Figures 4E,F, Supplementary Table 1). The

ecological processes of the microbial communities across the

soil layers were inferred by the DNCI. The DNCI values

of the bacterial communities were positive in all treatments,

and increased in response to temperature in the upper and

lower layers and in total, indicating that niche-based ecology

processes were important in bacterial communities and the

increased relative importance of the niche process was enhanced

by warming (Figure 5A). The DNCI values of the fungal

communities were negative in the CK plots but increased close

to 0 in the Warming plots, indicating that dispersal was the

main process of the fungal communities in the CK plots. The

relative importance of dispersal decreased and was close to equal

to niche process in the warming plots (Figure 5B).We calculated

Pearson’s correlation coefficients between the DNCI and soil

characters, and the DNCI of the bacterial community was

significantly correlated with the variation in pH (r = 0.747, p <

0.05), while the DNCI of the fungal community was significantly
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FIGURE 1

Relative abundance of the dominant bacteria (A) and fungi (B) groups at phylum level at di�erent soil layers. Ws, slight warming; Wh, high

warming; CK1, 0–10cm depth in control plots; CK2, 10–20cm depth in control plots; CK3, 20–30cm depth in control plots.

negatively correlated with the mean of the SWC (r = −0.684, p

< 0.05), MBC/MBP (r=−0.885, p< 0.01) andMBN/MBP (r=

−0.897, p < 0.01) (Table 2).

Discussion

Warming did not a�ect soil microbial
diversity but shifted the fungal
community structure

Diversity indices are important indicators of soil microbial

diversity. The alpha diversity of the bacterial and fungal

communities did not change significantly after the short-

term warming treatments in the alpine peatland which

support hypothesis I. Previous studies have shown that

warming treatments have significant or no effects on microbial

communities, which is related to the experimental duration,

intensity, frequency of warming, and the availability of

substrates for microbial growth (Finlay et al., 1997; Frey et al.,

2008; Adair et al., 2019). The same results were reported in

alpine grasslands and the cultivated grasslands of the Qinghai-

Tibetan Plateau (Zhang Y. et al., 2016). Unlike farmland

ecosystems (Sun et al., 2018), the richness of the fungal

community was significantly affected by soil depth in this study.

Fungi are generally correlated with plants, as they play a critical

role in linking below ground with the above ground in the

terrestrial ecosystem (Rillig, 2004; Wardle et al., 2004; Hannula

and Trager, 2020). The fungal communities could have been

affected by roots, as the vegetation type at the study site was

herbaceous, which declined with depth.

Proteobacteria and Actinobacteriota were the dominant

phyla as reported by a previous study on the Zoige alpine

peatland (Fan et al., 2021). The relative abundance of

Proteobacteria is also high in moist soils due to its wide

adaptability (Jiang et al., 2013; Kang et al., 2021). The

bacterial communities did not respond significantly to warming

(Figure 3), although several groups in particular soil layers were

sensitive to warming (Supplementary Figure 2). The changes in

the peatland fungal groups were thought to be related to the

magnitude of the temperature increase, as the composition of the

fungal communities responded differently to warming at+4 and

+8◦C (Asemaninejad et al., 2018). In this short-term warming

study, the relative abundance of Mortierellomycota was higher

under warming at+0.8◦C, while it was not significantly different

from the control under warming at +1.8◦C, indicating that the

response of the fungi community to warming was complexed.

More experiments with temperature gradients are needed to

reveal the mechanisms by which fungal communities respond

to warming.

Warming did not a�ect the vertical
structure of bacterial communities but
fungal communities

The majority of the bacterial groups were significantly

different among the soil layers, while the fungi groups revealed
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FIGURE 2

Richness and alpha diversity index of soil bacterial (A–C) and fungal (D–F) communities. Ws, slight warming; Wh, high warming. ** and ns

indicate the significant levels for treatments and soil depths (nested within treatments) at 0.01 and non-significant, respectively. Boxplots not

sharing a common capital letter are significantly di�erent (p < 0.05) among soil layers while di�erent small letters represent significantly di�erent

(p < 0.05) among treatments.

no distinct vertical patterns. Soil aggregates provide a large

number of ecological niches, and the vertical distribution of

soil microbial communities that live inside soil aggregates is

generally limited by soil environmental factors (Sun et al.,

2021). The vertical pattern of the bacterial community is more

likely to be correlated with soil C and nutrients (Chu et al.,

2016; Du et al., 2017; Sun et al., 2018; Brewer et al., 2019),

which was also observed in this study. The structure of the

bacterial communities in the warming plots was regulated

more strongly by soil moisture and nutrients compared to the
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FIGURE 3

Non-metric multidimensional scaling (NMDS) ordination of the soil bacterial (A) and fungal (B) community structure based on the Bray-Curtis

distance. The filled graphs cover significantly di�erent groups of bacteria and fungi communities by PERMANOVA. Ws, slight warming; Wh, high

warming; **0.001< p < 0.01.

CK plots (Figure 4). The microbial response to warming may

be related to moisture (Sheik et al., 2011; Peltoniemi et al.,

2015). Soil bacteria are the main drivers of peatland carbon

cycling, and a decrease in wetland soil moisture may increase

soil permeability and thus promote the decomposition of soil

nutrients (Ladau et al., 2018). The bacterial communities in

the lower and middle soil layers became more similar after

the temperature increased. Deterministic processes that drive

soil prokaryotic communities increase with depth (Du et al.,

2021), making it easier for soil microbes in deeper layers

to converge as selection increases. However, the structure of

the bacterial communities did not differ between the CK

and warming plots (Figure 3A), which might be attributed to

the delayed response of bacteria to warming (Ladau et al.,

2018), differing from hypothesis II. In contrast, the vertical

structure of the fungal community responded significantly to

warming (Figure 3B). The structure of the fungal community

was not significantly related to environmental factors in the

CK plots but was significantly correlated with plant biomass in

the warming plots (Figure 4). Considering the changes in the

fungi community (Figure 5), warming-induced changes in soil

moisture may enhance the niche-based processes of the fungal

community, thereby enhancing the interactions between the soil

fungal community and plants, which needs to be verified by

subsequent studies.

Warming enhanced the niche process of
bacterial assembly and weakened the
dispersal process of fungal assembly

Disentangling ecological processes controlling community

assembly is crucial in microbial ecology (Zhou and Ning,

2017). In this study, we focused on the vertical distribution

of the soil microbial communities across soil layers. The

DNCI index was used to clarify the assembly process of

the soil microbial community across soil layers. The results

showed that the vertical distribution of the soil microbial

community was regulated by the niche process, and the niche

process was enhanced by warming (Figure 6). Experiments

simulating environmental change have shown that changes in

soil bacterial community assembly are usually generated by

promoting or inhibiting random processes (Zhang X. et al.,

2016). The correlation between the DNCI and environmental

factors showed that pH was significantly positively correlated

with the niche-based process of soil bacteria, which was similar

to the results of Luan et al. (2020). Soil pH is an important factor

mediating the balance between the stochastic and deterministic

assembly of bacteria in successional soils (Tripathi et al., 2018).

The niche-based process is more important for the

bacterial than the fungal community in structuring their

vertical distribution (Sun et al., 2018). In this study, the
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FIGURE 4

Mantel tests between the vertical structure of soil bacterial (A–C) and fungal (D–F) communities with environmental factors. Ws, slight warming;

Wh, high warming; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass phosphorous; C/N*, MBC/MBN;

C/P*, MBC/MBP; N/P*, MBN/MBP; Biomass*, plant biomass.
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FIGURE 5

Dispersal–niche continuum index (DNCI) of soil bacterial (A) and fungal (B) communities across soil layers. Means ± standard errors are shown

in the figures. The main assembly process is either dispersal (DNCI<0), niche (DNCI>0), or dispersal–niche (DNCI≈0). Ws, slight warming; Wh,

high warming. Up, 0–10cm; Mid, 10–20cm; Low, 20–30cm.

TABLE 2 Pearson’s correlation coe�cients (r values) between the

DNCI of the bacterial and fungi communities with the soil

characteristics.

Bacteria Fungi

Variation Mean Variation Mean

SWC 0.509 −0.343 0.740 −0.684*

pH 0.747* −0.387 0.533 −0.602

SOC 0.538 0.218 0.254 0.157

TN 0.602 0.244 0.276 0.081

TP 0.628 0.387 0.229 0.483

AP 0.039 0.096 −0.202 0.352

DOC 0.443 0.096 0.183 0.020

NH+
4 0.641 0.101 0.373 −0.047

NO−
3 −0.659 −0.687 −0.286 −0.579

MBC 0.235 −0.303 0.173 −0.371

MBN 0.558 −0.025 0.060 −0.081

MBP 0.543 0.352 0.252 0.581

MBC/MBN 0.497 −0.518 0.526 −0.539

MBC/MBP 0.136 −0.524 0.130 –0.885**

MBN/MBP 0.210 −0.472 0.916 –0.897**

MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial

biomass phosphorous; Variation, the variation of soil characters; Mean, the mean of

soil characters.

*0.01 < p < 0.05; **0.001 < p < 0.01.

fungal communities were mainly regulated by a dispersal-based

process, and warming weakened the effect of random dispersal

(Figure 6). The Mantel test indicated no strong correlation

between the fungal community structure and soil factors. The

results of an alpine meadows study showed that 3 years of

warming enhances the deterministic processes of the fungal

community (Xu et al., 2022). Unexpectedly, a decrease in

the relative importance of random processes of the fungal

communities was observed after one growing season of warming

in our study, indicating that the fungal communities in alpine

peatlands are highly sensitive to temperature change. SWC was

correlated with the DNCI, suggesting that the dispersal ability of

the fungal communities across soil layers was weakened due to

reduced moisture in wet soil. Notably, as the DNCI is calculated

based on occurrence data, the potential mechanism driven by the

abundance changes may be underestimated (Vilmi et al., 2020).

Conclusion

We investigated the effects on vertical distribution and

assembly of soil microbes under one growing season of warming

in an alpine peatland. We found that short-term warming had

no significant effects on the alpha diversity of either the bacteria

or the fungi but altered the structure of fungi community.

The vertical pattern of the fungal community in the alpine

peatland was sensitive to warming. The vertical assembly of

the fungal community was affected by soil moisture during

short-term warming, while the relative importance of the niche-

based process for bacteria increased with the variation in

soil pH. Our results could provide a potential mechanism of

microbial community vertical assembly in the alpine peatland

in response to warming. Long-term warming and integrative

studies are needed to clarify the distinction between the vertical

and horizontal distributions and the assembly of soil microbial

communities in the future.
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FIGURE 6

A schematic plot to show the vertical assembly of soil bacterial and fungal communities’ response to warming in alpine peatland. Thicker green

arrows indicate stronger niche processes while darker orange arrows indicate stronger dispersal processes. Green ellipses represent factors

driving the vertical structure of the microbial communities, while the red one-way arrows represent factors that influence the vertical assembly

of the community.
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