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Microbes, especially abundant microbes in bulk soils, form multiple ecosystem

functions, which is relatively well studied. However, the role of rhizosphere

microbes, especially rhizosphere rare taxa vs. rhizosphere abundant taxa in

regulating the element circling, multifunctionality, aboveground net primary

productivity (ANPP) and the trade-offs of multiple functions remains largely

unknown. Here, we compared the multiple ecosystem functions, the structure

and function of rhizosphere soil bacterial and fungal subcommunities (locally

rare, locally abundant, regionally rare, regionally abundant, and entire),

and the role of subcommunities in the Zea mays and Sophora davidii

sole and Z. mays/S. davidii intercropping ecosystems in subtropical China.

Results showed that intercropping altered multiple ecosystem functions

individually and simultaneously. Intercropped Z. mays significantly decreased

the trade-off intensity compared to sole Z. mays, the trade-off intensity

under intercropped S. davidii was significantly higher than under intercropped

Z. mays. The beta diversities of bacterial and fungal communities, and

fungal functions in each subcommunity significantly differed among groups.

Network analysis showed intercropping increased the complexity and positive

links of rare bacteria in Z. mays rhizosphere, but decreased the complexity

and positive links of rare bacteria in S. davidii rhizosphere and the complexity

and positive links of fungi in both intercropped plants rhizosphere. Mantel

test showed significant changes in species of locally rare bacteria were most

strongly related to nitrogen-cycling multifunctionality, ANPP and trade-offs

intensity, significant changes in species of locally rare fungus were most

strongly related to carbon-cycling multifunctionality, phosphorus-cycling

multifunctionality, and average ecosystem multifunctionality. This research

highlights the potential and role of rare rhizosphere microorganisms in

predicting and regulating system functions, productivity, and trade-offs.
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Introduction

Losses in taxonomic and functional diversities are
pervasively at both global and local scales (Radchuk et al.,
2016; Baldrighi et al., 2017; Huang et al., 2019). This trend is
predicted to continue over this century (Huang et al., 2019),
and raises increasing concerns on the influence of biodiversity
on ecosystem functions (Karolína et al., 2014; Radchuk
et al., 2016; Baldrighi et al., 2017). Unlike flora (Niklaus
et al., 2017; Wang et al., 2020b) or fauna (Gagic et al., 2015;
Tonin et al., 2018) both which have been well studied in the
studies of the relationship between biodiversity and ecosystem
function, soil microorganisms represent the richest and highest
diverse life (Delgado-Baquerizo et al., 2017; Luo et al., 2018;
Chen et al., 2020a), nevertheless, the relationships between
soil microorganisms and ecosystem functions are not fully
understood (Delgado-Baquerizo et al., 2017). Previous studies
have found that soil microbes contribute to driving multiple
ecosystem functions simultaneously (MF) (Fanin et al., 2017;
Jiao et al., 2018; Chen et al., 2020a), such as carbon and nutrient
cycling (Delgado-Baquerizo et al., 2017; Jiao et al., 2018) and
productivity (George et al., 2019; Zheng et al., 2019). However,
most studies have centered on the temperate communities
(Guerra et al., 2020) and the bulk soil communities (Luo et al.,
2018; Wen et al., 2020). In contrast, subtropical data on soil
microbial diversity and ecosystem functions are particularly
scant (Guerra et al., 2020). Furthermore, the rhizosphere is
a true hot point of plant-microbial-soil interactions, and the
rhizosphere microbial communities are clearly distinctive
from the surrounding bulk soil’s (Fan et al., 2017; Jiao et al.,
2018), because plants filter microbes for special structures
and function (Del Galdo Jos et al., 2003), to benefit their
growth, nutrition (Mendes et al., 2014), and function (Lu et al.,
2018). Notwithstanding, how rhizosphere bacterial and fungal
communities participate in the nutrient cycling of rhizosphere
soil, and drive the rhizosphere multiple functions, aboveground
primary productivity and trade-offs among functions remains
less explicitly acknowledged. Although bacteria and fungi are
the most frequently studied communities in soil biodiversity
and ecosystem function research (Guerra et al., 2020), their
diversity effects on ecosystem functions have not yet been fully
explored for the rhizosphere soils.

Besides, the majority of studies were based on abundant
taxa of microbiome (Chen et al., 2020a; Liang et al., 2020).
A large number of low abundance taxa (rare microbial taxa)
were deleted before analyzing data of microbiome (Lynch and
Neufeld, 2015; Jousset et al., 2017; Chen et al., 2020a). However,
there is a theoretical contradiction for this deletion. On the
one hand, the influential mass ratio hypothesis states (Grime,
1998) that the influences of species/functions on an ecosystem
function/process is in proportion to their biomass/relative
abundance (Karolína et al., 2014; Bagousse-Pingueta et al.,
2019), in this sense, it may be reasonable to focus only on

the role of abundant taxa. On the other hand, the most of
taxa in almost all ecosystems are low abundance (rare) (David
et al., 2013; Jain et al., 2014; Lynch and Neufeld, 2015), and
dominant species account for most of the total abundance
(Dee et al., 2019), resulting in high diversity in the rare
subcommunity (Jain et al., 2014; Lynch and Neufeld, 2015)
and low diversity in the dominant subcommunity. Generally,
the selection effect [selection/occurrence of some particular
species (or functions)/identity effects] and complementary effect
(niche partitioning/different resource utilization/facilitation)
are recognized mechanisms to interpret the role of biodiversity
in shaping ecosystem functions (Loreau, 2000; Mensah et al.,
2020; Ding and Wang, 2021). Since high species diversity should
increase the likelihood of the selection effect (Mensah et al.,
2020) and/or the complementary effect (Mensah et al., 2018),
rare subcommunities or their functions is inferred to contribute
in greater proportion to a given ecosystem function than the
dominant. This contradicts the mass ratio hypothesis. Besides,
the deletion changed substantially the profile of rare taxa
(Chen et al., 2020a). Unfortunately, rare species are often more
sensitive (Jain et al., 2014; Guo et al., 2020; Zhou et al., 2020b)
and vulnerable to vanish firstly (David et al., 2013). Therefore, if
the above inference is true, conservation and use of rare species
will be more imperative than those of the abundance species to
maintain ecosystem functions. However, the ecological role of
rare species is poorly known (Säterberg et al., 2019). Although
the complementarity and selection effects contribute to MF,
their relative contributions remains controversial (Mensah et al.,
2020). Moreover, the relative importance of these two effects of
rare rhizosphere microbes in explaining rhizosphere functions,
plant productivity and trade-offs are understudied.

In this study, our hypothesis was that rare rhizosphere
taxa contributed to multiple functions and trade-offs in
larger proportion than the abundant taxa did. To examine
this hypothesis, we characterized the rhizosphere abundant
and rare bacteria and fungi, rhizosphere C/N/P-cycling
multifunctionality, ecosystem multifunctionality, aboveground
net primary productivity and trade-offs, as well as explored how
bacteria and fungi with different abundance differently link to
the multiple rhizosphere functions, aboveground net primary
productivity and trade-offs in subtropical sole and intercropping
systems in China.

Materials and methods

Study area and design

Sampling was conducted in a cropping common
garden in the Guizhou Academy of Agricultural Sciences
(26◦30′N, 106◦39′E, 1,100 m a.s.l.). This region undergoes
a north subtropical monsoon climate characterized by
annual precipitation of 1,130 mm, annual average air
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temperature of 15.3◦C, and Haplic alisol soil. The sole and
intercropping systems were selected based on the fact that
monoculture systems can reduce biodiversity (Shao et al.,
2020), intercropping systems can enhance biodiversity (Martin-
Guay et al., 2018; Dingha et al., 2021), and both systems are
widely used around the world. The experimental design was a
randomized block design (Luo et al., 2018) established using
three cropping systems, including Sophora davidii (Franch.)
monocropping (MS), Zea mays L. monocropping (MZ), and
intercropping of both (IS and IZ), in May 1st 2019. Five repeated
plots (2 m × 5 m per repeat) were arranged for each system
with intervals of 1 m. MS was planted with row distances and
plant distances of 0.6 m, MZ was planted with row distances of
0.6 m and plant distance of 0.3 m. Row and plant distances of
S. davidii (Franch.) and Z. mays L. in the intercropping system
were identical to in monocropping system and the distance
between adjacent rows was 0.3 m in the intercropping system.
Since this small-scale design can minimize the variation in
either of none-design factors, such as topographies, climate,
and soil type (Chen et al., 2020c; Ding and Wang, 2021),
this approach is convenient to compare the contributions of
diversity vs. other drivers in shaping ecosystem function (van
der Plas, 2019), allowing the resolution required to capture
relationships between the plant-selected microbes and the
rhizosphere element circling, aboveground productivity and
trade-offs.

Fresh aboveground S. davidii and Z. mays were harvested
using a 1 m2 (1 × 1) quadrat in the monoculture and
intercropping plots, respectively, in August 11th 2019. After the
fresh was killed at 105◦C and oven-dried at 65◦C, the ANPP was
obtained. Soil that tightly adhering to roots (rhizosphere soils)
was collected by trembling the roots (Xiong et al., 2020), and was
mixed to obtain a composite sample for each replicate. The soil
was sieved using 2-mm meshes. A total of 20 composite samples
[(two monocropping + two intercropping) × five replicates]
were obtained. The sample was divided into subsamples for
downstream analysis.

Individual rhizosphere functions

The rhizosphere physicochemical properties and C, N, and
P-circling enzyme activities were assayed using the methods
listed in previous studies (Zheng et al., 2019; Ding et al.,
2020a,b) and the Supplementary Description of Method.
Briefly, rhizosphere soil pH was measured with a suspension
(soil: water = 1:2.5 w/v); Water content (WC, %) was obtained
by oven-drying at 105◦C (Wang et al., 2022). Rhizosphere
C-circling functions were characterized as follows (Bowker
et al., 2013; Bastida et al., 2016; Luo et al., 2018; Ding
et al., 2020a): organic carbon (g kg−1, OC) was assayed using
potassium dichromate volumetric method, β-glucosidase (C-
circling enzyme, µmol d−1 g−1 dry soil, βG) was detected using

an ELISA test kit (Shanghai Enzyme-linked Biotechnology Co.,
Ltd., China). Microbial biomass carbon (mg kg−1, MBC) was
determined by the fumigation–extraction method. Rhizosphere
N-circling functions were characterized as follows (Jiao et al.,
2018; Luo et al., 2018; Bagousse-Pingueta et al., 2019; Ding
et al., 2020a): ammoniacal nitrogen (mg kg−1, NH4_N) was
assayed using ultraviolet spectrophotometry, nitrate nitrogen
(mg kg−1, NO3_N) was using the colorimetric method based
on extraction of potassium chloride, inorganic nitrogen (mg
kg−1, IN) was the sum of ammoniacal and nitrate nitrogen, five
N-circling enzymes [N-acetylglucosaminidase (NAG); Leucine
aminopeptidase (LAP), Nitrogenase, Nitric oxide synthetase
(NOS), Glutamine synthetase (GS); µmol d−1 g−1 dry soil]
were detected using ELISA kits. Microbial biomass nitrogen
(mg kg−1, MBN) was determined by the fumigation–extraction
method. Rhizosphere P-circling functions were characterized as
follows (Bowker et al., 2013; Bastida et al., 2016; Jiao et al.,
2018; Luo et al., 2018; Bagousse-Pingueta et al., 2019; Ding
et al., 2020a): total phosphorus (mg kg−1, TP) was determined
by NaOH digestion, available phosphorus (mg kg−1, AP) was
assayed via the NaHCO3-ultraviolet spectrometer, and acid
phosphatase (P-circling enzyme, µmol d−1 g−1 dry soil, ACP)
was detected using ELISA test kits. These properties were
used because they either measure real functions or are good
surrogates of C, N, and P-cycling (Bowker et al., 2013; Delgado-
Baquerizo et al., 2017; Bagousse-Pingueta et al., 2019; Chen et al.,
2020a,b).

DNA extraction and PCR amplification

Genomic DNA was extracted using HiPure Soil DNA Kits
(Guangzhou Meiji Biotechnology Co., Ltd., China) following
the manufacturer’s instructions. The quality of extracted
DNA was checked with electrophoresis in a 1.2% (wt/vol)
agarose gel and a NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, United States). The V3–V4 region of the
bacterial 16S rRNA gene and the internal transcribed spacer
(ITS) regions of the fungal rRNA gene were amplified with
primers 341F and 806R and ITS3_KYO2 and ITS4, respectively
(detailed PCR conditions are described in Supplementary
Description of Method).

Amplicon sequencing and data
processing

Amplicons were extracted from 2% agarose gels (Gong et al.,
2021) and purified using the AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, United States) according
to the manufacturer’s instructions and quantified using ABI
StepOnePlus Real-Time PCR System (Life Technologies, Foster,
CA, United States). Purified amplicons were pooled in
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equimolar and paired-end sequenced (PE250) on an Illumina
platform by Guangzhou Genedenovo Biotechnology Co., Ltd.
(Guangzhou, China). The raw data were deposited in NCBI
(Accession number: PRJNA731978 for 16S, PRJNA731989 for
ITS).

Raw data were processed as follows: briefly, reads containing
more than 10% of unknown nucleotides and containing less
than 50% of bases with quality (Q-value) > 20 were removed
using FASTP (V 0.18.01). Paired-end clean reads were merged
as raw tags using FLSAH (V 1.2.112) with a minimum overlap
of 10 bp and mismatch error rates of 2%. The unique tag
sequence was selected using Mothur (v1.39.13). Chimeras were
removed using UCHIME algorithm in USEARCH4. Sequences
were then assigned to operational taxonomic unit (OTUs) at a
97% similarity threshold (Ding et al., 2020a; Ding and Wang,
2021; Jin et al., 2022b) using UPARSE (USEARCH v9.2.64,
see Text Footnote 4). The representative OTU sequences were
classified into organisms by a naive Bayesian model using
RDP classifier (version 2.2) based on SILVA database (version
1325) for bacteria or UNITE database (version 8.06) for fungi.
Bioinformatics analysis was done using an online platform7 by
Guangzhou Genedenovo Biotechnology Co., Ltd. (Guangzhou,
China).

Definition of abundant and rare
microbial taxa

The locally abundant and rare OTUs were defined using
abundance thresholds of 0.1 and 0.01% in a sample (Lynch and
Neufeld, 2015), and regionally abundant and rare OTUs were
defined by abundance thresholds of 0.01 and 0.001% across
samples (Mo et al., 2018). The subsequent analyses were done
at five levels: whole, locally abundant, locally rare, regionally
abundant, and regionally rare OTUs. The richness, Simpson
diversity, and Shannon diversity indices were applied to describe
the taxonomic diversity.

Predicted functions of bacteria and
fungi

Tax4Fun and FAPROTAX 1.2.3 were used to predict
bacterial functional profiles (Aßhauer et al., 2015; Louca
et al., 2016). FUNGuild (Guilds_v1.1) was used to ppredicting

1 https://github.com/OpenGene/fastp

2 http://ccb.jhu.edu/software/FLASH/

3 https://www.mothur.org/

4 http://drive5.com/usearch

5 https://www.arb-silva.de/

6 http://unite.ut.ee

7 http://www.omicsmart.com

fungal functional profiles (Nguyen et al., 2016). The “Vegan”
package was applied to calculate the richness, Shannon diversity,
and Simpson diversity of bacterial and fungal functions at
the commonly used level (i.e., Tax4Fun KEGG 2 level and
FUNGuild Guild level) in R v3.5.38.

Multifunctionality and trade-off
intensity

Multifunctionality is a crucial management and ecological
index (Delgado-Baquerizo et al., 2020), and is defined as
the synthesis of different ecosystem properties at a small
scale (Bagousse-Pingueta et al., 2019; Ding and Wang,
2021). Rhizosphere C/N/P-circling multifunctionality (CCMF,
NCMF, and PCMF) was calculated based on rhizosphere
C/N/P-circling functions (Garibotti et al., 2018) in the
Section “Individual rhizosphere functions,” and rhizosphere
multifunctionality was calculated based on all rhizosphere
functions (Bagousse-Pingueta et al., 2019) listed in Section
“Individual rhizosphere functions.” Z-score transformation was
performed to standardize the data of microbial community and
ecosystem functions (Bastida et al., 2016; Bagousse-Pingueta
et al., 2019) using the “standardizeZScore” function (Byrnes
et al., 2014) in R before calculation of multifunctionality (Chen
et al., 2020a). Average approach (the mean of all standardized
functions) is intuitive and easily interpretable and widely used in
the multifunctionality studies (Delgado-Baquerizo et al., 2016,
2017), therefore, average approaches-based multifunctionality
index for each sample were calculated (Shi et al., 2021). Trade-
off intensity was defined as the geometric distance from a point
to a straight line of 1:1 to quantify the trade-off intensity between
two properties of ecosystem (Zhong et al., 2020).

Data analysis

The statistical analysis followed the work flow and methods
in previous studies (Ding et al., 2020a; Ding and Wang,
2021) and in the Supplementary Description of Method. The
Shapiro–Wilk normality test and Levene’s test were used to test
the normality and homoscedasticity of the data, respectively
(Gao et al., 2021). When the data could meet the normality
and homoscedasticity criteria simultaneously, ANOVA and
t-test were used to test the significance of difference among
groups. When the data could not meet, Kruskal–Wallis rank
sum test and Wilcoxon test were used. The ηp2 (partial eta-
squared) statistic was conducted to test the relative influences
of plant identity (S. davidii and Z. mays), system type (sole and
intercropping) and interaction on each individual rhizosphere

8 https://cran.r-project.org/bin/windows/base/old/3.5.3/R-3.5.3-win.
exe
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functions in IBM SPSS (version 25, IBM, Armonk, NY,
United States). Principal component analysis (PCA) (Merino-
Martín et al., 2021) was used to determine which functions are
the main ecosystem functions in the rhizosphere. The ANOSIM
(Analysis of Similarities) test with 9,999 permutations was used
to determine significant differences in rhizosphere ecosystem
functions between plant species (S. davidii and Z. mays),
system type (sole and intercropping) and among groups (MZ,
IZ, MS, and IS) and in species/functions among groups
for each subcommunity. Correlation relationships among
individual rhizosphere ecosystem functions were visualized
based Spearman using “igraph” package (Csardi and Nepusz,
2006). To retain the number of edges, vertices, and positive
edges of microbial association networks, robust correlations
were built based absolute value of Pearson correlation’s r > 0.8
and false discovery rate-corrected p < 0.001 using “WGCNA”
and “igraph” packages in R. Gephi 0.9.29 were applied to
visualize the networks.

Non-metric multidimensional scaling (NMDS) (Jiao et al.,
2017; Khashi u Rahman et al., 2021) was applied to simplify
samples or OUTs in high-dimensional to low-dimensional space
for location using the “metaMDS” function based on the Bray–
Curtis distance (He et al., 2021). Linear discriminant analysis
(LDA) effect size (LEfSe) was run to determine the significantly
enriched clades (LDA scores ≥ 2 and p < 0.05).

According to the definition of the selection effect
(Mensah et al., 2020), we used Spearman rank correlations
(Zheng et al., 2019) to select the species, functions, and
diversity of the whole community, and abundant and rare
subcommunities that were significantly related to C/N/P-
circling multifunctionality (CCMF, NCMF, and PCMF), average
ecosystem multifunctionality (AEMF), and aboveground net
primary productivity (ANPP), respectively. We used Kruskal–
Wallis rank sum test to select the species, functions, and
diversity of the whole, abundant, and rare subcommunities that
significantly changed among groups. We then calculated the
intersection of species/functions/diversities that significantly
changed and were significantly related to the above ecosystem
functions. To decipher how microbes link multifunctionality
(Delgado-Baquerizo et al., 2017), the Mantel test (Ding
et al., 2020a) with 9,999 permutations was performed to
detect the correlation between the intersection and above
ecosystem functions, based on the Spearman method and
Euclidean distance matrix. The greater the correlation of
the Mantel test, the greater the potential impact intensity of
species/functions/diversities on the above ecosystem functions
(Jiao et al., 2017; Mo et al., 2018; Zheng et al., 2019; Zhou et al.,
2019b; Xiong et al., 2020; Xue et al., 2020; Ding and Wang,
2021). The “ggplot2” (Wickham, 2016) and “circlize” (Gu, 2014)
packages were used to visualize the results.

9 https://gephi.org/

Results

Intercropping altered individual
functions, multifunctionality,
aboveground net primary productivity,
and trade-offs

Compared with S. davidii, regardless of system type, the
remarkably higher rhizosphere OC of Z. mays was observed
(71% higher under monoculture, t-test p < 0.05; 40% higher
under intercropping, t-test p < 0.05, Figure 1A). Compared

FIGURE 1

Intercropping altered multiple rhizosphere functions. “ns,”
p > 0.05; “*,” p < 0.05; “**,” p < 0.01; “***,” p < 0.001; MZ,
monoculture Zea mays; IZ, intercropping Zea mays; MS,
monoculture Sophora davidii; IZ, intercropping Sophora davidii.
(A) Intercropping altered the organic carbon (OC), (B)
intercropping altered the microbial biomass carbon content
(MBC), (C) intercropping altered the β-glucosidase activity (βG),
(D) intercropping altered the water content (WC), (E)
intercropping altered the ammoniacal nitrogen content
(NH4_N), (F) intercropping altered the nitrate nitrogen content
(NO3_N), (G) intercropping altered the microbial biomass
nitrogen content (MBN), (H) intercropping altered the
N-cetylglucosaminidase activity (NAG), (I) intercropping altered
Nitrogenase activity, (J) intercropping altered the Leucine
aminopeptidase activity (LAP), (K) intercropping altered the
Nitric oxide synthetase activity (NOS), (L) intercropping altered
the Glutamine synthetase activity (GS), (M) intercropping altered
the total phosphorus content (TP), (N) intercropping altered the
available phosphorus content (AP), and (O) intercropping altered
the acid phosphatase activity (ACP).
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with monoculture, intercropped Z. mays did not significantly
change OC, intercropped S. davidii significantly elevated OC
by 33% (t-test p < 0.05). Regardless of system type, statistical
difference was not observed in MBC between Z. mays and
S. davidii (t-test p > 0.05), (Figure 1B). Compared with under
sole S. davidii, MBC under intercropping has increasing trend
(by 14%, t-test p > 0.05), but MBC under intercropped Z. mays
significantly decreased by 17% (t-test p < 0.05). Compared with
monoculture, intercropped Z. mays did not significantly change
the βG activity in rhizosphere (t-test p > 0.05, Figure 1C), but
intercropped S. davidii increased the βG activity by 20% (t-
test p < 0.05), therefore, despite statistical difference was not
found in the βG activity between sole Z. mays and S. davidii
(t-test p > 0.05), the βG activity under intercropped S. davidii
was higher 23% than under intercropped Z. mays (t-test
p < 0.05). WC was higher under sole S. davidii than under
sole Z. mays by 22% (t-test p < 0.05, Figure 1D). Compared
with monoculture, intercropped Z. mays decreased WC by
14% (t-test p < 0.05), intercropped S. davidii increased WC
by 9% (t-test p < 0.05), resulting in insignificant difference
in WC between intercropped S. davidii and Z. mays (t-test
p > 0.05). NH4_N was higher under sole Z. mays than under
sole S. davidii by 189% (Wilcoxon test p < 0.05, Figure 1E),
NO3_N was higher under sole S. davidii than under sole
Z. mays by 53% (t-test p < 0.05, Figure 1F), statistical difference
was not detected between two plants, and between sole and
intercropping (t-test p > 0.05). MBN was lower under sole
S. davidii than under sole Z. mays by 49% (t-test p < 0.05,
Figure 1G), but NAG, Nitrogenase, NOS, and GS under sole
S. davidii were higher than under sole Z. mays by 36, 26, 34,
and 33%, respectively (t-test p < 0.05, Figures 1H,I,K,L), the
LAP activity under sole S. davidii were higher than under sole
Z. mays by 12% (t-test p > 0.05, Figure 1J). Compared with
monoculture, intercropped Z. mays decreased MBN by 47% (t-
test p > 0.05), but increased NAG, LAP, and NOS by 40, 18,
and 23%, respectively (t-test p < 0.05). Intercropped S. davidii
increased MBN by 65% (t-test p > 0.05). MBN, Nitrogenase,
NOS, and GS under intercropped S. davidii were higher than
under intercropped Z. mays by 59, 21, 16, and 30%, respectively
(t-test p < 0.05). TP and AP under sole Z. mays were higher
than under sole S. davidii by 50 and 163%, respectively (t-
test p < 0.05, Figures 1M,N). Intercropped Z. mays did not
significantly change TP, AP, and ACP, in comparison to sole
Z. mays (t-test p< 0.05, Figures 1M–O), intercropped S. davidii
increased TP and AP in comparison to sole S. davidii (t-
test p < 0.05), and statistical difference was not found in TP
between intercropped S. davidii and Z. mays (t-test p > 0.05).
AP under intercropped Sophora davidii was lower than under
intercropped Z. mays (t-test p < 0.05), ACP under intercropped
S. davidii was higher than under intercropped Z. mays (t-
test p < 0.05). Statistical differences were not observed in
IN and pH among group (Supplementary Figure 1, t-test
p > 0.05).

The ηp2 statistic showed that plant species was the main
factor that impacted the OC, βG, NH4_N, NO3_N, Nitrogenase,
NOS, GS, TP, AP, ACP, WC, and ANPP, and system type
was the main factor that impacted the LAP, the interaction
between plant species and system type was the main factor
that impacted the MBC, MBN, and NAG (Supplementary
Table 1). PCA showed that sampling points were well separated
between plant species (ANOSIM r = 0.41, p = 0.046) and among
groups (ANOSIM r = 0.38, p < 0.001), but sampling points
were not separated between system type (ANOSIM r = 0.01,
p = 0.352), indicating that plant species was the main factor
that impacted the rhizosphere functions (Figure 2A). The main
contributors to these separations were WC, MBN, AP, and
MBC. The sole and intercropped Z. mays had higher WC,
TP, AP, and OC, the sole and intercropped S. davidii had
higher NO3_N, Nitrogenase, NOS, and GS. Correlation network
analysis showed that intercropping increased the complexity
of functional relationships and the frequency of functional
synergy, while decreased the frequency of functional trade-
off compared to monoculture (Figures 2B–E). The trade-off
analysis showed that the intensity of ecosystem function trade-
off was highly variable when low number of paired functions
was included, but tends to be stable as the number of included
paired functions increased, indicated that it is necessary to
consider sufficient number of function pairs when evaluating
the strength of function trade-offs (Figures 3A–D). Wilcoxon
test showed that intercropped Z. mays significantly decreased
the trade-off intensity compared to sole Z. mays, trade-
off intensity under intercropped S. davidii was significantly
higher than under intercropped Z. mays (Figures 3E–H).
Multifunctionality analysis showed intercropping significantly
increased the CCMF, and PCMF and AEMF (p = 0.032, 0.0079,
and 0.0079) of the S. davidii rhizosphere; however, it did
not change the NCMF and ANPP of S. davidii (Wilcoxon
test, p = 0.056 – 0.22, Figure 4). Additionally, intercropping
significantly decreased the ANPP of Z. mays (Wilcoxon test,
p = 0.008), but did not alter the CCMF, NCMF, and PCMF and
AEMF of Z. mays rhizosphere (Wilcoxon test, p = 0.15 – 0.84,
Figure 4).

Intercropping shifted the diversity of
rhizosphere microbes

The average Good coverage for all samples was >98.7%,
suggesting that the sampling was adequate (Jin et al.,
2022a). Intercropping made whole bacterial richness, whole
bacterial Shannon diversity, locally abundant bacterial Simpson
diversity, regionally rare bacterial richness, regionally rare
bacterial Shannon diversity, regionally abundant fungal richness
evidently distinct between two plants (ANOVA p < 0.05),
made no differences between two plants for locally rare fungal
richness, and whole fungal richness (ANOVA p > 0.05)
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FIGURE 2

(A) Principal component analysis of multiple rhizosphere functions and in the different groups, showing overall intuitive distribution of multiple
functions and aboveground net primary productivity, and the contribution of each function to this distribution. (B–E) Relationships among
individual rhizosphere functions and aboveground net primary productivity (ANPP). MZ, monoculture Zea mays; IZ, intercropping Zea mays; MS,
monoculture Sophora davidii; IZ, intercropping Sophora davidii.

compared to monoculture. Intercropping increased the whole
bacterial richness and Shannon diversity of the Z. mays
rhizosphere but decreased the whole bacterial Shannon
diversity, whole fungal Shannon and Simpson diversity, locally
abundant fungal richness and Simpson diversity, and regionally
abundant fungal Shannon and Simpson diversity of the Z. mays
rhizosphere. Intercropping decreased the whole fungal Shannon
diversity, locally abundant fungal richness, and regionally
abundant fungal richness and Shannon diversity of S. davidii

rhizosphere (ANOVA p < 0.05, Supplementary Table 2).
Intercropping made no differences between two plants for
locally abundant fungal FUNGuild functional richness and
regionally rare fungal FUNGuild functional Simpson diversity
(ANOVA p > 0.05). Intercropping increased regionally rare
fungal FUNGuild functional Shannon and Simpson diversity
of Z. mays rhizosphere; however, intercropping decreased
whole fungal FUNGuild functional Shannon diversity and
whole bacterial Tax4Fun functional Shannon and Simpson
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FIGURE 3

(A–D) Boxplots indicating that the trade-off intensity of
functions changed with the number of paired functions.
(E–H) Difference of the trade-off intensity between groups at
the number of paired functions (Wilcoxon test at α = 0.05). MZ,
monoculture Zea mays; IZ, intercropping Zea mays; MS,
monoculture Sophora davidii; IZ, intercropping Sophora davidii.

diversity of the Z. mays rhizosphere, increased regionally
rare fungal FUNGuild functional Simpson diversity of the
S. davidii rhizosphere. Intercropping also decreased whole
bacterial FAPROTAX functional Simpson diversity (ANOVA
p < 0.05, Supplementary Table 2).

Intercropping shifted the taxonomic
and functional composition of
rhizosphere microbes

The NMDS and ANOSIM test showed bacterial species,
fungal species, and fungal functions significantly differed
among groups in each subcommunity (p < 0.01, Figure 5),
and bacterial functions significantly differed among groups
in each subcommunity (p < 0.05), except for the locally
abundant species subcommunity. LEfSe analysis showed that,

FIGURE 4

Intercropping altered rhizosphere C, N, P circling
multifunctionality (CCMF, NCMF, and PCMF), average
rhizosphere ecosystem multifunctionality (AEMF) and
aboveground net primary productivity (ANPP). “ns,” p > 0.05; “*,”
p < 0.05; “**,” p < 0.01; MZ, monoculture Zea mays; IZ,
intercropping Zea mays; MS, monoculture Sophora davidii; IZ,
intercropping Sophora davidii.

in the Z. mays rhizosphere, four bacterial clades and 36
fungal phylotypes were evidently enriched under monoculture
(p < 0.05, Supplementary Figures 3A,B), and 18 bacterial
phylotypes and one fungal phylotype were evidently enriched
under intercropping. In the S. davidii rhizosphere, 10 bacterial
phylotypes and nine fungal phylotypes were evidently enriched
under monoculture, and five bacterial phylotypes and four
fungal phylotypes were evidently enriched under intercropping
(p < 0.05, Supplementary Figures 3C,D). Across groups, one
bacterial phylotype and two fungal phylotypes were evidently
enriched in the S. davidii rhizosphere under monoculture, six
bacterial phylotypes and one fungal phylotype were evidently
enriched in the S. davidii rhizosphere under intercropping, two
bacterial phylotypes and 13 fungal phylotypes were evidently
enriched in the Z. mays rhizosphere under monoculture, and
one bacterial phylotype and no fungal phylotype were evidently
enriched in the Z. mays rhizosphere under intercropping
(p < 0.05). We also examined any significant changes in species
or function among groups using the Kruskal–Wallis rank sum
test. A total of 1,383 bacterial species, 34 bacterial functions,
314 fungal species, and 16 fungal functions with significant
changes were detected (p< 0.05), 0–50.0% of which were locally
abundant species, 30.6–50.0% were locally rare species, 4.9–
68.8% were regionally abundant species, and 8.3–29.4% were
regionally rare species.

The networks of the rare subcommunity and whole
community have higher complexity than that of the abundant
(Supplementary Figures 4, 5). For Z. mays, intercropping
increased the number of edges, vertices, and positive edges
of whole, locally rare, regionally rare bacteria networks, but
decreased those of locally abundant bacteria networks, and
for S. davidii, intercropping decreased those of whole, locally
abundant, locally rare, regionally rare bacteria networks. This
indicated that the effect of intercropping on the network
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FIGURE 5

Non-metric multidimensional scaling (NMDS) ordinations based on Bray–Curtis distance matrices of taxonomy (A,B) and functions (C,D) of
bacterial (A,C) and fungal (B,D) subcommunities for all samples (n = 20). A stress <0.1 indicated that the result of NMDS is reliable. ANPP,
aboveground net primary productivity; MZ, monoculture Zea mays; IZ, intercropping Zea mays; MS, monoculture Sophora davidii; IZ,
intercropping Sophora davidii. R and p were reported by ANOSIM.

of bacterial subcommunity was regulated by plant species.
However, consistent decline in the edges, vertices, and positive
edges by intercropping were observed in most of fungal
subcommunity, regardless of plant species (Table 1). These
results indicated that intercropping increased the complexity
and positive links of rare bacteria in Z. mays rhizosphere, but
decreased the complexity and positive links of rare in S. davidii
rhizosphere, and the complexity and positive links of fungi in
both intercropped plants rhizosphere.

Rhizosphere rare taxa were related to
rhizosphere soil functions and
aboveground net primary productivity,
and changed trade-offs

The Spearman correlation analysis showed different
species, functions or diversity indices were significantly

related to CCMF, NCMF, and PCMF, AEMF, and ANPP
(p < 0.05), respectively. Mantel test and Hierarchical cluster
analysis showed three clusters of factors that can impact the
system functions (Figure 6). A higher r indicates a stronger
relationship. Significant changes in species of locally rare
bacteria (Mantel r = 0.8185, p = 0.0001) had a stronger
relationship with ANPP than others did (Mantel r = 0.2107 –
0.8024, p = 0.0001–0.0228, Figure 6). Significant changes in
species of locally rare fungus (Mantel r = 0.5069, p = 0.0001)
had a stronger relationship with PCMF than others did (Mantel
r = −0.0127 – 0.4767, p = 0.0001 – 1). Significant changes in
species of locally rare bacteria (Mantel r = 0.5340, p = 0.0001)
had a stronger relationship with NCMF than others did (Mantel
r = 0 – 0.5118, p = 0.0001 – 1). Significant changes in species
of locally rare fungus (Mantel r = 0.3295, p = 0.009) had a
stronger relationship with CCMF than others did (Mantel
r = −0.0800 – 0.2890, p = 0.0092 – 1). Significant changes in
species of locally rare fungus (Mantel r = 0.3984, p = 0.0017)
had a stronger relationship with AEMF than others did (Mantel
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TABLE 1 Properties of subcommunity microbial association network in different groups.

Subcommunity Bacteria Fungus

Group Edges Vertices Positive edges Edges Vertices Positive edges

Whole MZ 1211186 6334 1210331 55700 1126 55671

IZ 1291873 6599 1291010 46500 1023 46451

MS 1416159 6711 1416039 40500 952 40495

IS 1059633 6045 1059470 35700 893 35743

Locally abundant MZ 1 2 1 116 36 116

IZ 0 0 0 25 16 25

MS 5 7 5 28 19 28

IS 3 3 3 25 15 25

Locally rare MZ 1448544 7004 1448470 56200 1094 56219

IZ 1506957 7256 1506866 52700 1078 52720

MS 1674575 7396 1674539 47500 975 47516

IS 1296898 6763 1294708 43700 957 43699

Regionally abundant MZ 0 0 0 13 14 13

IZ 0 0 0 13 8 13

MS 0 0 0 2 4 2

IS 1 2 0 3 3 3

Regionally rare MZ 899325 4219 899325 19100 533 19118

IZ 1030793 4473 1030793 17800 481 17823

MS 1041628 4376 1041628 12400 418 12400

IS 796753 3844 795265 11400 419 11400

MZ, monoculture Zea mays; IZ, intercropping Zea mays; MS, monoculture Sophora davidii; IS, intercropping Sophora davidii.

r = 0.0079 – 0.2604, p = 0.0151 – 1). Significant changes in
species of locally rare bacteria (Mantel r = 0.6026, p = 0.0001)
had a stronger relationship with trade-offs intensity (Mantel
r = 0.1983 – 0.5962, p = 0.0001 – 1). The significant changes in
rhizosphere species and functions had a stronger relationship
with CCMF (Mantel r = 0.2776 vs. 0, Kruskal–Wallis rank sum
test p = 0.0277), NCMF (Mantel r = 0.3478 vs. 0.3285, Kruskal–
Wallis rank sum test p = 0.9199), PCMF (Mantel r = 0.4325 vs.
0, Kruskal–Wallis rank sum test p = 0.0119), AEMF (Mantel
r = 0.2786 vs. 0, Kruskal–Wallis rank sum test p = 0.0277),
ANPP (Mantel r = 0.5074 vs. 0.2904, Kruskal–Wallis rank sum
test p = 0.0365), and trade-offs (Mantel r = 0.3931 vs. 0.2084,
Kruskal–Wallis rank sum test p = 0.0036) than the significantly
diversity indices.

Discussion

The selection effect was stronger than
the complementary effect on multiple
functions

In agreement with findings from macroecology (Karolína
et al., 2014; Baldrighi et al., 2017; Fanin et al., 2017;

Bagousse-Pingueta et al., 2019) and bulk soils (Bastida et al.,
2016; Delgado-Baquerizo et al., 2016; Mori et al., 2016), the
diversities of the microbes in the rhizosphere played an essential
role in driving multiple functions (Supplementary Table 3).
This indicated that maintaining functioning needs protection
and use of rhizosphere microbial diversity. Furthermore, the
positive effects dominated CCMF, but the negative effects
dominated AEMF. The positive and negative effects on NCMF
and ANPP were detected. The negative effects (negative
correlation, 15/17) were more frequent than the positive effects
(positive correlation, 2/17) in driving NCMF (Supplementary
Table 3), indicating that the negative effects dominated the
NCMF. However, the positive effects (positive correlation,
8/9) were more frequent than the negative effects (negative
correlation, 1/9) in driving ANPP (Supplementary Table 3),
suggested that the positive effects dominated ANPP.

Here, we showed for the first time that (Figure 5) the
significant changes in rhizosphere species and functions had
a stronger relationship with CCMF, NCMF, PCMF, AEMF,
ANPP, and trade-offs than the significantly diversity indices,
indicating that the selection effect played a chief role in
driving multiple functions. This finding was different from the
findings of studies in the macroecology (Tonin et al., 2018;
Woodcock et al., 2019; Chun et al., 2020) and bulk soils
(Wen et al., 2020), which indicated that the complementarity
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FIGURE 6

Heatmap showing the intensity of the selected species (or functions) or the diversity indices impacting rhizosphere functions and aboveground
net primary productivity (ANPP). The intensity was indicated by r of Mantel test. The selected species (or functions) were the intersection of
species or functions that significantly differed among the groups (MZ, IZ, MS, and IS) and were significantly correlated with system function
(C/N/P-circling multifunctionality, AEMF, and ANPP, respectively). Only the significant intensity was showed. Hierarchical cluster analysis
showed the clusters of factors. CCMF, carbon-circling multifunctionality; NCMF, nitrogen-circling multifunctionality; PCMF,
phosphorus-circling multifunctionality; AEMF, average ecosystem multifunctionality.

effect played a chief role in driving multiple functions whereas
the selection effect had a limited role (Emily et al., 2018; Li
et al., 2020a). This inconsistency indicated that the selection
effect in the rhizosphere could not be ignored and might
be a novel way to regulate productivity. Our result could be
explained by the following potential causes: (1) The rhizosphere
community was under strong selective pressure for special
microbes (Poole et al., 2018) based on crucial functions

associated with the metabolism of N and P, which are associated
with plant growth promotion and nutrition (Mendes et al.,
2014), therefore, plant productivity relied on the microbiome
for the uptake of nutrients (Chen et al., 2020b). (2) The
rhizosphere microbes mediated the root exudation (Korenblum
et al., 2020), changed the nutrient supply and absorption of
plants and rhizosphere NCMF. In turn, rhizosphere NCMF
negatively modulated plant productivity (Spearman r = −0.70,
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p < 0.001, Supplementary Figure 2). Collectively, the strong
selectivity of plants to rhizosphere microorganisms (Philippot
et al., 2013) determined which microorganisms or functions
appear; therefore, the multiple functions of the rhizosphere
and ANPP were more dependent on the selection effect than
the complementary effect, indicating that community assembly
processes might determine the diversity and composition of
community, and it was the result of these processes that
determined how selection and complementary effects occur
(Leibold et al., 2017). Therefore, our study provided new insight
into the rhizosphere that differ from bulk soils.

Rare rhizosphere taxa might contribute
over proportionately to multiple
functions

Consistent with our previous findings from bulk soils
(Ding and Wang, 2021), distinct microbes (bacteria or fungi)
dominated the given functions. In this study, fungi likely
dominated the CCMF and PCMF, bacteria likely dominated
the NCMF and ANPP (Figure 6). This might be due to
bacteria and fungus had different metabolic niches (Ding and
Wang, 2021). For instance, fungus rather than most bacteria
could secrete lignin-degrading enzymes (Ding et al., 2020a),
enhanced rhizodeposition, and suppressed the organic matter
degradation (Zhou et al., 2020a). Fungi dominated P uptake
in symbiotic plants (Wang et al., 2020a; Jiang et al., 2021).
The denitrification, mineralization, and assimilation of N were
mainly driven by bacteria (Starke et al., 2016; Li et al., 2019;
Ding and Wang, 2021). N is the major nutrient limiting plant
growth (Moreau et al., 2019; Wang et al., 2020a), thus, if bacteria
dominated the NCMF, bacteria were expected to dominate
ANPP (Figure 6). Furthermore, this was the first study to report
on locally rare bacteria and fungi were overlooked keystone
taxa shaping ecosystem functions and trade-offs. These findings
supported established results (Radchuk et al., 2016; Jousset
et al., 2017; Dee et al., 2019; Zhang et al., 2019; Chen et al.,
2020a).

Rare taxa could act as keystone species through several
mechanisms. We grouped the potential mechanisms accounting
for the greater contribution of the rare species to ecosystem
functions into three pathways that may operate simultaneously:
(1) Rare species occupied the majority of species in ecosystems
(Jain et al., 2014; Lynch and Neufeld, 2015; Jousset et al.,
2017; Zhang et al., 2019; Guo et al., 2020) and had extremely
high diversity (Mo et al., 2018). Rare taxa had more stronger
impact on the multifaceted diversity of the community than
abundant taxa (Zhou et al., 2019a). In this study, the species
richness of locally rare bacteria was 433- to 677-fold that of
locally abundant bacteria, the species richness of regionally
rare bacteria was six–seven fold that of regionally abundant
bacteria, the species richness of locally rare fungus was 20- to

52-fold that of locally abundant fungus, the species richness of
regionally rare bacteria was 1.2- to 1.8- fold that of regionally
abundant fungus (Supplementary Table 2). On the one hand,
rare species provided insurance effects (Jousset et al., 2017;
Chen et al., 2020a) as implied by the insurance hypothesis
(Jiao et al., 2017), and recruitment from the persistent rare
microbial seed bank provided a broad reservoir of ecological
function (Lynch and Neufeld, 2015). On the other hand, most
distinct traits combinations were supported predominantly
by rare species (David et al., 2013). Similar observations
were detected in our study. Both locally and regionally, the
function richness of rare bacteria and fungus occupied 57–
100% of that of whole bacteria and fungus (Supplementary
Table 2). According to the hypothesis of complementary and
selection hypotheses (Mensah et al., 2020), high diversity
elevated the chance of rare taxa to contributing to ecosystem
functionality; in this sense, rare species had the potential to
change an ecosystem’s multifunctionality via the enhancement
of biodiversity (Angelini et al., 2015; Jousset et al., 2017).
(2) Many studies had supported that “being different” was
crucial for the influence of rare taxa/. In plant communities,
rare species had a higher effect on ecosystem functioning
because the of the rare taxa individual mass is higher than
that of the abundant taxa (Radchuk et al., 2016). Similar effects
had been observed in decomposition systems (Guo et al.,
2020) and microbial system (Wei et al., 2019). Essentially,
microbes changed system functions through their metabolic
functions (Ding and Wang, 2021). In this study, there were
obvious differences in functions (Figures 5C,D) and functional
diversity (Supplementary Table 2) of the rare versus abundant
species, suggested that rare species had the potential to act
significant roles in ecosystem functioning via providing different
functions. (3) Affecting the interactions. The effect of some
taxa on ecosystem functions were not independent from
their interactions with other taxa (Wagg et al., 2019). The
disappearance of rare caused an obvious or bad alteration in
the composition or function of the community (Nannipieri
et al., 2020). In contrast, the occurrence of rare could have
a good effect on the community (Xue et al., 2020). They
could create circumstances that supported the co-occurrence
of high densities of different functional organisms, thereby,
enhancing MF (Angelini et al., 2015). Rare microbes could
also heighten the role of abundant microbes (Jousset et al.,
2017). Rare dissimilated low content compounds into materials
needed by other microbes or synthesized effective bioactive
compounds (Harrison et al., 2021). The rare could reshape
rhizosphere community, thereby promote crop growth (Li
et al., 2020b). Rare taxa could affect species interactions (Xue
et al., 2020). In this study, rare contributed more to the
microbe’s positive interaction than abundant (Table 1 and
Supplementary Figures 4, 5). Higher frequent facilitations than
competitions possibly yielded the complementarity effects (Ding
and Wang, 2021). Therefore, rare contributed to ecosystem
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functions through species interactions (Jousset et al., 2017;
Dee et al., 2019). Since rare species are most vulnerable to
be lost (Dee et al., 2019) and are largely unexplored, we
ascribed great importance to the rare species and suggested
to optimize their taxa for maintaining a high ecosystem
functionality.

Rare rhizosphere taxa might contribute
to trade-offs of multiple functions

Monoculture had higher ANPP than intercropping, this
implied that monoculture brought higher benefits than
intercropping, which was consistent with the recent findings
in tropics (Grass et al., 2020). However, intercropping also
shifted the ANPP-CCMF relationship from being none to
being positive for Z. mays (Figures 2B,C), shifted the ANPP-
NCMF relationship from being negative to being positive for
S. davidii (Figures 2D,E). Intercropping decreased the trade-
offs intensity compared to sole for Z. mays (Figure 3E).
MF and yields were not always synergistic (Supplementary
Figure 2), confirming recent findings (Garland et al., 2021).
Our study also suggested, for the first time, that the locally
rare bacteria species were most strongly related to the trade-
offs of multiple functions, and indicated that the trade-offs
would likely be reduced by optimizing the taxa of locally rare
bacteria.

Conclusion

This study investigated the rhizosphere abundant
and rare bacteria and fungi, rhizosphere C/N/P-cycling
multifunctionality, ecosystem multifunctionality, aboveground
net primary productivity and trade-offs in the Z. mays
and S. davidii sole and Z. mays/S. davidii intercropping
ecosystems. Results demonstrated that intercropping altered
multiple ecosystem functions individually and simultaneously.
Intercropped Z. mays significantly decreased the trade-off
intensity compared to sole Z. mays, the trade-off intensity
under intercropped S. davidii was significantly higher than
under intercropped Z. mays. Moreover, both rhizosphere
abundant and rare could predict and might affect rhizosphere
elements circling, multifunctionality, aboveground productivity
and trade-offs, whereas, the significant changes in species of
locally rare microbes were the best predictor of rhizosphere
elements circling, multifunctionality, aboveground productivity
and trade-offs. We thus ascribe great importance to the
rare species. Indeed, our results may help in driving a
high functionality by directing future efforts on collection,
conservation and manipulation of rhizosphere rare species.
Further research with more ecosystems and operation of
rare microbe combinations will facilitate to maintain a

higher ecosystem function and a better understanding of
cause-and-effect mechanisms.
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