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Histone variants and
modifications during abiotic
stress response

Rocı́o Nunez-Vazquez, Bénédicte Desvoyes*

and Crisanto Gutierrez*

Centro de Biologı́a Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del
Genoma, Madrid, Spain
Plants have developed multiple mechanisms as an adaptive response to abiotic

stresses, such as salinity, drought, heat, cold, and oxidative stress.

Understanding these regulatory networks is critical for coping with the

negative impact of abiotic stress on crop productivity worldwide and,

eventually, for the rational design of strategies to improve plant performance.

Plant alterations upon stress are driven by changes in transcriptional regulation,

which rely on locus-specific changes in chromatin accessibility. This process

encompasses post-translational modifications of histone proteins that alter the

DNA-histones binding, the exchange of canonical histones by variants that

modify chromatin conformation, and DNA methylation, which has an

implication in the silencing and activation of hypervariable genes. Here, we

review the current understanding of the role of the major epigenetic

modifications during the abiotic stress response and discuss the intricate

relationship among them.

KEYWORDS
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Introduction

Chromatin is a highly organized eukaryotic complex of DNA and proteins, where

DNA is packaged into regularly spaced nucleosomes, assembled as beads on a string.

Each nucleosome is formed by ∼147 bp of DNA wrapped around a core histone octamer

(Olins and Olins, 1974; Thomas and Kornberg, 1975; Libertini et al., 1988; Luger et al.,

1997; Wolffe and Hayes, 1999). Throughout evolution, histone proteins have gradually

evolved from archaeal ancestors into the four distinct subunits that compose the

common octamer of the nucleosome. The core histones H2A, H2B, H3, and H4 are

structured in two H2A-H2B dimers and an H3-H4 tetramer. The linker histone H1 helps

to condense the chromatin by binding to the DNA between nucleosomes (Campos and

Reinberg, 2009; Henikoff and Smith, 2015; Talbert and Henikoff, 2017).
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The chromatin landscape is in constant reorganization to

guarantee the transcriptomic reprogramming required during

developmental processes (Baulcombe and Dean, 2014;

Kawashima and Berger, 2014; Xiao and Wagner, 2015; Lee

and Seo, 2018; Gehring, 2019), such as germline differentiation

(Borg et al., 2009; Feng et al., 2010; Baroux et al., 2011; Borg

et al., 2021b) or leaf senescence (Brusslan et al., 2015).

Alterations in chromatin structure have been associated to

different states of DNA accessibility (Sequeira-Mendes et al.,

2014). Functionally, chromatin is divided into two

conformational states: heterochromatin, in which DNA is

strongly condensed, and euchromatin, where the DNA is more

accessible and less compacted. The molecular mechanisms

regu l a t ing the sw i t ch be tween euchromat in and

heterochromatin include complex epigenetic regulatory

networks (Adam et al., 2001; Nakayama et al., 2001; Ahmad

and Henikoff, 2002; Francis et al., 2004; Castellano-Pozo et al.,

2013; Sequeira-Mendes et al., 2014; Yelagandula et al., 2014;

Morrison and Thakur, 2021). We have included several excellent

and recent reviews that discuss and detail the function of the

major drivers of chromatin restructuration: histone variants

(Loppin and Berger, 2020; Probst et al., 2020; Foroozani et al.,

2022), histone post translational modifications (Antunez-

Sanchez et al., 2020; Jiang et al., 2020b), and DNA methylation

(Zhang et al., 2018; Mattei et al., 2022).

Abiotic factors such as salinity, limited water availability,

extreme temperature, low-light and chemical composition of the

soil severely impact plant growth and developmental programs.

Thus, variations in any of these conditions lead to an alteration

in the homeostasis, known as abiotic stress (Singh and Laxmi,

2015). Each form of abiotic stress contains a unique signaling

pathway. Nevertheless, there are conserved cellular responses

orchestrated by a complex regulatory network involving (1)

upstream signaling molecules, such as ROS, NO, Ca2+ or ABA,

and (2) downstream regulation, in which transcription factors

and epigenetic regulators intervene (He et al., 2018). Here, we

will focus on the downstream regulation and summarize the

mechanisms of these epigenetic agents, which redefine the plant

chromatin landscape when exposed to external stimuli.

There are different scales—global and local— at which these

modifications happen in the context of abiotic stressors

(Figure 1). Global changes in response to abiotic stress include

an increase in histone acetylation (Pandey et al., 2002; Earley

et al., 2007), a loss in the chromocenter organization—typical of

plant heterochromatin— (Pecinka et al., 2010; reviewed in

Probst and Mittelsten Scheid, 2015) and a reduction in

nucleosome occupancy (Brzezinka et al., 2016; Park et al.,

2018; reviewed in Bäurle and Trindade, 2020). These

modifications occur globally in the sense that they are not

directed to a particular genomic region but are genome-wide

instead. On the contrary, there are local changes particular of

stress-responsive areas of the genome characterized by an

increase in methylation of the residues K4/K36 of H3 histone
Frontiers in Plant Science 02
tails (Lee et al., 2016) and changes in nucleosome composition

(Rutowicz et al., 2015). Additionally, there are gene-specific

changes unique of each type of stress [e. g. P5CS2 is

upregulated upon salt stress and dehydration, whereas

HSP17.4 responds to heat (Port et al., 2004; Székely et al.,

2008)]. However, their local epigenetic regulation shares

identical features: an increase in histone modifications

associated with an increase in DNA accessibility and a

reduction in marks associated with less accessibility. During

this review, we have decided not to focus on the specific changes

that occur in presence of each abiotic factor, but instead on the

general mechanisms involved in chromatin reorganization

during the stress response —commonly shared between the

different abiotic agents—. Deciphering how the expression of

stress-responsive genes occurs is fundamental in unravelling the

hidden details of the abiotic stress response.

How histone post translational modifications impact on the

transcriptional changes required for plant survival during the

stress response has been previously discussed (Kim et al., 2015;

Ueda and Seki, 2020; Bhadouriya et al., 2021). However, the

implication of histone variants during the abiotic stress response

has not been discussed in depth. Moreover, most of the reviews

about epigenetic regulation include either histone variants or

histone modifications, but it is rare to see a combination of both.

Hence, this review aims to furnish deeper insights into the

transient coordination between histone variants and histone

modifications in response to abiotic stress in plants.

Arabidopsis thaliana serves as an excellent model organism

in plant research due to (1) its small, fully sequenced and well-

annotated genome, (2) its short life cycle, (3) its tolerance to

mutations in chromatin key genes, generally lethal in other

organisms and (4) its post-embryonic organogenesis process

characteristic of plants (Perianez-Rodriguez et al., 2014). These

circumstances create an ideal scenario to study epigenetic

changes during growth and morphogenesis in response to

developmental and environmental cues. For that purpose,

most of the epigenetic research in plants uses this organism as

a model. In this review, we will focus on the major epigenetic

modifications in the plant Arabidopsis thaliana as an approach

to plant epigenetics.
Histone variants

The paralogous genes of a histone family encode identical

isoforms, but also non-allelic protein isoforms commonly

referred to as histone variants. These variants differ in their

amino acid sequence from the canonical form and play critical

roles in diverse processes such as transcription, chromatin

remodelling, and DNA packaging, conferring unique

characteristics of chromatin (Talbert et al., 2012; reviewed in

Talbert and Henikoff, 2017; Probst, 2022).
frontiersin.org
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Canonical histones, also known as replicative histones, are

predominantly expressed during the S-phase and deposited in a

DNA synthesis-dependent manner. Conversely, histone

variants, or replacement histones, are expressed throughout

the cell cycle, are incorporated in a DNA synthesis-

independent manner and have sequence divergence and

specific genomic localization (Chaubet et al., 1992; reviewed in

Henikoff and Smith, 2015).

Histone variants have been described in all model

organisms studied, from the unicellular yeast Saccharomyces

cerevisiae and algae to plants and animals, and for all histones

but histone H4, with only a few exceptions (Long et al., 2019;

reviewed in Probst et al., 2020). Some histone variants, like

H3.3 and H2A.Z, are conserved in eukaryotes, while others are

lineage-specific, such as the flowering plant-specific H2A.W

variant (Yelagandula et al., 2014; Giaimo et al., 2019; Bourguet

et al., 2021; Lei et al., 2021). There are tissue-specific variants,

such as the Arabidopsis H3.10 and H2B.8, that function in

sperm cells (Jiang et al., 2020a; Borg et al., 2021a; Buttress

et al., 2022).

Given the important role that histone variants have in

chromatin regulation, their deposition needs to be temporally

orchestrated. Histone chaperones promote nucleosome
Frontiers in Plant Science 03
assembly and disassembly during replication, transcription and

repair (Daniel Ricketts et al., 2015; Hammond et al., 2017).

The diversity of nucleosome composition provided by

canonical histones and variants is associated with different

chromatin states. Depending on the histone variant

incorporated into the nucleosome, chromatin adopts a more

open —accessible to transcriptional machinery— or closed

chromatin conformation. Thus, H3.3, H2A.Z, and H2A.X

variants are abundant in euchromatic regions, along with

histone marks in active chromatin, e.g., H3K4me3, H3K36me3

and H2B ubiquitylation, and coincide with high RNA Pol II

occupancy (Stroud et al., 2012; Wollmann et al., 2012). These

features form a chromatin state typical of active transcription

(Sequeira-Mendes et al., 2014; Borg et al., 2021a). On the

contrary, H2A.W and H1 histones colocalize with

heterochromatin marks —like H3K9me2, H3K27me3,

H3K27me1— and DNA methylation in silent genomic

regions, favoring the compaction of the chromatin (Grewal

and Jia, 2007; Vaillant and Paszkowski, 2007; Roudier et al.,

2009; Stroud et al., 2012; Zemach et al., 2013; Rutowicz et al.,

2019; Choi et al., 2020). The histone variants that play a role

during the stress response are incorporated into nucleosomes in

specific regions of the genome —stress-responsive genes— that
FIGURE 1

Global and local changes in chromatin structure in response to abiotic factors, such as salt, limited water availability, cold, heat, and low-light.
Global changes are distributed genome-wide, whereas local changes are directed to specific genomic regions, commonly associated with
stress-responsive genes.
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are crucial for the upstream signaling stress response (Coleman-

Derr and Zilberman, 2012; Rutowicz et al., 2015).

An intriguing feature of histone variants is the organization

within one family. In histone families where there are several

histone variant proteins with similar functions, there is usually a

prevalence in the abundance of one or two among the others

(reviewed in Martire and Banaszynski, 2020). This suggests

either specific pathways ensure deposition of these variants or

that the slight differences between the proteins lead to a favored

deposition of some of them against the rest, developing into a

specific role of certain variants. In Arabidopsis, the histones —

canonical or variants— are organized into the four families

(Table 1) discussed below.
H1 family

H1 histones are known as “linker histones” because they

bind to the linker DNA between nucleosomes, further

facilitating chromatin compaction. These histones consist of a

globular domain, which binds the DNA at the dyad axis of the

nucleosome to the core histones, a short N-terminal chain, and a

C-terminal tail that binds to the DNA between nucleosomes

(Zhou et al., 2013; Zhou et al., 2015). The tight bound between

the nucleosome and the linker DNA results in higher

nucleosome density. Histone H1, together with H2A.W,

coordinates heterochromatin accessibility and DNA

methylation (Bourguet et al., 2021). In vertebrates, several

evolutionarily conserved subfamilies of H1 can be

distinguished, and they play redundant and specific roles

during development and cellular differentiation (Mcbryant

et al., 2010; Talbert and Henikoff, 2017). In humans and mice,

11 different H1 variants have been identified (Fyodorov et al.,

2018), while the Arabidopsis H1 family is formed by the H1.1,

H1.2, and H1.3 histones (Table 1).

H1.1 and H1.2 —the replicative histones H1— are highly

similar, whereas the H1.3 variant is shorter and lacks the (S/T)

PXK motifs required for DNA binding (Kotliński et al., 2016).

Consequently, the H1.3 variant has higher mobility within

chromatin. H1.1 and H1.2 are enriched in heterochromatin,

anti-correlate with gene expression (Rutowicz et al., 2015), and

are also necessary for H3K27me3 deposition (Rutowicz et al.,

2019). Alternatively, H1.3, although it is not abundant in the

histone H1 pool, plays a specific role in the abiotic stress

response. Under normal conditions, it is exclusively expressed

in guard cells, but when the plant is exposed to a stimulus, such

as light deficency, drought, and abscisic acid (ABA), H1.3

competes with H1.1 and H1.2 for the incorporation into the

nucleosome (Rutowicz et al., 2015). Physiological and

transcriptomic analyses of h1.3 null mutants demonstrate that

H1.3 is required for proper stomatal functioning under normal

growth conditions and adaptive developmental responses to

combined light and water deficiency (Rutowicz et al., 2015).
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The putative differences in the deposition patterns of H1.3 in

different tissues in response to stress have not been explored.
H2A and H2B families

The H2A histone family in Arabidopsis comprises four

replicative H2A, four H2A.Z, three H2A.X, and two H2A.W

(Table 1), composed of ~130 amino acid residues. H2A variants

differ in the C-terminal motifs of their primary amino acid

sequences (Kawashima et al., 2015). Some of these variants’

properties are conserved throughout the kingdoms. For instance,

H2A.Z diverged from the canonical H2A early in eukaryotic

evolution. H2A.Z properties have been thoroughly described in

humans, mice, yeast, and plants. In all these kingdoms, H2A.Z

histone is a replacement variant with similar roles in

transcriptional regulation and DNA repair (Jarillo and Piñeiro,

2015; Giaimo et al., 2019; Gómez-Zambrano et al., 2019). In fact,

H2A.Z sequences from different organisms show a higher

similarity level than the H2A.Z and H2A within the same

organism. The diverse relationship between H2A variants and

gene expression explains histone variants’ impact on chromatin

structure. H2A.X is distributed along the whole Arabidopsis

genome, whilst H2A.W is enriched in pericentromeric regions,

colocalizing with heterochromatin and transposable elements

(TEs) (Lei and Berger, 2020; Bourguet et al., 2021). On the other

hand, replicative H2A and H2A.Z are excluded from

pericentromeric heterochromatin (Zilberman et al., 2008;

Yelagandula et al., 2014). The exclusion of H2A.Z from

pericentromeric heterochromatin has been linked to its

shortened C-terminal tail, which is thought to limit the

binding of the linker histone H1 to the core nucleosome

particle (Osakabe et al., 2018).

Histone variants mediate the nucleosome adaptability to

different stimuli. Changes in nucleosome composition directly

reports on nucleosome stability (Osakabe et al., 2018). For

instance, H2A.Z-H2B dimers are replaced more rapidly than

H2A-H2B dimers (Brahma et al., 2017), conferring the genes

covered by H2A.Z-H2B nucleosomes the ability to respond

quickly to a stimulus. An intriguing plant H2A feature is that,

in contrast to animals and yeast, H2A-containing nucleosomes

are homotypic, since each variant associates only with itself

(Osakabe et al., 2018).

The distribution of H2A.Z in the Arabidopsis genome is

puzzling because of its dual, and perhaps interconvertible,

deposition patterns. H2A.Z can be deposited either at the

transcription start site (TSS) of a large set of constitutively

expressed genes across cell types or at the gene-body of

repressed genes (Coleman-Derr and Zilberman, 2012)

associated with repressive H3K27me3. When incorporated at

the TSS, it is thought to maintain genome integrity with stable

transcription rates by facilitating the transcription of genes

essential for plant survival (Mahrez et al., 2016). This process
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TABLE 1 Classification of histone families in Arabidopsis: genes, variants, proteins, chaperones, general function and role in stress.

Histone
type

Histone Gene Chaperone General Function Role in Stress

H1 H1.1 Variant At1g06760,
H1.1

NAP1, NRP1 Chromatin compaction (Bourguet et al.,
2021)

H1.2 Variant At2g30620,
H1.2

H1.3 Variant At2g18050,
H1.3

Drought stress, light and water deficency (Rutowicz et al.,
2019)

H2A H2A.1 Canonical At5g54640,
HTA1

NAP1, NRP1,
FACT

H2A.2 Canonical At4g27230,
HTA2

H2A.10 Canonical At1g51060,
HTA10

H2A.13 Canonical At3g20670,
HTA13

Variant At1g54690,
HTA3

FACT Transcriptional activation (Xiao et al.,
2021)

DNA damage response (Lorković and Berger, 2017)

Variant At1g08880,
HTA5

H2A.W Variant At5g59870,
HTA6
At5g27670,
HTA7
At5g02560,
HTA12

DDM1 Chromatin compaction (Bourguet et al.,
2021)

DNA replication stress signalling in heterochromatin
(Lorković and Berger, 2017)

Variant

Variant

H2A.Z Variant At4g13570,
HTA4

SWR1 Transcriptional regulation
(Jarillo and Piñeiro, 2015) (Gómez-
Zambrano et al., 2019)

Salt stress, drought, immunity responses, cold, heat,
phosphate deficiency.
Regulates the expression of hypervariable genes (Coleman-
Derr and Zilberman, 2012) (Sura et al., 2017)

Variant At2g38810,
HTA8

Variant At1g52740,
HTA9

Variant At3g54560,
HTA11

H2B H2B.1 Variant At1g07790,
HTB1

NAP1, NRP1,
FACT

Transcriptional regulation, replacement
variant (Jiang et al., 2020a)

H2B.2 Variant At5g22880,
HTB2

H2B.3 Variant At2g28720,
HTB3

H2B.4 Variant At5g59910,
HTB4

H2B.5 Variant At2g37470,
HTB5

H2B.6 Variant At3g53650,
HTB6

H2B.7 Variant At3g09480,
HTB7

Development of reproductive tissues
(Jiang et al., 2020a)

H2B.8/
H2B.S

Variant At1g08170,
HTB8

Regulation of seed formation (Jiang
et al., 2020a)

H2B.9 Variant At3g45980,
HTB9

H2B.10 Variant At5g02570,
HTB10

Development of reproductive tissues
(Jiang et al., 2020a)

H2B.11 Variant At3g46030,
HTB11

(Continued)
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is thought to occur by reducing the energy required by the RNA

polymerase II to overcome the first nucleosomal barrier (Sura

et al., 2017). Over a decade ago, the involvement of the H2A.Z

histone variant in gene responsiveness during environmental

stress was elucidated by showing that H2A.Z is deposited within

gene bodies in genes categorized as “hypervariable” (Coleman-

Derr and Zilberman, 2012). Furthermore, transcriptome data of

h2a.z knock-out mutant plants revealed a deregulation of

Arabidopsis genes with high responsiveness scores, which

correlates with those that have H2A.Z deposited on their gene

body in the absence of stress. Notably, under normal conditions,

gene-body H2A.Z deposition participates in the repression of

genes involved in response to wounding, drought, ABA, salinity,
Frontiers in Plant Science 06
UV light, heat, cold, immune response, defense response, and

phosphate in Arabidopsis (Coleman-Derr and Zilberman, 2012).

Since then, several authors have reported the implication of

H2A.Z not only as a transcriptional regulator but also as a key

player in gene repression under biotic and abiotic stress

conditions (Cortijo et al., 2017; Sura et al., 2017; Nguyen and

Cheong, 2018; Gómez-Zambrano et al., 2019; Bieluszewski

et al., 2022).

The role of H2A.Z in stress resembles the function of the

histone mark H3K27me3, as they both actively regulate the

expression of hypervariable genes. Due to the similarities in

the regulation of their targets, it was hypothesized that H2A.Z

and H3K27me3 could functionally interact. In mouse
TABLE 1 Continued

Histone
type

Histone Gene Chaperone General Function Role in Stress

H3 H3.1 Canonical At5g65360,
HTR1

CAF1 Transcriptional repression (Stroud et al.,
2012; Wollmann et al., 2012)

At1g09200,
HTR2

At3g27360,
HTR3

At5g10400,
HTR9

At5g10390,
HTR13

H3.3 Variant At4g40030,
HTR4
At4g40040,
HTR5
At5g10980,
HTR8

HIRA, ATRX Transcriptional repression (Stroud et al.,
2012) (Wollmann et al., 2012)

Regulate hypervariable genes (Wollmann et al., 2012)

H3.6 Variant At1g13370,
HTR6

HIRA? Induced upon stress (Nunez-Vazquez et al., in
preparation)

H3.7 Variant At1g75610,
HTR7

H3.10 Variant At1g19890,
HTR10

HIRA?

H3.11 Variant At5g65350,
HTR11

CenH3 Variant At1g01370,
HTR12

HJURP

H3.14 Variant At1g75600,
HTR14

HIRA? Induced upon stress (Nunez-Vazquez et al., in
preparation)

H3.15 Variant At5g12910,
HTR15

HIRA Callus formation (Yan et al., 2020) Rapidly induced upon wounding (Yan et al., 2020)

H4 H4 Canonical At3G46320 CAF1, HIRA,
ASF1

Mainteinance of genome integrity

At5G59690

At2G28740

At1G07820

At3G53730

At5G59970

At3G45930

At1G07660
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embryonic stem cells, H2A.Z promotes chromatin compaction,

favoring H3K27me3 deposition by the POLYCOMB

REPRESSIVE COMPLEX 2 (PRC2) (Wang et al., 2018).

Consistent with this, H3K27me3 is dependent on H2A.Z

deposition in Arabidopsis (Dai et al., 2017; Carter et al., 2018).

SWI2/SNF2-Related 1 Chromatin Remodeling Complex

(SWR1), the complex incorporating the H2A.Z variant, is

required for H3K27 trimethylation (Luo et al., 2020; Liu et al.,

2021). However, the variant H2A.Z and the Polycomb

modification H3K27me3 do not share most of their targets, as

shown by the limited overlap of upregulated genes between

hta9-hta11, defective in H2A.Z protein, and mutants of the

Polycomb repressive complex 2 (PRC2) catalytic subunit curly

leaf (clf) (Gómez-Zambrano et al., 2019). These differences

suggest that the repression of targets via H2A.Z gene body-

deposition targets a wide range of hypervariable genes and is not

limited to stress-responsive genes. These data suggest an

exciting timeframe in the repression of responsive genes,

where deposition of H2A.Z by SWR1 is first needed to achieve

PRC2 repression of hypervariable genes. H3K27me3 usually

works in bivalent genes and is released from the environment of

the gene it represses shortly after the stress stimulus (Zhang

et al., 2011; Molitor et al., 2014; Zhang et al., 2020). ChIP-seq

data of H2A.Z after stress are not available so far, and,

consequently, it is not possible to conclude whether the H2AZ

is evicted from the gene body or if it is deposited in a different

region of the same locus —although it has been proposed that

there is H2A.Z depletion from the gene body upon

transcriptional activation (Sura et al., 2017). Establishing a

timeline to clarify further the role of these critical actors in

activating these repressed genes during the stress response

remains unclear and needs further investigation.

The H2A.X variant, which only differs from the replicative

H2A in the additional SQEF amino acid motif that H2A.X

contains in its C-terminal tail, has been described to regulate the

DNA damage response (DDR) (Dantuma and van Attikum,

2016; Lorković and Berger, 2017). In replicative stress, the ATR

and ATM kinases phosphorylate H2A.X by a mechanism that is

conserved in both animals and plants. The H2A.W.7 variant is

necessary for DNA repl icat ion stress s ignal ing in

heterochromatin, which shows there might be an interaction

between these H2A.X and H2A.W by the joint action of kinases

to act in response to DNA damage in different regions of the

Arabidopsis genome (Yelagandula et al., 2014; Lorković and

Berger, 2017).

Compared with the extensive published studies defining

H2A variants, only a handful of H2B variants have been

characterized. Despite the similarities between H2A and H2B

histones and the conserved status of their dimers, the

Arabidopsis histone H2B family is formed by 11 genes that

encode proteins of high sequence divergence (Jiang et al., 2020a).

The expression of Arabidopsis H2B varies across development.

Defining the role of H2B.8—also known as H2B.S—is particular
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intriguing since this histone specifically accumulates during

chromatin compaction of dry seed embryos (Jiang et al.,

2020a; Buttress et al., 2022). The potential response of H2B

proteins to abiotic stress has not been explored so far.
H3 family

The Arabidopsis histone H3 family is one of the most studied

and complex. It is composed of fifteen genes encoding nine H3

proteins with unique roles. The canonical form, the protein

H3.1, is encoded by five intronless genes: HTR1, HTR2, HTR3,

HTR9, and HTR13. This protein is only deposited during DNA

replication and DNA repair. The histone H3.3, the best-

characterized histone H3 variant, is encoded by the HTR4,

HTR5, and HTR8 genes and is incorporated throughout the

whole cell cycle constitutively, in a DNA replication-

independent manner, allowing a rapid chromatin adaptation

to different environmental stimuli (March-Dıáz and Reyes, 2009;

reviewed in Talbert and Henikoff, 2017).

The differences between the variants in the H1 and H2A

histone families are driven by the distinct amino acid motifs,

even domains, that they include in their sequence. Instead, the

H3 family maintains a high amino acid homology degree. The

differences in the H3 variants consist of changes of a relatively

small number of aminoacids (Figure 2). H3.1 and H3.3 have

unique properties, despite that their amino acid sequences differ

only in 4 amino acid residues at positions 31, 41, 87, 90

(Figure 2). The substitution at position 41 of H3.1 is specific

to dicotyledon plants (Lu et al., 2018). The differences in amino

acid sequences between H3.1 and H3.3 are almost identical in

plants and animals. Their distribution patterns are also highly

similar across species (Ingouff and Berger, 2010; Stroud et al.,

2012; Wollmann et al., 2012; Müller and Almouzni, 2014;

reviewed in Loppin and Berger, 2020; Foroozani et al., 2022).

This evidence of convergent evolution strongly points toward

the importance of those specific residues in the function of the

eukaryotic genome. Regarding histone H3 distribution along the

Arabidopsis genome, ChIP-seq studies showed that H3.1 is

enriched in heterochromatin, specifically in TEs and

pericentromeric heterochromatin, colocalizing with histone

modifications associated with gene repression such as

H3K9me2, H3K27me1, H3K27me3 or DNA methylation, H2B

ubiquitination, and RNA polymerase II occupancy (Stroud et al.,

2012; Wollmann et al., 2012). In contrast, H3.3 is associated with

active chromatin marks, including H3K4me3, H3K9me3, and

H3K36me3. Therefore, H3.3 is associated with euchromatic

regions, being deposited preferentially at the 3’ UTR end of

constitutively expressed genes (Shi et al., 2011; Stroud et al.,

2012; Wollmann et al., 2012; Shu et al., 2014).

Histone variants often play a role in the activation of certain

groups of inducible genes. For example, H3.3 specifically

regulates the expression of genes involved in environmental
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responses (Wollmann et al., 2017). Also, a recent study showed

that H3.3 inhibits flowering by increasing the levels of H3K4me3

and H3K36me3 marks at the FLOWERING LOCUS C (FLC)

gene (Zhao et al., 2021), although the specific mechanisms

underlying the relationship between histone H3.3 and stress

responses have not yet been clarified.

Genome architecture can be structurally shaped with the

help of histone variants. A H3 variant known as CENH3 in

plants —and CENP-A in mammals— is specifically

incorporated in the centromere region (Malik and Henikoff,

2009; Fukagawa and Earnshaw, 2014; Müller and Almouzni,

2014). CENH3 is an essential protein that function in

centromere organization and chromosome segregation (Ravi

et al., 2010). The CENH3 amino acid sequence strongly

diverges from that of the rest of H3 family members. A clear

role of CENH3 in stress response has not been described.

However, its expression was drastically reduced in the mutant

background of MUT9-LIKE KINASE1 and 2 (MLK1 and 2).

These kinases are in charge of H3.3 phosphorylation in a process

that is dependent of the ABA pathway (Wang et al., 2015).

There is a group of atypical plant-specific H3 variants with

specific substitutions in their N-terminal tail, encoded by the

genes HTR6 and HTR14 that share features with both H3.1 and

H3.3, although they are thought to be more similar to H3.3, as

they contain the four critical amino acids (T31, Y41, H87, L90)

in which H3.3 differ from H3.1 (Figure 2). Furthermore, H3.14

and H3.6 have been described to contain an enrichment of

transcription factor binding sites implicated in salinity and

drought stress responses in their respective promoter regions

(Nunez-Vazquez et al., in preparation). Further differences are

present in these atypical H3 variants, but the functional impact

of these changes has yet to be explored. The atypical H3.15 has a

distinguishing feature due to its lack of the K27 residue, which

prevents the trimethylation of this residue by the Polycomb
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PRC2 complex and has been reported to be induced after

wounding and has a role in cell fate reprogramming during

plant regeneration (Yan et al., 2020). The sperm-specific H3.10

variant has an intricate role in heterochromatin formation and

gene silencing, as it reprograms H3K27me3 during Arabidopsis

spermatogenesis (Okada et al., 2005).

Several histone chaperones have been described to

incorporate H3-H4 dimers in the nucleosome. CAF1 is the

typical H3.1 chaperone, whereas HIRA commonly

incorporates H3.3 by binding to its C-terminal tail’s H87 and

L90 amino acids (Daniel Ricketts et al., 2015) (Figure 2). As

many atypical histone variants (H3.6, H3.14, H3.10) contain the

H87 and L90 residues, we hypothesize HIRA is likely to be

responsible for their deposition, although further research is

needed to demonstrate this assumption.
Histone modifications

Chromatin stability is favored by the interaction of the

negatively charged phosphate groups of DNA with the

positively charged amino acids of histone proteins. The

post-translational modifications (PTMs) of both histone tails

and histone fold domains contribute to chromatin control and

accessibility. The histone PTMs environment is founded and

maintained by a set of highly coordinated enzymes (Kouzarides,

2007). PTMs are considered to favor the oscillation between

relaxed or packaged chromatin configurations. However,

whether histone PTMs are a cause or a consequence of changes

in transcriptional regulation is a controversial and puzzling topic

(Millán-Zambrano et al., 2022; Policarpi et al., 2022; Wang et al.,

2022). On one hand, some evidence indicates that active histone

modifications support transcription in an informative manner

rather than serving as an essential regulatory function (Wang
FIGURE 2

Differences in the amino acid sequence of the members of the histone H3 family in Arabidopsis thaliana. The length of each variant’s amino acid
sequence is indicated in black.
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et al., 2022). On the other hand, a different study points towards de

novo H3K4me3 deposition can induce major transcription

activation (Policarpi et al., 2022). Here, we will discuss recent

discoveries and summarize the current understanding of the

regulation and function of histone post translational

modifications in response to abiotic stress.

Histone PTMs include methylation, acetylation,

phosphorylation, ubiquitination, and sumoylation, among

others. These reactions are catalyzed by histone-modifying

enzymes recruited to specific genomic regions (Kouzarides,

2007). The chromatin landscape of active genes is

preferentially associated with highly acetylated histones,

whereas inactive genes are associated with hypoacetylated

histones (Hebbes et al., 1988). The general assumption is that

acetylation of lysine and arginine residues reduces the DNA-

histone interactions and relaxes the chromatin structure,

resulting in increasing accessibility to the DNA of the

transcriptional machinery (Allis and Jenuwein, 2016). The

association between histones and DNA is also regulated by

histone methylation. Due to the neutral character of this

modification, methylation of amino acids does not directly

perturb nucleosome stability (Xiao et al., 2016), although it

affects the local hydrophobicity. Hence, it appears in

association with actively transcribed or repressed genes,

depending on the methylated amino acid residue (Xiao et al.,

2016; Yung et al., 2021). In contrast, the phosphorylation of

threonine, serine, and tyrosine adds an extra negative charge to

the chain, weakening the DNA-histone interaction.

Ubiquitination of lysines, consisting of the addition of small

amino acid chains to the histone tail, also compromises

nucleosome stability. H2Aub has been associated with gene

silencing, whereas H2Bub is linked to transcriptional
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activation. The specific mechanism of transcription regulation

by ubiquitination has not yet been clarified (Zhou et al., 2017;

Zhou et al., 2018).

Although nucleosomes are present in all eukaryotic cells, the

role of specific PTMs varies between animals and plants. For

example, H3K9me3, a constitutive heterochromatin mark in

mammals, is present in plant euchromatin, whereas the

dimethylated state, H3K9me2, is associated with plant

heterochromatin (Lippman et al., 2004; Zhang et al., 2008).

The monomethylation of H3K27 is a plant-specific

heterochromatin mark, although it also appears at lower level

in repressed genes of euchromatin (Jacob et al., 2009).

H3K27me3 regulates facultative heterochromatin —specific

regions of the genome that behave as heterochromatin in

some cells or developmental stages but as euchromatin in

others— both in plants and animals (Schuettengruber et al.,

2007; Zheng and Chen, 2011; Makarevitch et al., 2013), as it is

the case for H3K4me3 in actively transcribed genes (Zhang

et al., 2009).

Several studies have reported that PTMs are involved in seed

formation, flowering, and biotic and abiotic stress responses

(Cao et al., 2008; Zou and Mallampalli, 2014; Huang et al., 2016;

Zhou and Zeng, 2017). In the presence of stress, the plant needs

to reorganize and optimize its resources. (Atkinson and Urwin,

2012). For that purpose, it pauses different ongoing processes,

such as protein translation and cell elongation, and prioritizes

those that are strictly necessary for plant survival (Muñoz and

Castellano, 2012; Yamamoto, 2019). Modifying the local

chromatin landscape during the stress response does not

comprise a specific PTM. Instead, it involves globally induced

changes that could be summed up as (1) an increase in histone

acetylation in the promoters and gene bodies of drought-
frontiersin.or
FIGURE 3

Summary of the histone PTMs in the nucleosome’s core histones in Arabidopsis. The PTMs detected are color-coded as indicated. Those
involved in the abiotic stress response are highlighted in red.
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inducible genes and (2) derepression of hyperresponsive targets

by histone and DNA demethylation (To and Kim, 2014)

(Figures 1, 3).

The induction of the abiotic stress-responsive genes is

independent of the mechanism of the stress-memory (Ding

et al., 2012). Consequently, we consider that the regulation of

stress memory is out of the scope of this review article. We have

selected a list of recent review articles that detail the stress

memory process (Oberkofler et al., 2021; Liu et al., 2022; Perrella

et al., 2022).
Histones acetyltransferases

Histone acetyltransferases (HATs) catalyze the transfer of

the acetyl group from acetyl-CoA to the amino group of the

lysine residues at the N-terminal tail of the histones. This

reaction results in an acetylated lysine that compromise the

interaction of the histone with the negatively charged DNA,

leading to an open status of the chromatin (Smith and Denu,

2009). In presence of diverse abiotic agents —heat, salt, limited

water availability— there is a global increase in histone

acetylation (Pandey et al., 2002; Earley et al., 2007), (Figure 1).

Acetylation marks allow the binding of stress-specific

transcription factors —such as ABRE or DREB— during the

stress response to areas of the genome that are generally silent

(Kim et al., 2014; Widiez et al., 2014).

In Arabidopsis, 12 different HATs belong to four families:

the GNAT/HAG, the MYST/HAM, the p300/CBP/HAC and the

TAFII250/HAF families (Pandey et al., 2002; Fina et al., 2017)

(Table 2). They regulate plant development, flowering time, and

some specific processes of abiotic stress response that include
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response to light, salt tolerance, DNA damage and hormonal

pathways (Earley et al., 2007; Xu et al., 2012; Xiao et al., 2013).

The GNAT superfamily member histone acetyltransferases

GENERAL CONTROL NONDEREPRESSIBLE 5 (GCN5),

encoded by HAG1, has been positively linked to cold and heat

stress (Pavangadkar et al., 2010; Hu et al., 2015) and with the

positive regulation of salt tolerance (Zheng et al., 2019). GCN5

was the first HAT identified in Arabidopsis. Transcriptomic

analyses of gcn5 mutant show pleiotropic defects in the

expression of genes involved in plant development and

adaptation to environmental conditions (Cohen et al., 2009;

Servet et al., 2010; Kim et al., 2018; Wang et al., 2019; Zheng

et al., 2019). Importantly, under salt stress, gcn5 plants present

inhibited growth compared to wild type plants (Zheng et al.,

2019). The preferential GCN5 acetylation sites are the lysine

residues of histone H2B and H3, with a lower preference for

histone H4 (Fan et al., 2017; Mutlu and Puigserver, 2020). In

fact, a decrease in the H3K9ac and H3K14ac marks has been

reported in gcn5 mutants under salt stress (Li et al., 2022).

HAC1 and HAC5, two members of the p300/CBP family,

participate in the ethylene response. The transcriptional levels of

the ethylene response factors (ERFs) ERF1, ERF4, ERF6 and

ERF11 significantly increase in the hac1hac5 double mutant (Li

et al., 2014). It is possible that HAC1 and HAC5 might as well be

involved in salinity stress response, as there is a close

relationship between ethylene and salinity tolerance (Tao et al.,

2015). Nevertheless, further research is needed to demonstrate it.

The Arabidopsis MYST family includes homologs of the

catalytic subunit of the Nucleosome Acetyltransferase of the

yeast H4 (NuA4) complex. Its components, HAG4/HAM1 and

HAG5/HAM2, regulate general developmental processes in the

plant, such as flowering, gametogenesis, chlorophyll synthesis,

cell growth, and ploidy (Latrasse et al., 2008; Zacharaki et al.,
TABLE 2 Classification of histone acetyltransferases in Arabidopsis.

Enzyme
group

Family Regulator Gene Target Role in Stress (References)

Acetyltransferases GNAT HAG1 At3G54610 H3K14 Salt tolerance (Zheng et al., 2019). Cold and heat stress (Hu et al., 2015)

HAG2 At5G56740 H4K12 (Pavangadkar et al., 2010)

HAG3 At5G50320 H3K56 and
H4K5

UVB light response (Fina et al, 2017)

MYST HAG4/
HAM1

At5G64610 H4K5 ABA, UVB light responses, DNA damage repair (Campi et al., 2012; Umezawa et al.,
2013)

HAG5/
HAM2

At5G09740 H4K5 ABA, UVB light responses, DNA damage repair (Campi et al., 2012; Umezawa et al.,
2013)

CBP HAC1 At1G79000 H4K14, H3K9 Ethylene response (Li et al., 2014). Heat (Roca Paixão et al., 2019)

HAC2 At1G67220

HAC4 At1G55970

HAC5 At3G12980 H3K9 Ethylene response (Li et al., 2014)

HAC12 At1G16710 H3K9

TAF11250 HAF1 At1G32750 H3Ac, H4Ac

HAF2 At3G19040 H3Ac, H4Ac
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2012; Crevillén et al., 2019). HAG4/HAM1 and HAG5/HAM2

also take part in ABA and UVB light responses, and other cell

functions such as transcriptional activation and DNA damage

repair (Campi et al., 2012; Umezawa et al., 2013).
Histone deacetylases

The opposite action of HATs is conducted by histone

deacetylases (HDAC). These enzymes catalyze the hydrolysis

of the acetyl group from the amine of acetyl-lysine residues

within histone tails. The 16 HDACs encoded in the Arabidopsis

genome (Table 3) are organized into three families (RPD3/

HDA1, HD2, and SIR2).

In Arabidopsis, HDA6 and HDA19 are the most extensively

studied HDACs (Mehdi et al., 2016). They belong to the RPD3/

HDA1 family. HDA6 and HDA19 have similar developmental

functions. Both participate in pathogen defense systems, JA, and

salicylic acid-mediated defense responses (Zhou et al., 2005; Wu
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et al., 2008; Choi et al., 2012), regulation of flowering, senescence

(Wu et al., 2008; Yu et al., 2011; Mehdi et al., 2016), and abiotic

stress responses (Chen and Wu, 2010). The fundamental

difference between HDA6 and HDA19 is the antagonistic

function, positive and negative, respectively, they have in the

regulation of salt stress (reviewed in Luo et al., 2017).

HDA19 represses gene expression upon ABA and drought

treatments by four different ways: 1) interaction with the

ethylene response factor ERF7 and the transcriptional

repressor SIN3, originating a repressive complex that silences

stress-responsive genes (Song et al., 2005); 2) binding to SIN3-

LIKE1 (SNL1) and SIN3-LIKE2 (SNL2), homologs of SIN3, to

form a repressive complex that prevents ABA biosynthesis via

the deacetylation of H3K9/14/18 (Wang et al., 2013); 3)

formation of a complex with MSI1 that represses expression of

genes in the ABA pathway such as the ABA receptors PYL4,

PYL5, and PYL6 (Mehdi et al., 2016); and 4) binding to HDA6

and HDC1 and deacetyl K3K9/K14 in response to drought stress

(Perrella et al., 2013).
TABLE 3 Classification of histone deacetylases in Arabidopsis.

Enzyme
group

Family Regulator Gene Target Role in Stress (References)

Deacetylases RPD3/
HDA1

HDA2 At5G26040 H3Ac and
H2BAc

HDA5 At5G61060 H3Ac

HDA6 At5G63110 H3K9,
H3K14,
H4

Drought and salt stress (Chen and Wu, 2010; Kim et al., 2017), cold (To et al., 2011; Jung et al., 2013;
Luo et al., 2017), heat (Popova et al., 2013), pathogen defense, JA, and salicylic acid-mediated defense
responses (Zhou et al., 2005; Wu et al., 2008; Choi et al., 2012)

HDA7 At5G35600 H3K9,
H3K14

HDA8 At1G08460

HDA9 At3G44680 H3K9 Drought and salinity (Mehdi et al., 2016; Zheng et al., 2016)

HDA10 At3G44660

HDA14 At4G33470

HDA15 At3G18520 Drought (Lee and Seo, 2018; Tu et al., 2022)

HDA17 At3G44490

HDA18 At5G61070

HDA19 At4G38130 H3K9,
H3K14,
H3K18,
H2B

ABA and salt stress (Chen and Wu, 2010). Pathogen defense, JA, and salicylic acid-mediated defense
responses (Zhou et al., 2005; Wu et al., 2008; Choi et al., 2012)

HD2 HDT1/
HD2A

At3G44750 H3K18,
H3K27,
andH2B

Repressed in ABA and salt (Luo et al., 2012)

HDT2/
HD2B

At5G22650 H3K18
and
H3K27

Repressed in ABA and salt (Luo et al., 2012)

HDT3/
HD2C

At5G03740 H3K9,
H3K18

Salinity and drought tolerance (Luo et al., 2012), cold (Park et al., 2018), heat (Buszewicz et al., 2016)

HDT4/
HD2D

At2G27840 H3K27 Salinity tolerance, cold and drought (Luo et al., 2012; Han et al., 2016)

SIR2 SRT1 At5G55760 H3K9 Ethylene response (Zhang et al., 2018)

SRT2 At5G09230 H3K9 Ethylene response (Zhang et al., 2018)
frontiersin.org

https://doi.org/10.3389/fpls.2022.984702
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nunez-Vazquez et al. 10.3389/fpls.2022.984702
HDA6 is upregulated by cold stress. This enzyme regulates

cold-responsive (COR) genes during freezing tolerance (Park

et al., 2018). HDA6 forms complexes with MSI4 and MSI5, that

cause histone deacetylation in specific target loci, leading to

transcriptional gene silencing (Gu et al., 2011; Mehdi

et al., 2016).

The histone deacetylase HDA9, another member of the

RPD3/HDA1 family, is a negative regulator of the ABA

pathway. hda9 loss-of-function mutant displays increased

tolerance to dehydration and upregulation of drought-

responsive genes. During drought conditions, HDA9 interacts

with critical components of the ABA pathway, such as ABI4

(Baek et al., 2020), and results in the induction of critical

enzymes in the ABA catabolic pathways like ABA 8’-

hydroxylases, encoded by CYP707A1 and CYP707A2 (Baek

et al., 2020). HDA9 is also particularly important because it

collaborates with the PRC2 complex by deacetylating H3K27

prior to its trimethylation (Qian et al., 2012).

HDA15 participates in the regulation of several warm

temperature genes, including HEAT SHOCK PROTEIN 20

(HSP20), INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19),

and IAA29 (Shen et al., 2019). HDA15 participates in the ABA

pathway. On one hand, it interacts with the transcription factor

MYB96 to repress the expression of RHO GTPASE OF PLANTS

in response to ABA (Lee and Seo, 2019). On the other hand,

HDA15 interacts with MAC3A and MAC3B, subunits of the

MAC complex, by a process enhanced by ABA. Moreover, hda15

and mac3a/mac3b mutants are ABA insensitive in seed

germination and hyposensitive to salinity (Tu et al., 2022).

The expression of HD2A, HD2B, HD2C, and HD2D —

members of the HD2A deacetylase family— is repressed by ABA

and NaCl, which indicates their potential role in stress response.

Overexpression of HD2D and HD2C results in increased

drought tolerance (Sridha and Wu, 2006; Han et al., 2016).

The expression of the ABA-responsive genes ABI1 and ABI2

increase in hda6, hd2c, and hda6/hd2c-1 mutant backgrounds,

which was associated with increased histone H3K9/K14

acetylation (Luo et al., 2012). In the regulation of salinity

tolerance, HD2C, together with HDA6 and HD2D, act as

positive regulators (Luo et al., 2012).

In summary, HDA9 and HDA19 negatively regulate salt

stress tolerance (Mehdi et al., 2016; Zheng et al., 2016; Ueda

et al., 2017), while HDA6, HD2C, and HD2D positively regulate

salinity tolerance (Chen and Wu, 2010; Chen et al., 2010; Luo

et al., 2012; Han et al., 2016). These roles are further supported

by the phenotypes of the previously mentioned HDAC mutants

(reviewed in Ueda and Seki, 2020).
Histone methyltransferases

Histone methyltransferases catalyze mono-, di- and

trimethylation of the amino group of lysines and arginines. This
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process is dependent on S-adenosyl-L-methionine (Smith and

Denu, 2009). In plants, there are only eight histone lysine

methylation sites: H3K4, H3K9, H3K26, H3K27, H3K36,

H3K79, H4K20 and H1K26, and six arginine methylation sites:

H3R2, H3R8, H3R17, H3R26, H4R3 and H4R17 (Zhang and

Reinberg, 2001; Springer et al., 2003; Liu et al., 2010; Pontvianne

et al., 2010; reviewed in Ueda and Seki, 2020).

The Arabidopsis genome contains 49 genes encoding SET

domain-containing (SDG) methyltransferases (Baumbusch

et al., 2001; Ng et al., 2007). Out of the 49 SDG proteins, 31

have histone lysine methyltransferase (HKMT) activity and are

divided into five classes (I to V) based on their domain

architectures (Table 4) (Baumbusch et al., 2001; Springer et al.,

2003; Ng et al., 2007). In addition, there is an additional HKMT

family, known as telomeric silencing 1-like (DOT1), which does

not contain a SET domain and specifically adds methyl groups at

the telomeric regions of H3K79 (Ng et al., 2002). Protein

arginine methyltransferases (PRMTs) are classified as Type I

or Type II, depending on the position of the methyl group on the

guanidine of the methylated arginine (Hernando et al., 2015).

Plant SET proteins are classified into five classes: E(Z),

ASH1, TRX (trithorax), PHD and SU(VAR) (Table 4).

The most common forms of methylation consist of the

trimethylation of H3K27 and H3K4. H3K27me3 increases

chromatin condensation and limits the recruitment of the

transcriptional machinery and transcription factors to genes.

Thus, H3K27me3 is associated with gene repression (Aranda

et al., 2015; Zhao et al., 2021). In contrast, H3K4me3 colocalizes

with actively transcribed genes, where it promotes the

recruitment of transcription initiation factors to promoters of

target genes (Lauberth et al., 2013; Zhao et al., 2021).

The leading writers of H3K27me3 in plants and animals are

the PRC2 complexes. In Arabidopsis, the histone methyl

transferase of the PRC2 complex and EZ homologs are MEDEA

(MEA), CURLY LEAF (CLF) and SWINGER (SWN) (Makarevitch

et al., 2013). The H3K27me3 mark has an intricate relationship

with stress. It is a mark of facultative heterochromatin, involved

primarily in the repression of developmentally regulated genes

(Füßl et al., 2018). The H3K27me3 mark gives a more plastic

structure to chromatin than constitutive heterochromatin. This

structure allows condensation or decondensation of regions and

permits transcription in temporal and spatial contexts, such as the

derepression of genes involved in the abiotic stress response.

Together with H3K4me3, it can have an implication on bivalent

and responsive genes (Zhao et al., 2021).

The members of the trithorax family are responsible of

H3K4 trimethylation. ATX1 drives H3K4me3 methylation in

response to drought and osmotic stress (Ding et al., 2011). ATX1

together with ATRX7 regulate the expression of heat stress-

responsive genes, not only during heat stress but also during

stress recovery (Song et al., 2021). atx4 and atx5 mutants, also

members of the trithorax family, showed increased tolerance to

drought and salt stresses (Liu et al., 2018).
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TABLE 4 Classification of histone methyltransferases in Arabidopsis.

Enzyme group Family Regulator Gene Target Role in Stress (References)

Lysine Methyltransferases I, E(Z) CLF/SDG1 At2G23380 H3K27

SWN/SDG10 At4G02020 H3K27

MEA/SDG5 At1G02580 H3K27

II, ASH1 ASHH1/SDG26 At1G76710 H3K36

ASHH2/SDG8 At1G77300 H3K36 Immunity defense (Lee et al., 2016)

ASHH3/SDG7 At2G44150 H3K36

ASHH4/SDG24 At5G59960 H3K36

ASHR3/SDG4 At4G30860 H3K36/H3K4

III, TRX ATX1/SDG27 At2G31650 H3K4 Dehydration and osmotic stress (Ding et al., 2011). Heat (Song et al.,
2021)

ATX2/SDG30 At1G05830 H3K4

ATX3/SDG14 At3G61740 H3K4

ATX4/SDG16 At4G27910 H3K4 Drought (Liu et al., 2018)

ATX5/SDG29 At5G53430 H3K4 Drought (Liu et al., 2018)

ATXR3/SDG2 At4G15180 H3K4

ATXR7/SDG25 At5G42400 H3K4 Heat (Song et al., 2021); Immunity defense (Lee et al., 2016)

IV, SET
+PHD

ATXR5/SDG15 At5G09790 H3K27

ATXR6/SDG34 At5G24330 H3K27

V, SU(VAR) SUVH1/SDG32 At5G04940 H3K4, H3K9

SUVH2/SDG3 At2G33290 H3K9, H3K27,
H4K20

SUVH3/SDG19 At1G73100 H3K9

SUVH4/SDG33 At5G13960 H3K9

SUVH5/SDG9 At2G35160 H3K9

SUVH6/SDG23 At2G22740 H3K9

SUVH7/SDG17 At1G17770 H3K9

SUVH8/SDG21 At2G24740 H3K9

SUVH9/SDG22 At4G13460 H3K9

SUVR1/SDG13 At1G04050 H3K9

SUVR2/SDG18 At5G43990 H3K9

SUVR3/SDG20 At3G03750 H3K9

SUVR4/SDG31 At3G04380 H3K9

SUVR5/SDG6 At2G23740 H3K9

DOT1 DOT1 At2G36120 H3K79

Arginine
Methyltransferases

PRMT PRMT1 At2G19670 H4R3

PRMT3 At3G12270 H4R3

PRMT4A At5G49020 H3R2, H3R17

PRMT4B At3G06930 H3R2, H3R17

PRMT5/CAU1/
SKB1

At4G31120 H4R3 Drought (Fu et al., 2013) and salinity (Zhang et al., 2011)

PRMT6 At3G20020 H3R2

PRMT7 At4G16570 H4R3

PRMT10 At1G04870 H4R3

PRMT11 At4G29510
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The loss of function of CAU1/PRMT5/SKB1, a member of

the Type II PRMT family, results in salt hypersensitivity (Zhang

et al., 2011). This enzyme catalyzes the addition of methyl

groups to H4R3. In the presence of the salt stimulus, SKB1

dissociates from chromatin, leading to demethylation of arginine

residues, and the transcription of stress-responsive genes (Fu

et al., 2013).
Histone demethylases

Histone demethylases perform the antagonistic reaction to

histone methyltransferases. It consists of the removal of the

methyl group of the lysines and arginine residues of H3 and H4

tails. The nature of histone demetylation is intriguing due to the

irreversible nature of the C-N bond. The first histone

demethylase activity was identified in 1973 (Paik and Kim,

1973). There are 25 histone demethylase genes encoded in the

Arabidopsis genome (Table 5) organized into two families: the
Frontiers in Plant Science 14
FAD-dependent LSD/LDL/FLD and Jumonji C JMJ (Tsukada

et al., 2006; Gu et al., 2016).

LSD1 was the first isolated demethylase (David Allis et al.,

1980). This enzyme catalyzes the reduction of FAD to FADH2

and oxidizes the methylated lysine, resulting in an imine

intermediate (Smith and Denu, 2009). The mechanism of

histone demethylation by LSD1 is highly conserved among

most eukaryotes (Lan et al., 2007b; Lan et al., 2007a; Liu et al.,

2007; Opel et al., 2007; Rudolph et al., 2007; Katz et al., 2009).

Another potential mechanism is the conversion of

methylarginine to citrulline by a peptidyl arginine deiminase

(Wang et al., 2004).

The histone demethylases included in the JMJ family contain

a JmjC domain, which catalyzes the histone demethylation

through the oxidation of ferrous ions Fe (II) and a-
ketoglutarate (a-kg) (Lu et al., 2010). JMJ15 and JMJ17

demethylases take part in salinity and dehydration stress

response, respectively (Liu et al., 2010; Shen et al., 2014; Xiao

et al., 2016; Huang et al., 2019). There is an accumulation of

lignin in the jmj15 mutant, although the regulation of lignin
TABLE 5 Classification of histone demethylases in Arabidopsis.

Enzyme
group

Family Regulator Gene Target Role in Stress (References)

Demethylases LSD/LDL/FDL LDL1 At1G62830 H3K4me1/2

LDL2 At3G13682 H3K4me1/2

LDL3 At4G16310 H3K4me2

FDL At3G10390 H3K4me1/2

KDM4/JHDM3 JMJ11/ELF6 At5G04240 H3K27me2/3, H3K9me3

JMJ12/REF6 At3G48430 H3K27me2/3, H3K9me3, H3K4me2/3, H3K36me2/
3

JMJ13 At5G46910 H3K27me3

KDM5/JARID1 JMJ14 At4G20400 H3K4me1/2/3 High temperatura (HT) (Cui et al., 2021)

JMJ15 At2G34880 H3K4me1/2/3 Salinity (Shen et al., 2014) HT (Cui et al.,
2021)

JMJ16 At1G08620 H3K4me3

JMJ17 At1G63490 H3K4me1/2/3 Dehydration (Huang et al., 2019)

JMJ18 At1G30810 H3K4me2/3

JMJ19 At2G38950 H3K4me3

JMJ21 At1G78280 H3K4me3

JMJ22 At5G06550 H3R2me2, H4R3me1/2

KDM3/JHDM2 JMJ24 At1G09060 H3K9

JMJ25 At3G07610 H3K9me1/2

JMJ26 At1G11950 H3K9me2

JMJ27 At4G00990 H3K9me2 ABA and drought (Wang et al., 2021)

JMJ28 At4G21430 H3K9me2

JMJ29 At1G62310 H3K9me2

JmjC domain-
only

JMJ20 At5G63080 H3R2me2, H4R3me1/2

JMJ30 At3G20810 H3K27me2/3, H3K36me2/3

JMJ31 At5G19840

JMJ32 At3G45880 H3K27me3
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biosynthetic genes by JMJ15 still remains uncertain. It would be

interesting to study whether JMJ15 and the HAT GCN5

participate in a common regulatory pathway in cell wall

modification (Yung et al., 2021). jmj15 exhibits increased

sensitivity to salinity stress. Similarly, overexpression of JMJ15

increases salinity tolerance in the plant and enhance seed

germination under salt treatment (Yang et al., 2012; Shen

et al., 2014). The loss-of-function mutants of JMJ17 display

dehydration stress tolerance and ABA hypersensitivity regarding

stomatal closure. During high temperature conditions, JMJ14

and JMJ15 remove H3K4me3 from transcriptional repressors of

responsive genes in response to trigger thermomorphogenesis

(Cui et al., 2021).

A recent study details the role in abiotic stress of JMJ27

(Wang et al., 2021). They revealed that JMJ27 positively

regulates both ABA and drought-responsive genes and

establishes a permissive chromatin state to enable an efficient

transcriptional induction upon drought stress conditions (Chen

et al., 2010; van Dijk et al., 2010). This is achieved by the

demethylation of H3K9me2. Likewise, JMJ27 may function

together with drought stress-activated H3K4 methyltransferase

and histone acetyltransferase to co-activate their target genes

under drought stress conditions.
Histone ubiquitination

Although acetylation and methylation are the most studied

PTMs, there are additional modifications that influence

chromatin accessibility. Histone ubiquitination comprises the

incorporation of a 76-amino acid polypeptide into lysine

residues of histones. This modification occurs mainly in H2A

and H2B histones and is catalyzed by the formation of an

isopeptide bond between the carboxy-terminal glycine of

ubiquitin and the ϵ-group of a lysine residue on the carboxy-

terminal tail of the histones. Substrates can be both poly- and

monoubiquitinated. Polyubiquitination creates an irreversible

signal for proteasomal-mediated degradation, whereas

monoubiquitination generates a regulatory signal, which can

be reversed by the action of ubiquitin-specific proteases (USPs/

UBPs) called deubiquitinating enzymes (DUBs) (Zhou

et al., 2017).

Arabidopsis E3 ubiquitin ligases (HUB1 and HUB2) and E2

ubiquitin conjugases (UBC1 and UBC2) are responsible for

histone H2B mono-ubiquitination (H2Bub) (Cao et al., 2008).

H2Aub is preferentially linked to transcriptional repression by

counteracting H3K4me3. Specifically, the PRC1 complex

catalyzes the monoubiquitination of H2A.ZK129 in a process

linked to transcriptional repression (Gómez-Zambrano et al.,

2019). On the other hand, H2Bub is a significant regulator of

transcriptional activation, as it is required for H3K4me3 and

H3K36me3. The monoubiquitination of H2B leads to the

activation of responsive genes involved in abiotic and biotic
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stress that includes drought, salt, fungal pathogens, cold, heat

and immune responses (Cao et al., 2008; Dhawan et al., 2009;

Zou et al., 2014; Zhou and Zeng, 2017; Chen et al., 2019; Sun

et al., 2020).
Histone phosphorylation

Histone phosphorylation consists of the addition of a

phosphate group, and thus, of a negative charge, to serine,

threonine, or tyrosine residues of the N-terminal tail of

histones (Figure 3). This modification is involved in response

to DNA damage, extracellular signals, and mitosis, where it leads

to chromatin condensation in prophase (Dai et al., 2005;

Houben et al., 2007; Rossetto et al., 2012; Wang and Higgins,

2013; Wang et al., 2015). The phosphorylation process is

conserved along eukaryotes (Bi et al., 2011; Pirrotta, 2015).

There is also induction of H3 phosphorylation in response to

abiotic stress, although the specific molecular mechanisms of the

response are not clearly understood. H3S10ph is encompassed

with acetylation in response to salt stress and cold (Sokol et al.,

2007), suggesting that H3 phosphorylation is associated with

transcription reprogramming after stress inducement. The

phosphorylation of H3T3ph increases in pericentromeric

regions after drought stress treatments (Wang et al., 2015) and

is thought to be important in the maintenance of

heterochromatin, suggesting that phosphorylation is

implicated in gene silencing upon abiotic stress.
Conclusions and future perspectives

How chromatin marks affect transcription is a hot topic that

brings the attention of epigenetics researchers from diverse

backgrounds and fields. Thus, whether chromatin changes

cause or correlate with the changes in gene expression is an

area of active debate (Millán-Zambrano et al., 2022; Policarpi

et al., 2022; Wang et al., 2022). Over the last decade, different

studies have addressed this question with different technologies

including ChIP-seq, CUT&RUN, CUT&Tag and TADs (Barski

et al., 2007; Lieberman-Aiden et al., 2009; Dixon et al., 2012;

Brind’Amour et al., 2015; Skene and Henikoff, 2017; Hainer and

Fazzio, 2019; Kaya-Okur et al., 2019; Deng et al., 2022). On one

hand, some evidence support that the marks are not instructing

the activation/silencing, but instead they are informative of DNA

processes (Wang et al., 2022). On the other hand, recent data

support that some histone PTMs, such as H3K4me3, directly

drive changes in gene expression (Policarpi et al., 2022). We

consider that the answer to this question is far from being

simple. It is likely that some histone PTMs may cause the

initiation of DNA processes, such as transcriptional activation.

In these cases, the histone PTM could be responsible for driving

the genomic response. Similarly, there is a good chance that
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other histone PTMs are written as a consequence of these

processes. For example, as the trace of a polymerase in a

specific region of the genome. The mechanism that determines

which marks acts as instructors or consequences of a genomic

response depends on the context provided by the tissue, the

developmental stage and the genomic landscape.

This topic is particularly intriguing during abiotic stress

conditions, where the timing and order of the histone

modifications is a crucial step to decipher the mechanism

guiding the stress response. For that purpose, it is essential to

establish a timeline of the epigenetic reprogramming in this

scenario. During the early response, which ranges from the first

to the fifth hour, a signaling network drives the binding of stress-

specific transcription factors —DREB, ABRE— and the

transcriptional machinery (Geng et al., 2013). Deciphering

which epigenetic mark or histone variant is deposited/removed

first after the abiotic stress would be the basis to understand

better the intricate relationship between the histone variants and

modifications. New studies focused on the temporal analysis of

loss of and gain of function mutants of the enzymes that drive

the major epigenetic regulators (H3K27me3, H3K4me3 and

H2A.Z) wi l l be crucia l to es tabl ish the tempora l

epigenetic dynamics.

Bivalent chromatin is composed of epigenetic marks that

play opposite roles on gene expression and co-localize in the

same genomic regions (Voigt et al., 2013; Zhao et al., 2021). The

H3K27me3/H3K4me3 pair of marks is the most usual form of

bivalent chromatin. The first bivalent genes identified participate

in cell differentiation in human embryonic stem cells (Bernstein

et al., 2006). Since then, bivalent genes were identified in distinct

species. An example of bivalent gene in Arabidopsis is the

FLOWERING LOCUS C (FLC) (Jiang et al., 2008). The main

hypothesis is that bivalent chromatin serves as a fast mechanism

inducing developmentally regulated genes during differentiation

(Bernstein et al., 2006). As the early stress response requires a

rapid activation of responsive genes, a hypothesis is that poising

of genes for transcriptional activation could be a mechanism for

a fast gene regulation in response to abiotic stress. However, the

role of bivalency marks has not been properly characterized in

whole organisms nor during stress responses —with the

exception of cold stress in potato tuber (Zeng et al., 2019)— so

we consider it is an interesting topic of research.

There are histone variants that behave differently depending

on the tissue they are deposited. If we take the chromatin

organization within the sperm cells as an example, we find a

regulatory network of histone PTMs and variants that define the

accessibility to the transcriptional machinery. Histone variants

H3.10 and H2B.8 are specific of sperm cells and represent the

major pool of histones H3 and H2B, respectively (Okada et al.,

2005; Jiang et al., 2020a; Buttress et al., 2022). Additionally,

H3K27 is demethylated in sperm nuclei in a well-coordinated

system in which the loss of H3K27me3 is associated to an

increase of H3K4me3 in those genes required for embryo
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patterning, seed dormancy and flowering (Borg et al., 2020).

Altogether, this suggest there is an intricate and well-conserved

relationship between histone variants and modifications in

specific tissues during development. Therefore, the tissue

specificity of some epigenetic players rise the question of

whether there are tissue-specific epigenetic changes during the

abiotic stress response. Due to the nature of the stress response,

it is possible that external organs and tissues reprogram their

epigenetic landscape differently from internal tissues.

There is a need to perform studies that not only study the

role of standard PTMs but also of those that are only present in

specific histone variants. It makes sense that epigenetic marks

involved in the abiotic stress response coincide with stress-

specific histone variants in the same nucleosome. An example

of specific modifications in histone variants is the ubiquitination

of H2A.Z in its K129 residue. This mark specifically controls

transcriptional repression by a group of genes silenced by PRC1,

suggesting the possible function that the K129Ub might have in

the dual role of H2A.Z (Gómez-Zambrano et al., 2019).

Moreover, a recent preprint suggest that the K27 residue in

the histone variant H3.3 is indispensable for many

developmental processes that ranges from flowering to callus

formation (Fal et al., 2022). Additionally, it has been reported

that the SQ motif present in H2A.W.7 prevents the

phosphorylation of the KSPK motif, a mark associated with

DNA damage response (Schmücker et al., 2021), which indicates

that the differences in the variants’ sequences result in diversity

in transcriptional regulation. Consequently, further analyses are

needed to fine-tune the relationship between these epigenetic

players during the abiotic stress response.

In addition to histone variants and histone modifications,

there is a need to unveil the role of DNA methylation, another

major epigenetic regulator, in the chromatin landscape of stress-

responsive genes. DNAmethylation has been broadly described to

regulate gene expression and silencing (Robertson, 2005; Slotkin

and Martienssen, 2007; Zhang et al., 2018; He et al., 2022). Its

relationship in the abiotic stress response as salinity, heat stress,

cold, drought, heavy metals or nutrient deficit has been proposed

earlier (Villagómez-Aranda et al., 2021; Reddy et al., 2022),

although no significant conclusion has been made yet. As this

modification colocalizes with heterochromatic regions and

transposable elements (TEs) (Henderson and Jacobsen, 2007;

Zhang et al., 2018), it makes sense to hypothesize that the CG,

CHG and CHH regions of the genome can be methylated and

demethylated to alter the transcription of specific stress-

responsive genes. So far, it is known that NaCl exposure of

Arabidopsis DECREASE IN DNA METHYLATION 1 mutant

ddm1, a chromatin remodeler that facilitates DNA methylation,

led to structural chromatin alterations (Yao et al., 2012; Sahu et al.,

2013). Also, changes in DNA methylation in response to drought

were not only Arabidopsis specific but are also observed in rice,

which under salt stress showed altered DNA methylation levels

(Zhang et al., 2013), maize (Sallam and Moussa, 2021), tomato
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(Huang et al., 2016), cotton (Wang and Qiao, 2020) and soy

(Chen et al., 2019). However, more work needs to be done to

explore the in-depth mechanisms and effect of DNA methylation

on abiotic stress responses in plants.

To sum up, we consider that the epigenetic changes during

the abiotic stress response should not be studied individually

but, as the fundamental components of a complex network that

provides a regulatory potential. Future insights into how the

histone variants and modifications define chromatin

organization and impact plant development during the abiotic

stress response hold a great potential.
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