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The fermentation of Qu (FQ) could efficiently produce enzymatically modified

starch at a low cost. However, it is poorly understood that how FQ influences

the waxy maize starch (WMS) structure and the digestion behavior. In this

study, WMS was fermented by Qu at different time and starches were

isolated at each time point, and its physico-chemical properties and structural

parameters were determined. Results showed that the resistant starch (RS),

amylose content (AC), the average particle size [D(4,3)] the ratio of peaks

at 1,022/995 cm−1, and the onset temperature of gelatinization (To) were

increased significantly after 36 h. Conversely, the crystallinity, the values of

peak viscosity (PV), breakdown (BD), gelatinization enthalpy (1H), and the

phase transition temperature range (1T) were declined significantly after 36 h.

It is noteworthy that smaller starch granules were appeared at 36 h, with

wrinkles on the surface, and the particle size distribution was also changed

from one sharp peak to bimodal. We suggested that the formation of smaller

rearranged starch granules was the main reason for the pronounced increase

of RS during the FQ process.
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Introduction

Starch is a primary energy source in the daily diets of humans (Meng et al., 2020).
According to the enzymatic hydrolysis rate in vitro, starch can be classified as rapidly
digested starch (RDS) (digested within 20 min), slowly digested starch (SDS) (digested
between 20 and 120 min), and resistant starch (RS) (not digested within 120 min)
(Englyst et al., 1992). This digestion pattern exists in both animals and humans, where
RDS and SDS digestions are localized to the small intestine, but RS can only be fermented
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into short-chain fatty acids in the large intestine (Duyen
et al., 2020). The in vivo clinical experiments indicate that the
digestion rate of starch in the human body is closely related to
the postprandial blood glucose response. Starch with high RDS
will cause the human body to be in a state of hyperglycemia
for a long time and induce the occurrence of chronic diseases,
such as type II diabetes, obesity, and cardiovascular diseases (Lal
et al., 2021a). Starch that is abundant with SDS can effectively
postpone the increment of blood glucose and reduce chronic
diseases. The short-chain fatty acids derived from RS ferment
can effectively prevent the occurrence of colon cancer (He et al.,
2021). Therefore, improving the content of SDS and RS in starch
is of great significance for human nutrition and health.

There are many methods to modify the digestibility of
starch, such as physical, chemical, and enzymatic methods.
The physical methods change the multi-scale structure of
starch through hydrothermal treatment, high temperature, or
high pressure, which causes the rearrangement of the starch
structure and reduces the digestibility of starch (Lal et al.,
2021b). However, target-guided physical modification of starch
is difficult since the multi-scale structure is hard to control,
and thus, the production efficiency is relatively low. Chemical
modification methods mitigate the digestibility of starch by
reducing the specific binding between amylase and starch or
changing the structure of starch by introducing new functional
groups, such as oxidation, esterification, and etherification
(Wolf et al., 1999). However, these inserted functional groups
may bring potential food safety risks. The enzyme method
is also reported to be an efficient way to produce modified
starch because substrates can specifically combine with active
sites of enzymes (Dura et al., 2014). Given that enzyme types,
doses, or digestion times diversify, the starch structure can be
differentially modified to some extent. Under the action of 1%
isoamylase for 24 h, the content of RS was increased from 0.4
to 67.7% and 4.3 to 68% in waxy wheat and corn, respectively
(Cai and Shi, 2010). The RS content of red kidney bean starch
was increased from 21.3 to 31.5% by using pullulanase for
10 h (Reddy et al., 2013). However, the high cost of enzymatic
modification limits its large-scale production.

Since ancient times in China, Qu has been widely used
to produce wine at a low cost (Chen and Xu, 2013). Wine
production by the fermentation of Qu (FQ) is a process in which
a large number of glucoamylases and amylases are produced,
and starches are degraded into glucose (Zhang et al., 2016).
Then, yeast hydrolyzes glucose into alcohol and carbon dioxide
during the anaerobic fermentation process (Mo et al., 2010).
In this process, amylase only acts on α-1,4 glycosidic bonds,
whereas glucoamylase not only acts on α-1,6 glycosidic bonds
but also attacks on α-1,4 glycosidic bonds (Keeratiburana et al.,
2020). There are also a large number of residues after the process
of brewing, named vinasse, which is rich in starches. Studies
have shown that the content of SDS in glutinous rice vinasse
increased significantly after fermentation (Zhang et al., 2016),

and the digestibility of different types of rice varies during
fermentation, which may be related to their own structure (Situ
et al., 2019). Therefore, the process of FQ can effectively change
the structure of starch at a low cost.

Waxy maize is rich in nutrients, such as amino acids,
protein, and vitamins, which are healthful for humans (Gong
et al., 2018), and it is mainly used as fresh-eating maize
(Ketthaisong et al., 2014). In addition, waxy maize is considered
as a better material for the brewing of wine because of its higher
ethanol conversion efficiency (Yangcheng et al., 2013). However,
there is little knowledge on the starches in waxy maize vinasse,
which limited the application of these starches. Therefore, we
hypothesize that the FQ affected the digestibility and structures
of waxy maize starch (WMS). To gain a broad insight into the
consequences of FQ on WMS, we focused on the waxy maize
for different fermentation times and explored the change of
digestibility and structures of WMS at each time point.

Materials and methods

Materials

Waxy maize starch (WMS, Shan Bainuo192) was obtained
from Maize Genetic Breeding Laboratory at Northwest A&F
University in China. Pancreatin (Cat. No. P7545, Sigma, St.
Louis, MO, United States) and amyloglucosidase (Cat. No.
A7095, Sigma, St. Louis, MO, United States) were obtained from
Sigma (St. Louis, MO, United States). Qu was purchased from
Angel Yeast Co., Ltd. (Yichang, Hubei Province, China). The
GOPOD Kit was purchased from Megazyme (Bray Business
Park, Bray, Co., Wicklow, Ireland). All other chemical reagents
were analytical grade.

The fermentation of Qu and starch
isolation

The maize flour (100 g) was mixed evenly with both water
and Qu in a sealed tank. Maize flour, water, and Qu were in
the proportion of 250:75:1 according to the instructions of the
manufacturer, and the suspension was fermented at a 30◦C
constant temperature incubator for 12, 24, 36, 48, and 60 h,
respectively. Maize vinasse at each time point was collected to
extract starch (Zhang et al., 2016).

Starch was isolated according to the previous methods with
some modifications (Lin et al., 2016). Maize vinasse was ground
with water and filtered through a 100 µm sieve into a 50 ml
centrifuge tube. This suspension was centrifuged at 1,500 rpm
and room temperature for 8 min, and the supernatant was
discarded. Sodium hydroxide (0.4%, W/V) was added to the
precipitate and shaken well. This suspension was incubated for
4 h and then centrifuged at 1,500 rpm for 4 min, and the
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TABLE 1 In vitro digestion profiles of starches from native and
fermented starch.

Samples RDS (%) SDS (%) RS (%)

WMS 28.0± 1.1ab 72.0± 1.1a 0.0± 0.0b

WMS-12 29.1± 0.9ab 70.9± 0.9ac 0.0± 0.0b

WMS-24 21.5± 0.3ab 74.3± 2.2a 4.2± 1.9b

WMS-36 33.1± 10.0a 54.59± 6.1bc 12.3± 3.9b

WMS-48 14.4± 5.3b 33.5± 6.0d 52.1± 7.2a

WMS-60 12.4± 3.0b 22.0± 5.6d 65.6± 2.6a

All data are means ± standard deviations (SD). Values with different letters in the same
column are significantly different at p < 0.05. RDS, rapidly digestible starch; SDS, slowly
digestible starch; RS, resistant starch; WMS, native waxy maize starch; WMS-X, waxy
maize starch fermented for X h.

supernatant was discarded. The precipitate was washed three
times with distilled water and centrifuged at 1,500 rpm for
4 min. Finally, the precipitate was washed with ethanol and
centrifuged at 4,000 rpm for 10 min. The precipitate was air-
dried, and then fermented maize starch was obtained.

Amylose content

The measurement of amylose content (AC) was conducted
according to the dual wavelength method (Zhu et al., 2008).
Potassium iodide (KI) (2 g) and iodine (I2) (0.2 g) were
dissolved in 100 ml of deionized water to obtain iodine solution.
Starch (10 mg) was dispersed in 100 µl of ethanol. Sodium
hydroxide solution (1 M, 1 ml) and deionized water (8.9 ml)
were added to the suspension to form Solution A. Then, Solution
A (200 µl), 0.1 M HCl (200 µl), iodine solution (200 µl), and
deionized water (9.4 ml) were mixed evenly. The absorbance
of this solution at 510 and 620 nm was detected by UV
spectrophotometry (Shimadzu, Japan). The AC was calculated
according to the following formula:

Amylose = 0.95 × [(ABS620 − ABS510) + 0.0542]/0.3995

Scanning electron microscopy

The morphology of starch granules was observed by SEM
(S-3400N, Hitachi, Japan) at a voltage of 5 kV. Samples were
sprayed with gold before observation (Song et al., 2019).

Laser diffraction particle size

The particle size distributions of starch granules were
analyzed by Laser diffraction particle size (LDPS) analyzer
(Hydyo2000MU, Mastersizer 2000, United Kingdom) with a
resolution of 0.1–1,000 µm (Song et al., 2019).

X-ray diffraction

Crystal patterns of starch granules were analyzed by X-ray
diffraction (XRD) (D/max2200pc, Rigaku, Japan). The X-ray
beam was set to 40 mA and 40 kV, the diffraction angle range
(2θ) was 3–40◦, and the scanning speed was 4◦/min. The relative
crystallinity (RC) was calculated by MDI JADE 6.0 software
(Song et al., 2019).

Fourier transform infrared
spectroscopy

The short-range ordered structure of starch was determined
by Fourier transform infrared (FTIR) spectroscopy (Nicolet
IS50, Thermo Fisher Scientific, Hudson, United States). The
wavelength range of 800–1,200 cm−1 was applied, and OMNIC
software (Thermo Fisher Scientific, United States) was used
for deconvolution. The peak width was 70.4 cm−1, and the
resolution enhancement factor was 2.0 (Song et al., 2019).

Differential scanning calorimetry

The thermal properties of starch were detected by
differential scanning calorimetry (DSC, Q2000, TA Instruments,
Waters, United States). Starch (3 mg) and deionized water
(9 µl) were mixed evenly in a sealed aluminum container and
incubated overnight to achieve hydration. Moreover, a blank
aluminum container was used as a blank control. The scanning
range was 30–120◦C, and the scanning speed was 10◦C/min.
The onset gelatinization temperature (To), peak temperature
(Tp), conclusion temperature (Tc), and gelatinization enthalpy
(1H) were determined (Song et al., 2019).

Pasting property analysis via rapid
viscosity analysis

The pasting properties of starch were measured by a rapid
viscosity analyzer (RVA-4500, Perten Instruments, Sweden).
Starch (3 g) was dissolved in 25 ml of deionized water. The starch
suspension was first heated at 50◦C for 1 min, heated to 95◦C
for 2.5 min at a rate of 12◦C/min, and finally cooled to 50◦C for
2 min at the same rate. The peak viscosity (PV), trough viscosity
(TV), final viscosity (FV), breakdown (BD), and setback (SB)
values were measured (Song et al., 2019).

In vitro digestibility

The digestibility of starch was evaluated according to the
Englyst method (Englyst et al., 1992) with slight modifications.
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TABLE 2 The amylose content, crystallinity, Fourier transform infrared (FTIR), and particle size of native and fermented starch.

Samples AC (%) RC (%) 1,047/1,022 cm−1 1,022/995 cm−1 D(4,3)

WMS 6.9± 0.2 c 52.5± 2.2a 0.9± 0.0a 0.7± 0.1b 26.0± 0.1d

WMS-12 7.7± 0.8bc 47.7± 2.2a 1.0± 0.3a 0.8± 0.1b 26.6± 0.9d

WMS-24 9.0± 0.9bc 38.8± 1.4b 1.2± 0.0a 0.8± 0.1b 25.0± 0.7d

WMS-36 9.9± 0.1b 33.6± 2.2b 1.2± 0.0a 1.7± 0.5a 28.8± 0.7c

WMS-48 13.0± 1.5a 9.6± 0.5c 1.1± 0.0a 1.4± 0.1a 39.2± 0.1b

WMS-60 14.0± 0.5a 8.0± 0.1c 1.0± 0.0a 1.5± 0.1a 48.0± 1.0a

All data are means ± standard deviation (SD). Values with different letters in the same column are significantly different at p < 0.05. AC, amylose content; RC, relative crystallinity;
1,047/1,022, the ratio of peaks at 1,047/1,022 cm−1 ; 1,022/995, the ratio of peaks at 1,022/995 cm−1 ; D(4,3), mean diameter over the surface distribution. WMS, native waxy maize starch;
WMS-X, waxy maize starch fermented for X h.

The enzyme solution was prepared by mixing 1,160 mg
porcine pancreatin (Cat. No. P7545, Sigma, St. Louis, MO,
United States), 692 µl of amyloglucosidase (Cat. No. A7095,
Sigma, St. Louis, MO, United States), and 6 ml of sodium
acetate buffer (0.1 M, pH = 5.2). Starch (100 mg), sodium
acetate buffer (15 ml), and enzyme solution (2.5 ml) were
shaken well in a 50 ml centrifuge tube. This suspension was
incubated in a shaker at 37◦C at 300 rpm. The 0.1 ml reacted
solution was collected at different time points (0, 10, 20, 30,
40, 60, 90, 120, and 180 min), and the enzyme was inactivated
by adding 1 ml of anhydrous ethanol. This suspension was
centrifuged at 10,000 rpm for 5 min, and the glucose content of
the supernatant was determined by a GOPOD Kit. The contents
of RDS (the starch digested within 0–20 min), SDS (the starch
digested within 20–120 min), and RS (the remaining residue)
were calculated as described before (Zhong et al., 2022).

Statistical analysis

All experiments were conducted with three biological
replicates. The data are expressed as the mean ± standard
deviation (SD). SPSS 22 was used to perform a one-way analysis
of variance (ANOVA) and least significant difference (LSD)
tests (p < 0.05) to determine whether there were significant
differences among the results.

The abbreviation is exemplified as “starch type-fermentation
time.” For instance, “WMS-12” indicates that the WMS was
fermented for 12 h.

Results

Effects of fermentation of Qu on starch
digestion pattern

The content of RDS was almost not changed within 36 h
and significantly decreased after 36 h, the minimum value
(12.4%) was obtained at 60 h. In contrast, the content of RS
was increased during the process of fermentation, and the

predominant increase happened after 36 h, the maximum value
(65.6%) was obtained at 60 h. As for SDS, it did not change
within 24 h and then decreased significantly, and the minimum
value (22.0%) was also obtained at 60 h (Table 1). These results
indicated that the digestibility of WMS was mitigated after FQ.

Effects of fermentation of Qu on
amylose content of starch

The AC of WMS was increased with the increasing
fermentation time, and it significantly increased after 36 h
(Table 2). A possible explanation is that the debranching of
amylopectin under the effects of glucoamylase and the long-
branch chains could be recognized as amylose (Liu et al., 2019).

Effects of fermentation of Qu on the
morphology of starch

The shape of native WMS was irregular polygon, consistent
with previous research results (Chen et al., 2006). During the
fermentation, a number of pores began to appear on the surface
and their number and diameter were increased gradually with
the extension of fermentation time. It is noteworthy that some
starch particles were completely destroyed, and smaller particles
with wrinkles on the surface appeared at 36 h; the number
also increased gradually with the extension of fermentation
time (Figure 1).

Effects of fermentation of Qu on the
particle size distribution of starch

The fermentation did not change the average granular size
(D [4, 3]) of WMS within 24 h and was significantly increased
after 24 h (Table 2). This may be due to the small granules
that were attacked by enzymes preferentially, because it could
provide more effective binding sites for enzymes (Warren et al.,
2011). It is also noteworthy that there appeared two sharp peaks
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FIGURE 1

Scanning electron microscopy images showing the morphology of native starch and fermented starch. WMS, native waxy maize starch
fermented for x h.

at 36 h, the first peak was dropped and transferred toward the
left gradually and the second peak was only increased with
the extension of fermentation time (Figure 2). It means that
the proportion of large granule was increased and the smaller
particles were appeared. This result was also according to the
SEM (Figure 1).

Effects of fermentation of Qu on
crystalline structures of starch

The native WMS had strong diffraction peaks at 15, 17, 18,
and 23◦ (Figure 3), which is a typical A-type crystal structure
(Qiao et al., 2016). Moreover, the fermentation process did
not change the crystal type of starch, consistent with previous

results (Zhang et al., 2016). However, the diffraction peaks
were almost disappeared after 36 h (Figure 3). It means
that the crystal structure of WMS was destroyed severely.
This is also confirmed by the crystallinity data, which were
always decreased during fermentation and the pronouncedly
decreasing happened after 36 h, and the minimum value (8.04%)
was obtained at 60 h (Table 2).

Effects of fermentation of Qu on the
short-range ordered structure of
starch

Compared to native WMS, the FQ did not change the
FTIR spectrum of starch (Figure 4). The peak intensities of
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FIGURE 2

The particle size distribution of native starch and fermented
starch. WMS, native waxy maize starch; WMS-x, waxy maize
starch fermented for x h.

FIGURE 3

X-ray diffraction spectra of native starch and fermented starch.
WMS, native waxy maize starch; WMS-x, waxy maize starch
fermented for x h.

starch at 1,047 and 1,022 cm−1 are representative of the
crystalline and amorphous regions, respectively (Wang et al.,
2016). Therefore, the ratio of peak intensity at 1,047/1,022 cm−1

and 1,022/995 cm−1, respectively, could be used to reflect the

FIGURE 4

Fourier transform infrared spectra of native starch and
fermented starch. WMS, native waxy maize starch; WMS-x, waxy
maize starch fermented for x h.

degree of order in starch and the proportion of amorphous
to order structure of starch (Cai et al., 2014). The ratio of
1,047/1,022 cm−1 was increased within 36 h and then decreased,
and the difference was insignificant (Table 2), which indicated
that the structure of WMS became more order within 36 h.
While the ratio of 1,022/995 cm−1 was increased within 36 h and
then obtained a plateau. It demonstrated that a more amorphous
region appeared at 36 h during fermentation.

Effects of fermentation of Qu on the
thermal properties of starch

The onset gelatinization temperature (To) of starch did
not change within 36 h. However, it increased pronouncedly
after 36 h. The peak gelatinization temperature (Tp) showed
a similar trend, which was increased significantly after 36 h,
and the change within 36 h can be ignored. As for the
conclusion gelatinization temperature (Tc), it was raised within
24 h and then dropped, and the maximum value was obtained
at 24 h. Both the gelatinization enthalpy (1H) and the
transition temperature range (1T) showed a similar trend,

TABLE 3 The thermal properties of native and fermented starch.

Samples To (◦C) Tp (◦C) Tc (◦C) 1 T (◦C) 1 H (J/g)

WMS 65.4± 0.3c 70.1± 0.0c 79.9± 0.7bc 14.4± 0.9bc 7.6± 0.3ab

WMS-12 66.0± 0.6bc 71.0± 0.1b 81.2± 0.0ab 15.2± 0.6abc 9.2± 1.1a

WMS-24 65.8± 0.2c 71.1± 0.3ab 82.2± 0.9a 16.5± 0.7a 9.2± 0.4a

WMS-36 65.2± 0.0c 70.1± 0.0c 81.0± 0.0ab 15.8± 0.0ab 6.5± 0.0b

WMS-48 67.0± 0.4ab 71.9± 0.5a 80.8± 0.2ab 13.8± 0.2c 4.0± 0.4c

WMS-60 67.7± 0.0a 71.9± 0.1a 79.0± 0.1c 11.3± 0.1d 1.5± 0.3d

All data are means ± standard deviation (SD). Values with different letters in the same column are significantly different at p < 0.05. To , the gelatinization onset temperature; Tp ,
the gelatinization peak temperature; Tc , the gelatinization final temperature; 1T, Tc − To; 1H: gelatinization enthalpy; WMS, native waxy maize starch; WMS-X, waxy maize starch
fermented for X h.
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TABLE 4 The pasting properties of native and fermented starch.

Samples PV(cP) TV(cP) BD(cP) FV(cP) SB(cP)

WMS 4539± 3a 1781± 63a 2772± 74a 2458± 9a 677± 71a

WMS-12 4016± 51b 1422± 18b 2594± 69a 2015± 20b 593± 38a

WMS-24 3243± 16c 1308± 27b 1935± 11b 1604± 25c 296± 3b

WMS-36 2042± 173d 873± 49c 1169± 124c 1141± 79d 268± 30b

WMS-48 1458± 4e 748± 2c 710± 2d 1014± 3d 266± 5b

WMS-60 1848± 153d 879± 31c 969± 122cd 1499± 87c 620± 56a

All data are means ± standard deviation (SD). Values with different letters in the same column are significantly different at p < 0.05. PV, peak viscosity; TV, trough viscosity; BD,
breakdown; FV, final viscosity; SB, setback; WMS, native waxy maize starch; WMS-X, waxy maize starch fermented for X h.

which did not change within 36 h and then was decreased
significantly (Table 3).

Effects of fermentation of Qu on
pasting properties of starch

Fermentation of Qu decreased the pasting properties of
WMS. The PV was declined continuously during fermentation,
and it was significantly decreased after 36 h. Both the TV and
BD showed a similar trend with PV, whereas the serious decline
happened after 24 and 36 h, respectively, and then both were
steadied. The changes of both FV and SB values had fluctuated,
and they were always lower than the native starch, and the
minimum values of them were obtained at 48 h (Table 4).

Discussion

Amylase and glucoamylase are mainly produced during the
FQ (Zhang et al., 2016). Amylase randomly hydrolyzes α-1,4
glycosidic bonds, and glucoamylase can not only hydrolyze α-
1,4 glycosidic bonds but also hydrolyze α-1,6 glycosidic bonds
(Keeratiburana et al., 2020). Therefore, the essence of FQ is the
enzymatic hydrolysis of starch by amylase and glucoamylase.

First stage of fermentation of Qu: The
formation of a more perfect starch
structure

The increase of RS of WMS may be due to the structural
changes under the action of enzymes during the FQ. The native
WMS had a typical A-type crystallinity (Figure 3), and shorter
branch chains (Hizukuri, 1985) and its branching points exist
not only in amorphous regions but also in crystalline regions.
Those led to a large number of “weak points” in the crystalline
structure that can be easily hydrolyzed (Jane et al., 1997).

During FQ, the crystal structure was hydrolyzed partly
within 36 h, as shown in the data of XRD, the crystallinity

only decreased from 52.47 to 33.85% (Table 2), and the
pattern of diffraction peaks did not change (Figure 3).
The crystalline region is constituted of amylopectin (Perez
and Bertoft, 2010). It was clear that the de-branching of
long-branch chains of amylopectin could increase the AC
(Liu et al., 2019). Our data showed that the content of
amylose did not increase significantly within 36 h (Table 2),
it demonstrated that the short-chains of amylopectin were
hydrolyzed preferentially, which could lead to a more perfect
structure of starch (Zhu, 2018). Because the short-chains of
amylopectin could lead to form a number of “weak points”
in the crystal structure, thus making it more sensitive to
enzymes (Jane et al., 1997). The increase in the ratio of
1,047/1,022 cm−1 within 36 h also demonstrated this (Table 2;
Zhang et al., 2010).

Amylopectin contributes to water absorption and starch
swelling, while amylose inhibits this swelling (Tester and
Morrison, 1990). This swelling property can be reflected by
PV (Zou et al., 2019), the decrease in PV may be due to
the loss of branch chains of amylopectin (Li et al., 2017).
Therefore, we suggest that the decrease in PV within 36 h was
mainly due to the hydrolysis of amylopectin, and the increase
of AC (Table 2) was the reason for the decrease after 36 h.
It is noteworthy noting that the SB did not show a positive
correlation with AC, which is not according to the previous
research (Li et al., 2016). We suggest that it is mainly due
to the effects of the amylose length and the whole size of
amylopectin (Tao et al., 2019), and we will explore it in a
future study. The value of BD could be used to reflect the
intermolecular force of starch. The smaller BD is, the stronger
the intermolecular force is (Zou et al., 2019). Our data showed
that both the PV and BD decreased pronouncedly within 36 h
(Table 4), indicating that the amylopectin was destroyed and
the intermolecular force of starch became stronger at that
point, which indirectly indicated that the “weak points” were
hydrolyzed and the crystal structure became more perfect.
The RS content also increased from 0 to 10.1% (Table 1)
within 36 h. Therefore, we suggested that the formation of a
more perfect crystal structure was the reason for the increase
in RS within 36 h.
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Second stage of fermentation of Qu:
The formation of rearrangement starch
granules

However, the crystal structure was almost destroyed
completely at 60 h of FQ (Table 2). The diffraction peaks of
XRD were almost disappeared after 36 h (Figure 3). In addition,
the gelatinization enthalpy (1H) could indirectly reflect the
crystal structure. The decrease in 1H indicates that part of the
double helix structures of starch was destroyed, and the energy
required to destroy the double helix was relatively low (Qiao
et al., 2016). Our data showed the 1H decreased significantly
after 36 h (Table 3), indicating that the crystal structure was
destroyed seriously. The significant increase in AC after 36 h
fermentation (Table 2) also indirectly demonstrated this. It is
noteworthy that some smaller granules appeared with wrinkles
on the surface (Figure 1), and the particle size distribution also
changed from one sharp peak to bimodal (Figure 2). A possible
reason is that the generation of short amylose and amylopectin
chains under the action of enzymes could rearrange to form new
starch granules (Ma et al., 2020) that included the formation of
a double helix of amylose-amylose, amylose-amylopectin, and
amylopectin-amylopectin (Li et al., 2015). In addition, these
realignment granules had more intense structure, which is more
enzyme resistant (Polesi and Sarmento, 2011).

Our data also demonstrated this, the value of BD was
also decreased seriously at this time point, indicating the
enhanced intermolecular force of starch. Meanwhile, the
significant increase in gelatinization onset temperature (To) and
the pronounced narrowing of 1T after 36 h (Table 3) also
demonstrated the formation of a more intense starch structure
(Ding et al., 2019). Therefore, we speculated that the formation
of smaller rearranged starch granules was the main reason for
the increase in RS during fermentation.

In conclusion, the effects of FQ on WMS may have two
processes. Firstly, the “weak points” were hydrolyzed, which
made the crystal structure become more perfect and the
RS increased slightly (Table 1). Then, the crystal structure
was almost hydrolyzed completely and could form smaller
rearranged starch granules, which was the main reason for the
pronounced increase in RS during the FQ.

Conclusion

The RS content of WMS could be increased significantly by
the FQ, which may be due to the crystal structure changed under
the action of enzymes during fermentation. There may undergo
two processes. Firstly, the “weak points” of the crystal structure
were hydrolyzed preferentially, which made the crystal structure
become more perfect and RS content increased slightly. In
the second process, the crystal structure was almost destroyed
completely, and the broken starch could be rearranged to form

smaller starch granules, which was the main reason for the
pronounced increase of RS during fermentation. Therefore, by
controlling fermentation time, it could produce the WMS with
higher RS content at a low cost, and it also could be applied to
the functional food area on a large-scale in the future.
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