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Acrophialophora jodhpurensis:
an endophytic plant growth
promoting fungus with
biocontrol effect against
Alternaria alternata
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Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad,
Mashhad, Iran

In this study, efficiency of the endophytic fungal isolate Msh5 was evaluated

on promoting tomato plant growth and controlling Alternaria alternata,

the causal agent of early blight in tomatoes. Morphological and molecular

(ITS and tub2 sequences) analyses revealed that the fungal isolate, Msh5,

was Acrophialophora jodhpurensis (Chaetomium jodhpurense Lodha). This

beneficial fungus was capable of producing indole-3-acetic acid (IAA),

urease, siderophore, extracellular enzymes, and solubilized phosphate. Under

laboratory conditions, the Msh5 isolate of A. jodhpurensis inhibited A. alternata

growth in dual culture, volatile and non-volatile metabolites assays. The

supernatant of this endophytic fungus was capable of reducing spore

germination and altering the hyphal structure of A. alternata and the

spores produced germ tubes showed vacuolization and abnormal structure

compared to the control. Also, the effect of A. jodhpurensis on plant growth

parameters (such as shoot and root weight and length) and suppressing

A. alternata was investigated in vivo via seed inoculation with spores of

A. jodhpurensis using 1% sugar, 0.5% carboxymethyl cellulose (CMC) or

0.5% molasses solution as stickers. Colonization of tomato roots by the

endophytic fungus resulted in significant increasing plant growth parameters

and reduction in the progress of the diseases caused by A. alternata compared

to the controls. Among the different coating materials used as stickers,

sugar was found to be the most effective for enhancing plant growth

parameters and decreasing the disease progress. Therefore, A. jodhpurensis

isolate Msh5 can be suggested as a potential biofertilizer and biocontrol agent

for protecting tomato plants against A. alternata.
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Introduction

Tomato (Solanum lycopersicum L.) is one of the most
important popular vegetables worldwide. Various species of
Alternaria are causal agents of early blight disease, which is one
of the major biotic stresses and reduces tomato production every
year (Kumar et al., 2008). Yield losses due to tomato infection
by this fungus are reported to be 30–79% (Dube et al., 2014) in
different tomato growing regions.

The Alternaria genus, which was first introduced by Nees
(1816), belongs to the kingdom Mycota, phylum Ascomycota,
subphylum Pezizomycotina, class Dothideomycetes, order
Pleosporales, family Pleosporaceae and is a ubiquitous
necrotrophic fungus that includes saprobic, endophytic and
pathogenic species (Saharan et al., 2016). The teleomorph of
some Alternaria species is the genus Lewia. Fungi belonging
to Alternaria spp. can grow on several substrates including
all aerial parts of various plant species, agricultural products,
soil, and air. Many species of Alternaria have been reported as
the causal agents of tomato early blight disease, among them
A. alternata is very important due to its destructive damage on
the host plants (Ramezani et al., 2019).

The early blight is capable of causing damage at all growth
stages and the disease symptoms occur on the leaves, fruits,
and stems as brown and finally necrotic spots. Generally, the
disease symptoms occur on the oldest leaves and cause severe
destruction of the aerial part together with reduction in the size
and number of tomato fruits (Fritz et al., 2006; Dharmendra
et al., 2014). The fungal genus Alternaria produces large,
multicellular, dark-colored conidia, in single or branched chains
on short conidiophores (Thomma, 2003; Ramezani et al., 2019),
which are important in infecting host plant tissues and disease
distribution. Alternaria species are capable of residing in seeds
and soil and the air-borne spores can be distributed over long
distances, which make the disease control very hard.

To control plant diseases caused by Alternaria spp. various
strategies can be used in agricultural systems. One of the disease
management strategies is chemical control, which can prevent
infection. But it may cause several problems such as increase
of resistance in the pathogen populations, toxicity to non-
target organisms, environmental pollution, and the presence of
residual chemicals in crops, which is harmful to the consumer
health. For all these reasons, biological control via application
of beneficial microorganisms can be effective in management of
destructive phytopathogens (Taheri and Flaherty, 2022).

Fungal endophytes live in plant tissues for at least a
part of their life cycle without causing disease symptoms
(Dutta et al., 2014). These fungi have beneficial effects
on the host plants, including plant growth promotion and
induction of plant defense mechanisms which led to increased
resistance against various biotic and abiotic stresses (Murthy
et al., 2014; Daroodi et al., 2021a,b; Kheyri et al., 2022).
The plant growth promoting fungi (PGPF) are capable of

phosphate solubilization, production of indole-3-acetic acid
(IAA), siderophore, and extracellular enzymes, which are
involved in enhancing plant growth parameters (Jogaiah et al.,
2013; Hossain et al., 2017; Zhang et al., 2018). Many studies
have reported the ability of endophytic fungi to promote
plant growth, which may be attributed to the production of
secondary metabolites including phytohormones (as auxins
and gibberellins) and siderophore, also the ability to solubilize
nutrients for their host plants (Waqas et al., 2014; Khan et al.,
2015; Numponsak et al., 2018).

The genus Acrophialophora, with A. nainiana as its
type species, is considered as a thermotolerant and widely
distributed fungal genus in temperate and tropical zones.
This fungus is classified in Ascomycota and belongs to
the Chaetomiaceae family. The genus Acrophialophora is
previously reported as a biocontrol agent against several
phytopathogens, such as Pythium aphanidermatum (Sharma
et al., 1981; Ramzan et al., 2014), Fusarium udum (Rai and
Upadhyay, 1983), Phythium debaryanum, Phytophthora capsica,
Sclerotinia sclerotiorum, Botrytis cinerea, Gaeomannomyces
graminis, R. solani (Turhan and Grossmann, 1989; Ramzan
et al., 2014; Daroodi et al., 2021a), Macrophomina phaseolina
(Siddiqui and Mahmood, 1992; Ramzan et al., 2014), Fusarium
solani (Ramzan et al., 2014), and Alternaria porri (Abdel-Hafez
et al., 2015).

Previous reports indicate the efficiency of fungal species
as biocontrol agents against Alternaria spp. For example,
Penicillium oxalicum was effective against A. alternata in rice
(Sempere and Santamarina, 2010), Trichoderma harzianum was
effective against A. alternata in quince (Tekiner et al., 2019),
and also in strawberry and cucumber fruits (Tozlu et al., 2018).
Trichoderma viride and T. harzianum were effective against
A. solani in tomato (Roy et al., 2019). Also, the endophytic
fungus Chaetomium globosum (Fayyadh and Yousif, 2019),
and Trichoderma asperelloides (Ramírez-Cariño et al., 2020),
T. harzianum and T. longibrachiatum (Hosseinmardi et al.,
2020) were antagonistic against A. alternata in tomato.

Seed coating technology is one of the methods that
increase germination rates, improve seed performance and
protect the seeds and seedlings from pathogens. In this
method, the seeds are treated using chemical, physical
(such as hot water, dry or aerated heat and radiation) or
biological agents, before planting. Seed treatments with
biocontrol agents in different crops have been reported
for control of diseases caused by Pythium ultimum (Callan
et al., 1990; Mathre et al., 1995), Penicillium oxalicum
(Mathre et al., 1995), P. arrhenomanes, and Fusarium
graminearum (Mao et al., 1997) in corn, Pythium sp. on
canola, safflower, dry pea, and sugar beet (Bardin et al.,
2003), Macrophomina phaseolina, Rhizoctonia solani and
Fusarium spp., on okra and sunflower plants (Dawar et al.,
2008), R. solani, Fusarium solani and Sclerotium rolfsii in faba
(El-Mougy and Abdel-Kader, 2008).
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Also, plant growth promotion using endophytic fungi has
been demonstrated in tomato plants by many researchers. For
example, Serendipita indica (formerly Piriformospora indica)
(Fakhro et al., 2010), Trichoderma atroviride and Trichoderma
hamatum (Tucci et al., 2011), Penicillium simplicissimum
(Khan et al., 2015), Pochonia chlamydosporia (Zavala-Gonzalez
et al., 2015), Neocosmospora haematococca (formerly Nectria
haematococca) (Valli and Muthukumar, 2018) and Fusarium
spp. (Nefzi et al., 2019) have been reported as endophytic PGPF,
which enhance growth parameters in tomato plants.

To our knowledge, plant growth promotion traits and
biocontrol effects of A. jodhpurensis (Chaetomium jodhpurense
Lodha) against A. alternata pathogenic on tomato plants
have not been investigated, till now. Thus, the aims of
this study were (i) to isolate and identify the endophytic
fungus A. jodhpurensis (ii) to investigate effect of the
endophyte on growth parameters of tomato plants and
its association with phosphate solubilization, indole-acetic
acid (IAA), siderophore, urease, and extracellular enzymes
production (iii) to investigate effect of A. jodhpurensis
on vegetative growth, spore germination, and hyphal
structure of A. alternata in vitro, and (iv) to determine
its effect on development of the disease caused by
A. alternata in vivo using seed inoculation with spores of
A. jodhpurensis.

Materials and methods

Endophytic fungus

Sample collection
Sampling was carried out in Mashhad, Razavi Khorasan

province, Iran (36.2972◦N, 59.6067◦E) in September 2017.
Briefly, 10 samples were randomly collected from healthy
tomato plants by walking in a zig-zag pattern in one field. The
samples were transported to the Plant Pathology Laboratory at
Ferdowsi University of Mashhad in sterile plastic bags.

Isolation
The endophytic fungal isolate Msh5 was obtained from

healthy roots of tomato in the north east of Iran using the
method described by Wiyakrutta et al. (2004). Briefly, the roots
were washed under running tap water, then cut into 1 cm
fragments. These pieces were sterilized using 0.5% (w/v) sodium
hypochlorite solution for 5 min, then 70% (v/v) ethanol for
1 min, and rinsed three times with sterile distilled water. The
root pieces were dried on sterile filter paper and five pieces
were placed in each petri dish containing potato dextrose agar
(PDA) medium amended with streptomycin (250 mg/L) and
chloramphenicol (250 mg/L) to inhibit bacterial growth. After
incubation at 25◦C for 12 days, the fungal isolate was purified
on PDA using the hyphal tip method.

Morphological identification
The endophytic fungal isolate obtained in this study

was cultured on three different media, including oat agar
(OA), PDA, and 1/10-strength potato agar (1/10-strength
PA, containing 20 g potato boiled for 30 min and filtrated,
15 g agar, and 1 l distilled water) and incubated in the
dark at 25◦C for 7 days. Morphological identification of
the fungal isolate, Msh5, http://www.mycobank.org/BioloMICS.
aspx?TableKey=14682616000000067&Rec=572180&Fields. All
was performed on the basis of morphological characters of
the colony, hyphae, and the characteristics of reproductive
structures, according to the identification key described by
Wang et al. (2019).

Molecular identification
The isolate Msh5 http://www.mycobank.org/BioloMICS.

aspx?TableKey=14682616000000067&Rec=572180&Fields. All
was cultured in potato dextrose broth (PDB) and incubated
in a rotary shaker at 30◦C and 150 rpm for 2 weeks. Then,
the mycelia and spores of the fungus were harvested from the
liquid culture using Whatman filter paper. Genomic DNA was
extracted according to the method of Zhang et al. (2010) using
cetyltrimethyl ammonium bromide (CTAB). Briefly, cell walls
of fungal mycelia and spores were broken down by grinding
via sterile mortar and pestle with liquid nitrogen until the dry
powder was obtained. Then, CTAB extraction buffer (containing
CTAB 10%, NaCl 5M, EDTA 20 mM, and Tris- HCL 1M) was
added, and after incubation at 65◦C for 45 min, purification
was done with chloroform: isoamyl alcohol (24: 1). The mixture
was centrifuged at 10,000 g for 15 min and the supernatant
was taken, then isopropanol was added and was centrifuged at
13,000 g for 5 min. Finally, the DNA was rinsed with 70% (v/v)
ethanol and dissolved in 50 µl of pure water.

The primers used for PCR amplification were ITS1 (TCC
GTA GGT GAA CCT GCG G) and ITS4 (TCC TCC GCT
TAT TGA TAT GC) (White et al., 1990), which amplified the
ITS1-5.8S-ITS2 region of rDNA. Also, the primers T1 (AAC
ATG CGT GAG ATT GTA AGT) (O’Donnell and Cigelnik,
1997) and TUB4Rd (CCA/G GAC/T TGA/G CCA/G AAA/G
ACA/G AAG TTG TC) (Groenewald et al., 2013) were used
for amplification of the partial beta-tubulin (tub2) gene region.
Amplifications were performed in a total reaction volume of
25 µl, containing 13 µL master mix (parstous- Iran), 1 µL of
each primer (10 pM), 8 µL deionized water, and 2 µL template
DNA (50 ng). The PCR amplifications were performed in a
thermal cycler (Biometra, Gottingen, Germany) with an initial
denaturing step at 95◦C (3 min), 35 cycles of denaturation at
95◦C (30 s), annealing at 50◦C (45 s), and extension at 72◦C
(90 s), followed by a final extension step at 72◦C (10 min)
for amplification of the ITS (Sekhar et al., 2018), and the tub2
regions (Wang et al., 2016). The PCR products were investigated
on 1% agarose gels and sequenced by Macrogen Co. (Seoul,
Korea), using the ITS1 (for ITS1-5,8S-ITS2 region of rDNA)
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and TUB4Rd (for tub2) primers. Analysis of sequences was
performed using the basic local alignment search tool (BLAST)
program compared to the available data of the national center
for biotechnology information (NCBI) Gene Bank databases
to determine DNA similarities. The most similar sequences
were downloaded and DNA sequences were manually edited
using Bioedit v7.1.3 and aligned using ClustalW software.
Phylogenetic analyses for the ITS and tub2 regions were done
using the ITS1 and TUB4Rd sequences via the MEGA 7
software by maximum likelihood analysis methods based on
the Tamura- Nei model and the percentages of the replicate
branches with 1,000 bootstraps were shown next to the branches.
The nucleotide sequences of the Msh5 isolate were submitted to
the Gene Bank and the accession numbers were obtained for the
ITS and beta-tubulin genomic regions.

Fungal pathogen

The isolate of Alternaria alternata, which was previously
isolated from infected tomato plants (Ramezani et al., 2019),
was obtained from Department of Plant Protection, Faculty of
Agriculture, Ferdowsi University of Mashhad in Iran.

Plant growth promotion traits of the
endophytic fungus in vitro

Indole-acetic acid production assay
Indole-acetic acid production by the endophytic fungus was

evaluated via culturing a 9 mm diameter disk of A. jodhpurensis
in basal salt medium (BSM) containing 5 g glucose, 1 g KH2PO4,
0.5 g MgSO4, 0.5 g KCl, 1 L distilled water, pH 5.5, amended with
L-tryptophan (0.1, 0.01, 0.001, and 0 mg L−1) and was incubated
on a rotary shaker at 30◦C and 150 rpm for 7, 10, 15, and
20 days (Bose et al., 2013). Then, the medium was centrifuged
(5000 rpm/min for 10 min), and the supernatant was mixed with
Salkowski’s reagent (150 ml of concentrated H2SO4, 250 mL of
distilled water, 7.5 ml of 0.5 M FeCl3·6H2O) with a 1:2 (v/v)
ratio, and was kept at room temperature for 20 min. The pink
color produced showed IAA production (Gordon and Weber,
1951), and the IAA concentration was measured at 530 nm using
a spectrophotometer.

Phosphate solubilization assay
For phosphate solubilization assay, a 9 mm diameter

disk of A. jodhpurensis was cultured on Pikovskaya’s medium
(Pikovskaya, 1948), containing 0.5 g yeast extract, 10 g dextrose,
5 g Ca3(PO4)2, 0.5 g (NH4)2SO4, 0.1 g MgSO4, 0.02 g KCl,
0.02 g NaCl, 0.003 g MnSO4.H2O, 0.003 g FeSO4.7H2O, 15 g
agar, in 1 L distilled water with pH 7.2. After incubation at 28◦C
for 5 days, a clear zone around the colony indicated phosphate
solubilization.

Quantitative estimation of phosphate solubility was
done using NBRIP (National Botanical Research Institute’s
phosphate) medium containing 10 g glucose, 5 g Ca3(PO4)2,
5 g MgCl2 z 6H2O, 0.25 g MgSO4 7 H2O, 0.2 g KCl, 0.1 g
(NH4)2SO4 and 0.025 g bromophenol blue in 1 L distilled
water (Mehta and Nautiyal, 2001). Un-inoculated medium was
used as negative control. The flasks were incubated on a rotary
shaker at 30◦C and 150 rpm for 7, 10, 15, and 20 days. Then, the
medium was centrifuged (5000 rpm/min for 10 min) and the
supernatant was collected and autoclaved at 121◦C for 20 min.
Optical density was measured at 700 nm.

Production of urease and siderophore
Urease production assay was performed by culturing a

9 mm diameter disk of A. jodhpurensis on Christensen’s medium
(containing 1 g peptone, 1 g glucose, 5 g NaCl, 2 g KH2PO4,
15 g agar, and 0.012 g phenol red in 1,000 mL distilled water, pH
6.8), which was sterilized for 10 min at 121◦C. Then 0.5 mL of
20% seitz-filtered solution of urea was added to 4.5 mL sterile
medium, when the medium cooled to 50◦C (Seeliger, 1956).
After incubation for 7 days at 28◦C, the pink color produced
indicated urease production.

The ability of A. jodhpurensis to produce siderophore
was investigated using culturing a 9 mm diameter disk of
A. jodhpurensis on the Chrome Azurol S (CAS)- agar medium
(60.5 mg/50 mL Chrome Azurol S, 72.9 mg/40 mL HDTMA,
which was mixed with 2.7 mg FeCl3,6H2O in 10 mM HCl,
42.23 g King’s B agar and 900 mL distilled water), as described by
Milagres and Machuca (2003). Yellow to orange color indicated
siderophore production.

Production of extracellular enzymes
The endophytic fungus A. jodhpurensis was grown on PDA

at 28◦C for 7 days. Then, a 9 mm diameter disk of this fungus
was placed in Petri dishes containing specific medium for each
enzyme. The plates were incubated at 28◦C, then the zones of
enzyme activity around the fungal colony were investigated.

For cellulase assay, the antagonistic fungus was grown on
yeast extract peptone agar medium (0.1 g yeast extract, 0.5 g
peptone, 16 g agar in 1 L distilled water) amended 0.5% Na-
carboxymethyl cellulose (CMC) for 7 days at 28◦C. Then, the
plates were flooded with 0.2 aqueous Congo Red and destained
with 1 M NaCl for 15 min (Lingappa and Lockwood, 1962). The
clear zone around the fungal colony showed cellulase activity.

Lipase assay was performed by growing A. jodhpurensis for
7 days at 28 ◦C on peptone agar medium (10 g peptone, 5 g NaCl,
0.1 g CaCl2 2H2O, 16 g agar, 1 L distilled water; pH 6) amended
with 1% tween 20. The clear zone around the fungal colony
showed lipase production (Hankin and Anagnostakis, 1975).

For laccase assay, A. jodhpurensis was cultured on glucose
yeast extract peptone (GYP) agar medium (1 g glucose, 0.1 g
yeast extract, 0.5 g peptone, 16 g agar, 1 L distilled water, pH 6)
supplemented with 0.005% 1- naphthol and incubated for 7 days
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at 28◦C. Color of the medium changed from clear to blue around
the fungal colony, which showed the laccase activity (Hankin
and Anagnostakis, 1975).

For protease activity, A. jodhpurensis was grown on GYP
agar medium supplemented with 0.4% gelatin (8 g gelatin in
100 ml distilled water, which was sterilized separately and mixed
with sterile GYP agar medium, pH 6). After incubation for
7 days at 28◦C, the plates were flooded with saturated aqueous
ammonium sulfate. The clear zone around the colony indicated
protease activity (Hankin and Anagnostakis, 1975).

For amylase activity, A. jodhpurensis was cultured on
GYP agar medium supplemented with 2% soluble starch and
incubated for 7 days at 28◦C. Following treatment with 1%
iodine in 2% potassium iodide, a clear zone around the colony
showed amylase activity (Hankin and Anagnostakis, 1975).

In vitro biocontrol activity of
Acrophialophora jodhpurensis

Antagonistic activity assay
The isolate of A. jodhpurensis was tested for its antagonistic

activity against A. alternata using the dual culture method on
PDA medium. Briefly, A. jodhpurensis and A. alternata were
grown separately on PDA plates at 28◦C for 7 days. Then,
a mycelial disk (9 mm diameter) of the A. jodhpurensis was
cultured on one side of the petri dish containing PDA. A 9 mm
disk of PDA (without any fungus) was used as control. After
2 days, a mycelial disk (9 mm diameter) of A. alternata was
cultured on the other side of each Petri dish in the opposite
side of the antagonist. The colony diameter of the pathogen was
measured after 7 days and compared to the control (Sánchez-
Fernández et al., 2016). The inhibitory effect of A. jodhpurensis
on mycelial growth of the pathogen was calculated using the
following formula (Asran-Amal et al., 2010):

L = ((C − T)/C)× 100

In this formula, L is the inhibition of radial mycelial growth,
C and T are the colony diameters of A. alternata in the control
and in presence of the antagonist, respectively.

Effect of volatile metabolites of the
antagonistic fungus on Alternaria alternata
growth

To investigate the antagonistic activity of volatile
metabolites released from mycelia of A. jodhpurensis against
A. alternata, the isolates of A. jodhpurensis and A. alternata were
grown on PDA medium at 28◦C for 7 days. Then, a mycelial
plug (5 mm diameter) of A. jodhpurensis was placed in the
center of the Petri dish containing PDA, and a mycelial plug
(5 mm diameter) of A. alternata was cultured in the center of a
second PDA medium. The Petri dish containing A. jodhpurensis
was immediately inverted over the A. alternata Petri dish and

the Petri dishes were rapidly sealed with parafilm and incubated
at 28◦C in the dark. The growth of A. alternata was measured
and compared to the control after 7 days (Nishino et al., 2013).

Effect of non-volatile metabolites of the
endophyte on the pathogen growth

Antifungal activity of non-volatile compounds of
A. jodhpurensis was investigated as described by Xiao et al.
(2013). Briefly, the Msh5 isolate of A. jodhpurensis was grown
on PDA medium at 28◦C for 7 days. Then, two mycelial plugs
(10 mm × 10 mm) of this fungus were transferred into a flask
containing 100 mL potato dextrose broth (PDB) medium. The
flasks were incubated on a rotary shaker at 30◦C and 150 rpm
for 10 days. Control flasks containing 100 mL PDB were not
inoculated with A. jodhpurensis. For preparing supernatant,
the culture was filtered by Whatman filter paper (no. 1) for
removing mycelia, then sterilized using a 0.2 µm pore biological
membrane filter. The supernatant was added to PDA media
at concentrations of 3, 6, 10, and 15% (v/v) (Li et al., 2015).
Then, a 9 mm diameter mycelial plug from 7 days old culture
of A. alternata was placed in the center of each PDA plate
supplemented with the supernatant and maintained at 28◦C.
Colony diameter of the pathogen was determined after 7 days.
The experiment was repeated three times with three replications
for each repetition.

Effect of the antagonistic fungus on mycelial
structure of Alternaria alternata

The hyphal structures of A. alternata in dual culture
with A. jodhpurensis and in the PDA medium containing
supernatant of the endophytic fungus in liquid culture were
investigated using light microscopy. Briefly, a thin mycelial
plug of A. alternata from the edge of colony was stained using
aniline blue according to the method of Koneman et al. (1978)
and checked by an Olympus microscope (BH2, Tokyo, Japan)
when the control Petri dishes were completely covered with the
pathogen mycelia.

Effect of Acrophialophora jodhpurensis on
spore germination of the pathogen

The method described by Rex et al. (2019) was used for
investigating effect of A. jodhpurensis on spore germination
of A. alternata. Growth-free supernatant was prepared as
mentioned above, and then it was used for investigating
its effect on spore germination of the pathogen. The spore
concentration of A. alternata was adjusted to 105 spores mL−1

using a hemocytometer. Then, the supernatant (100, 70, 50,
and 5% v:v, diluted with sterile distilled water) was mixed
with spore suspensions of A. alternata at a ratio of 1:1 (v:v)
(Li et al., 2015). The mixtures were incubated at 24◦C with
90% relative humidity. After 24 h, germination of the spores
was checked by an Olympus microscope (BH2, Tokyo, Japan).
Spore germination was determined as the development of a
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germ tube to a length equal to one-half of the spore diameter
(Medwid and Grant, 1984). The spore germination (spores/mL)
was investigated as a percentage using the following formula
(Li et al., 2015):

Total germination rate(%) = (Germinated spores÷ Total spores) × 100

In vivo assays

Inoculum preparation
The isolate of A. alternata was cultured on potato carrot

agar (PCA) medium and incubated at 28◦C for 7 days. Then,
spore suspension of A. alternata was prepared by adding sterile
distilled water into Petri dishes containing A. alternata. The
spore concentration was adjusted to 106 spore mL−1 using a
hemocytometer. For inoculating tomato seedlings, the spore
suspension was supplemented with 0.05% tween 20 (Ramezani
et al., 2019).

For preparing A. jodhpurensis inoculum, this antagonistic
fungus was grown on 1/10 strength PA (potato agar) and
incubated at 28◦C for 10 days (Su et al., 2012). The spore
suspension of A. jodhpurensis was prepared by adding sterile
distilled water into Petri dishes containing A. jodhpurensis, then
ascospores were washed and spore concentration was adjusted
to 107 spore mL−1 using a hemocytometer (Daroodi et al.,
2021a).

Seed inoculation with spores of
Acrophialophora jodhpurensis and seed
colonization test

Tomato seeds variety “Mobil” were surface-sterilized by
1% sodium hypochlorite for 2 min, then rinsed three times
with sterile distilled water. Seed coating was done by spore
suspension of A. jodhpurensis amended with 1% sugar, 0.5%
carboxymethyl cellulose (CMC), or 0.5% molasses solution as
sticker. Forty tomato seeds were transferred into each sterilized
Petri dish containing 2 mL spore suspension, then dried in
laminar flow. For control, the seeds were only treated with
sterile distilled water containing 1% sugar, 0.5% carboxymethyl
cellulose (CMC), or 0.5% molasses solutions.

After drying the seeds, 10 seeds treated with the spore
suspension were placed in a test tube containing 9 mL sterilized
distilled water for investigating seed colonization. The test
tube was shaken and spore concentration was quantified by
a hemocytometer.

Plant growth conditions
Tomato seeds variety “Mobil,” which were coated using

spore suspension of A. jodhpurensis and stickers such as 1%
sugar, 0.5% carboxymethyl cellulose (CMC), or 0.5% molasses
solution, were planted in 12 × 10 cm pots containing sterilized
perlite, soil and sand (1:2:1). One seed was planted in each

pot and the pots were incubated under greenhouse conditions
(30± 4◦C with 16/8 h light/dark photoperiod).

Detecting Acrophialophora jodhpurensis in
tomato roots and root colonization assay

Evaluation of tomato root colonization by A. jodhpurensis
was done at 30 days post-inoculation (dpi). The plants were
removed from the soil and washed using running tap water.
Then, the roots were stained using cotton blue and investigated
by an Olympus microscope (BH2, Tokyo, Japan) (Vierheilig
et al., 1998).

To investigate tomato roots colonization by A. jodhpurensis,
reisolation of the fungal endophyte from tomato roots was
done. The roots were washed under running tap water for
one min. Then, washed roots were surface-sterilized using 2%
sodium hypochlorite for 2 min and then 70% ethanol for
2 min. One g of root pieces per plant were dissected 10 mm
long. The root fragments were dried on sterile filter paper and
four pieces were placed in each Petri dish (10 cm diameter)
containing PDA medium amended with streptomycin (0.05%)
and incubated at 25◦C for 10 days. Root colonization was
investigated by counting single colonies grown from root pieces
using a dissecting microscope (Dingle and Mcgee, 2003).

Effect of Acrophialophora jodhpurensis on
biocontrol of the disease caused by Alternaria
alternata

After 30 days of planting tomato seeds (at four leaves growth
stage), when the plant roots were colonized by A. jodhpurensis
very well, effect of the antagonistic fungus on biocontrol of
the disease caused by A. alternata was investigated in vivo.
The plants were inoculated with A. alternata by spraying the
plants using spore suspension of the pathogen at concentration
of 106 spore mL−1 containing 0.05% tween 20. For control,
the tomato seedlings were only sprayed with sterile distilled
water containing 0.05% tween 20. The inoculated seedlings were
kept in the greenhouse at 90% relative humidity and 30 ± 4◦C
temperature. Three replications and three repetitions were used
for each treatment.

Disease evaluation was performed at 7 days after A. alternata
inoculation, when the plants were at 5–6 leaves growth stage.

Disease progress was graded into five classes on the basis
of leaf spot development including 0 = no leaf spot symptoms;
1 = 1 –25% leaf area covered by disease symptoms; 2 = 26–50%;
3 = 51–75%; 4 = 76–99% and 5 = 100% leaf area covered by the
symptoms (Kumar et al., 2011). The disease index was calculated
as described by Taheri and Tarighi (2010). Each experiment was
repeated three times with three replications for each repetition.

Effect of the endophytic fungus on plant
growth promotion

To investigate the effect of A. jodhpurensis on tomato growth
parameters, the seeds were inoculated with spore suspension of
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FIGURE 1

Morphological characteristics of Acrophialophora jodhpurensis (isolate Msh5). Colonies of A. jodhpurensis from up (A) and down (B) on potato
dextrose agar (PDA), also up (C) and down (D) on oat agar (OA), ascomata of A. jodhpurensis, subglobosa or ovate, ostiolate (E), flexuous or
undulate hairs (F), clavate, fasciculate or fusiform asci (G), unicellular and fusiform ascospores of A. jodhpurensis (H).
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the endophyte and planted as described before. After 7 days,
fresh and dry weight, shoot, and root length of plants were
measured. To determine the dry weight, the samples were dried
in an oven at 70◦C. Three replications and three repetitions were
maintained for each treatment.

Statistical analysis

The assays were repeated at least three times with three
replications in each repetition. The presented data for each assay
were the means (±standard error) of three experiments. Data
were analyzed using the Minitab 18 software using one-way
analysis of variance (ANOVA). The means were separated by
the Fisher test at the level of P ≤ 0.05. All diagrams were drawn
using Excel 2013.

Results

Morphological and molecular
identification of Acrophialophora
jodhpurensis

Among 15 endophytic fungi obtained from the sampled
plants, six isolates belonged to A. jodhpurensis. The most
antagonistic isolate of this endophyte (Msh5), which showed
highest inhibitory effect against the pathogen compared to other
endophytes obtained, was used for the rest of experiments. This
isolate was identified based on morphological characteristics
of the colony, hyphae, and reproductive structures including
ascomata, ascomatal hairs, and ascospores (Wang et al., 2019).
The colonies had 25 mm diameter on PDA (Figures 1A,B) and
25–31 mm diameter on OA after 7 days of growth at 25◦C
(Figures 1C,D). Ascomata were superficial, subglobosa to ovate,
ostiolate, 130–220× 100–180 µm and ascomatal wall was brown
(Figure 1E). Ascomatal hairs were brown, flexuous, or undulate,
rather long and thin, occasionally branched and 2–5 µm thick
(Figure 1F). The asci were clavate, fasciculate or fusiform,
with eight spores (Figure 1G). Ascospores were unicellular, not
triangular in face view, often fusiform 12–16 × 6–8 µm and
usually brown when mature (Figure 1H). Asexual stage was not
observed.

Based on molecular analysis of the internal transcribed
spacer (ITS) and β-tubulin (tub2) genomic regions, the Msh5
isolate was identified as A. jodhpurensis (C. jodhpurense Lodha).
The phylogenetic trees were obtained using the neighbor-
joining method with 1,000 bootstraps and the percentage of
replicate trees were shown above the branches (Figures 2A–C).
Accession numbers for the ITS and tub2 sequences, including
MN814820 and MN820986 respectively, were obtained from
National Center for Biotechnology Information (NCBI).

FIGURE 2

Phylogenetic tree based on the ITS region of rDNA and β-tubulin
(tub2) sequences of the endophytic fungal isolate Msh5
obtained from tomato roots in Khorasan Razavi province of Iran.
The trees are drawn using the maximum likelihood method
based on the Tamura- Nei model in MEGA7 with 1,000
Bootstrap, in which the percentage of replicate trees is shown
above the branches, based on the ITS (A), β-tubulin (B)
sequences and phylogenetic tree based on the combined ITS
and β-tubulin (C), which showed the relationship between the
Msh5 isolate and other fungi. The trees are rooted with Thielavia
terrestris (syn Thermothielavioides terrestris) as the out-group,
which is classified in the Ascomycota and belongs to Sordariales.

Production of indole-acetic acid

The isolate of A. jodhpurensis had the ability to produce
IAA, as development of pink color showed IAA production. For
investigating the effect of L-tryptophan on IAA production at
various time points (7, 10, 15, and 20 days) after inoculation
of A. jodhpurensis, different concentrations of L- tryptophan
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FIGURE 3

Production of indole-3-acetic acid (IAA) and phosphate solubilization by the isolate Msh5 of Acrophialophora jodhpurensis. Production of IAA
by A. jodhpurensis in basal salt medium (BSM) amended with 0.1, 0.01, 0.001, and 0 mg L−1 L-tryptophan at various time points after inoculation
(A), production of pink color (IAA production) at 10 days after inoculation (B), the clear zone around the A. jodhpurensis colony on Pikovskaya’s
medium (C), and the amount of phosphate released in NBRIP medium containing 0.025 g bromophenol blue in 1 L at various time points after
inoculation of A. jodhpurensis (D).

(0, 0.001, 0.001, and 0.1 mg L−1) were supplemented in the
medium. Quantification of IAA was performed by measuring
the absorbance at 530 nm using spectrophotometer. The
spectrophotometric analysis revealed that the IAA production
was related positively with L-tryptophan concentration. The
maximum IAA production by A. jodhpurensis was observed at
10 days after inoculation when the medium was amended with
0.1 mg L−1 L-tryptophan (Figures 3A,B).

Phosphate solubilization

Qualitative estimation of phosphate solubility was studied
on Pikovskaya’s medium. The clear zone around the A.
jodhpurensis colony showed phosphate solubilization capability
of this fungus (Figure 3C). Also, quantitative estimation

of phosphate solubilization was done using NBRIP medium
containing 0.025 g bromophenol blue in 1 L distilled water at
various time points (7, 10, 15, and 20 days) after inoculation of
A. jodhpurensis. The spectrophotometric analysis showed that
the maximum phosphate solution at 20 days after inoculation
(Figure 3D).

Production of urease and siderophore

The ability of production of urease and siderophore was
investigated on Christensen’s medium and Chrome Azurol S
(CAS)-agar medium, respectively. The isolate of A. jodhpurensis
had the ability to produce urease and siderophore. Development
of pink color showed urease production (Figure 4A), and yellow
to orange color indicated siderophore production (Figure 4B).
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FIGURE 4

Investigating biocontrol traits of Acrophialophora jodhpurensis (isolate Msh5). Production of urease (A), siderophore (B), cellulase (C), protease
(D), amylase (E), laccase (F), lipase (G). C, negative control; Aj, A. jodhpurensis.

Production of extracellular enzymes

The obtained data showed that the Msh5 isolate of
A. jodhpurensis produced cellulase (Figure 4C), protease
(Figure 4D), amylase (Figure 4E), laccase (Figure 4F), and
lipase (Figure 4G) enzymes.

Antagonistic activity of
Acrophialophora jodhpurensis against
Alternaria alternata in dual culture

The Msh5 isolate of A. jodhpurensis inhibited in vitro
growth of A. alternata in dual culture on PDA. The inhibitory
percentage (IP) of A. alternata growth was 50% using

this beneficial endophytic fungus compared to the control
(Figure 5A).

Antifungal effect of volatile and
non-volatile metabolites against
Alternaria alternata

The obtained results revealed that A. jodhpurensis produced
volatile and non-volatile metabolites, which inhibited
A. alternata growth. The inhibitory percentage (IP) of
A. alternata growth by volatile metabolites of A. jodhpurensis
was 12.66 (Figure 5B). Also, the effects of growth-free
supernatant of A. jodhpurensis at 3, 6, 10, and 15% (V: V)
concentrations were investigated on A. alternata growth, which
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FIGURE 5

Inhibitory effect of Acrophialophora jodhpurensis (isolate Msh5) on mycelial growth of Alternaria. alternata. Biocontrol effect in dual culture test
on potato dextrose agar medium (A), the effect of volatile metabolites (B), and growth-free supernatant (non-volatile metabolites) at 0, 3, 6, 10,
and 15% (v/v) concentrations (C) after 7 days. Aa, A. Alternata; Aj, A. jodhpurensis; C, control; V, volatile metabolites.

the IPs were 2.5, 7.5, 23.33, and 52.5 respectively. The 15%
concentration was superior to the other concentrations
tested in stopping the mycelial growth of A. alternata
(Figure 5C).

Microscopic observation of Alternaria
alternata hyphae affected by
Acrophialophora jodhpurensis

Light microscopic analyses of the pathogen structures
were done in dual culture with the antagonistic fungus
and PDA medium containing growth-free supernatant at
15% concentration when the control Petri dishes were
completely covered with the pathogen mycelia (after 7 days).
Observations showed that the mycelium formation of
A. alternata changed in presence of the antagonist and/or
its metabolites. Production of colorless hyphae, deformation

of hyphae and cytoplasm lysis was observed in the mycelia of
A. alternata treated with the antagonistic fungus (Figure 6A),
or its metabolites (Figure 6B) compared to the controls
(Figure 6C).

Effect of metabolites produced by
endophyte on Alternaria alternata
spore germination

The growth-free supernatant of A. jodhpurensis
reduced spore germination of A. alternata. The
concentration of 100% was superior to the other
concentrations tested in reducing the spore germination
of A. alternata, which reduced spore germination
to 7% compared to the control which was 31%
(Figure 7A). Also, spores of A. alternata produced
germ tubes showing vacuolization and abnormal
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FIGURE 6

Optical microscope images of Alternaria alternata in dual culture
with Acrophialophora jodhpurensis (isolate Msh5) on potato
dextrose agar (PDA) medium containing supernatant
(metabolites) of A. jodhpurensis when the control Petri dishes
completely covered with the pathogen mycelia. The mycelia
formation of A. alternata in dual culture with A. jodhpurensis (A)
and on PDA containing supernatant at of A. jodhpurensis at 15%
concentration (B). The hyphae of A. alternata in control (C).

structure in presence of the supernatant (metabolites) of
A. jodhpurensis (Figure 7B), compared to the controls
(Figure 7C).

Investigating colonization of tomato
roots by Acrophialophora jodhpurensis

Intracellular hyphae of A. jodhpurensis were observed in
microscopic analyses of tomato roots at 30 days post-inoculation
(dpi) (Figure 8A). Colonization percentage of tomato roots
by the endophytic fungal isolate was determined using seed
coating with spores of A. jodhpurensis and 1% sugar (SU),
0.5% Carboxymethyl cellulose (CMC) and 0.5% molasses (M)
solution as sticker. The data indicated that in seed coating with
spores of A. jodhpurensis, sugar and carboxymethyl cellulose
(CMC) were found to be the most effective for colonization of
tomato roots, compared to molasses as sticker (Figure 8B).

Effect of seed coating on biocontrol of
Alternaria alternata in vivo

Tomato seed coating with A. jodhpurensis showed efficiency
of this fungal endophyte in control of the disease caused by
A. alternata on the seedlings. Among different coating materials
used as stickers, sugar was found to be the most effective in
controlling the pathogen compared to the controls and the
plants only inoculated with A. alternata (Figure 8C).

Effect of Acrophialophora jodhpurensis
on plant growth promotion in vivo

Seed coating with spores of A. jodhpurensis together with
stickers significantly increased growth characteristics of tomato
seedlings, such as shoot fresh and dry weights, root fresh and
dry weights, shoot and root lengths. The biomass enhancement
was obvious in the plants inoculated with A. jodhpurensis, but
the plants inoculated with A. jodhpurensis and 1% sugar showed
more promising results in increasing shoot length and weight,
and also root length and weight compared to the controls
(Table 1).

Discussion

In this study, effect of the Msh5 isolate of A. jodhpurensis was
investigated on plant growth promotion and biological control
of A. alternata pathogenic on tomato both in vitro and in vivo
conditions. The obtained data indicated that A. jodhpurensis
produced IAA, siderophore and urease, also this fungus had
the ability of solubilizing phosphate. Maximum production of
IAA was observed at 10 days after A. jodhpurensis inoculation
by adding L-tryptophan at 0.1 mg L−1 concentrations to the
medium. Similar to our results, Bose et al. (2013) studied
production of IAA by the white-rot fungus Pleurotus ostreatus
using different concentrations of L-tryptophan in BSM, which
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FIGURE 7

Effect of Acrophialophora jodhpurensis (isolate Msh5) supernatant on spore germination of Alternaria alternata after 24 h. Effect of
A. jodhpurensis metabolites on germination percentage of A. alternata spores (A), germ tube vacuolization and abnormal germination (B), and
normal germ tube formation in control (C). Error bars correspond to standard error (SE) of three experiments.

the maximum production of IAA was observed by addition of
L-tryptophan at 0.1 mg L−1 concentration.

The data showed that A. jodhpurensis produced a weak
halo zone in the Pikovskaya’s medium, while this fungus in
the liquid culture experiment (NBRIP medium containing
bromophenol blue) had considerable phosphate solubilization
capability. Similarly, Li et al. (2019) reported that only 30 of the
43 inorganic phosphate-solubilizing bacterial strains exhibited
clear halo zones in the Pikovskaya’s medium, but all strains were
able to dissolve tricalcium phosphate in the liquid culture.

Dual culture assay revealed the antagonistic capability of
A. jodhpurensis against A. alternata. To our knowledge, this is
the first report on the antagonistic effects of A. jodhpurensis
against A. alternata in vitro. Many researchers studied
antagonistic activities of Acrophialophora species against several
phytopathogens in vitro. For example, A. fusispora was effective
against F. udum (Rai and Upadhyay, 1983), M. phaseolina
(Siddiqui and Mahmood, 1992), F. solani, M. phaseolina,

P. aphanidermatum, R. solani and S. rolfsii, and A. porri
(Demirci et al., 2011; Abdel-Hafez et al., 2015). Acrophialophora
levis was antagonistic against P. debaryanum, P. capsica,
S. sclerotiorum, B. cinerea, Gaeomannomyces graminis, and
R. solani (Turhan and Grossmann, 1989), and A. jodhpurensis
had antagonistic effect against R. solani (Daroodi et al., 2021a).

Beneficial fungi protect plants against pathogens via several
mechanisms, such as mycoparasitism, antibiosis, competition,
and induction of resistance (Zhang et al., 2012; Ghorbanpour
et al., 2018). Our previous studies showed that A. jodhpurensis
decreased the disease severity of R. solani not only directly by
interacting with the pathogen, but also indirectly by inducing
resistance mechanisms in tomato seedlings. Also, the Msh5
isolate of A. jodhpurensis induced systemic resistance in tomato
against A. alternata via increasing phenolic contents, lignin
accumulation, cell membrane stability, relative water content,
accumulations of hydrogen peroxide, superoxide and iron
ions, together with induction of antioxidant enzymes (such
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FIGURE 8

Detection of Acrophialophora jodhpurensis (isolate Msh5) in the colonized tomato roots at 30 days post inoculation (A), colonization of tomato
roots with spore suspension of A. jodhpurensis containing 1% sugar (SU), 0.5% carboxymethyl cellulose (CMC) and 0.5% molasses (M) solution as
sticker at 30 days post inoculation (B) and effect of tomato seed coating with spore suspension of A. jodhpurensis and stickers on progress of
the disease caused by Alternaria alternata on tomato seedlings (C). Aa, inoculation with A. alternata; Aj, inoculation with A. jodhpurensis; H,
A. jodhpurensis hyphae.

as catalase, guaiacol peroxidase, ascorbate peroxidase and
superoxide dismutase) (Daroodi et al., 2021a,b).

In this study, A. jodhpurensis produced volatile and non-
volatile metabolites, which inhibited A. alternata growth.
Similar to these findings, production of volatile organic
compounds (VOCs) with antifungal effects by the fungi
belonging to the Chaetomiaceae family has been reported by
several researchers (Bjurman and Kristensson, 1992; Korpi
et al., 1998; Wady and Larsson, 2005). The VOCs, such

as geosmin, 2-phenylethanol and phenylacetaldehyde were
detected using gas chromatography- mass spectrometry (GC-
MS) (Kikuchi et al., 1981). Also, volatiles of Chaetomium
thermophile inhibited conidial germination and mycelial growth
of Humicola lanuginosa (Satyanarayana and Johri, 1981) and the
VOCs produced by A. jodhpurensis reduced mycelial growth of
R. solani AG 4-HG II (Daroodi et al., 2021a).

In this study, the obtained data indicated that the growth-
free supernatant (non- volatile metabolites) of A. jodhpurensis
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TABLE 1 Effect of tomato seed coating with spores of Acrophialophora jodhpurensis (isolate Msh5) together with 1% sugar, 0.5% Carboxymethyl
cellulose (CMC), and 0.5% molasses solutions as sticker on plant growth promotion.

Treatments Shoot fresh
weight (mg)

Root fresh
weight (mg)

Shoot dry
weight (mg)

Root dry
weight (mg)

Shoot height
(cm)

Root height
(cm)

Water 592.3± 43.53 c 95.667± 5 e 51.33± 3.59 c 9.667± 0.89 c 8.400± 0.31 c 9± 0.5 bc

Aj + 1% Sugar 1230.3± 73.7 a 176.00± 5.97 a 122.33± 8.02 a 20.33± 1.22 a 11.300± 0.56 a 11.333± 0.89 a

Aj + 0.5% CMC 1038.7± 31.29 b 160.667± 5.30 b 100.33± 4.33 b 17.667± 0.67 b 11.167± 0.44 ab 10± 0.29 b

Aj + 0.5% Mollases 1004.7± 27.11b 122.33± 9.04 c 98.67± 3.24 b 17± 0.58 b 10.167± 0.44 b 9.5± 0.16 bc

1% Sugar 617± 33.35 c 106.00± 7.15 d 54.33± 3.44 c 10.333± 0.33 c 8.475± 0.23 c 8.967± 0.55 bc

0.5% CMC 557.3± 15.64 c 101.00± 5.29 de 59.67± 1.48 c 9± 1.018 c 8.667± 0.33 c 8.667± 0.17 c

0.5% Mollases 591.3± 74.94 c 96.33± 2.37 e 50± 2.94 c 8.667± 0.89 c 8.500± 0.29 c 8.833± 0.44 bc

The presented data for each assay are the means (±standard error) of three experiments. Statistical analysis was performed with Minitab 18 software. Aj, inoculation with A. jodhpurensis.
Different letters indicate statistically significant differences according to Fisher analysis.

reduced mycelial growth of A. alternata. Similar to our
results, immersing cucurbit fruits in growth-free supernatant
of A. nainiana before inoculation of Pythium spp. delayed
the disease symptoms (Sharma et al., 1981) and metabolites
of A. jodhpurensis decreased mycelial the mycelial growth of
R. solani AG 4-HG II (Daroodi et al., 2021a).

Also, the effects of A. jodhpurensis on spore germination
and hyphal structure of A. alternata were studied using light
microscopy. The data revealed that growth-free supernatant
of A. jodhpurensis reduced spore germination of A. alternata.
Deformation of hyphae and cytoplasm lysis were observed in the
pathogen structures grown in the presence of A. jodhpurensis
or its metabolites. Similar to these results, our previous study
revealed that A. jodhpurensis decreased the growth and sclerotia
production of R. solani. Also, growth patterns of R. solani in
presence of the metabolites produced by A. jodhpurensis were
different compared to the controls (Daroodi et al., 2021a).

To our knowledge, there is no information about effect of
the other Acrophialophora species on spore germination and
hyphal structures of pathogens. But in the Chaetomaceae family,
in the interaction between R. solani and Chaetomium spirale,
overgrowth of C. spirale on the colony of R. solani, coiling of
C. spirale around R. solani hyphae and intracellular growth of
the antagonist in the mycelia of R. solani occurred frequently.
Also, in the advanced stage of interaction between the antagonist
and the pathogen, the growth and development of C. spirale
were associated with morphological changes of the pathogen,
such as retraction of the plasma membrane and cytoplasm
disorganization (Gao et al., 2005).

Effects of A. jodhpurensis on development of the disease
symptoms caused by A. alternata were studied via seed coating
using spore suspension of the biocontrol agent. The obtained
results revealed a significant decrease in the disease index on
tomato seedlings treated with A. jodhpurensis compared to
the controls (non-treated with A. jodhpurensis). Similar to our
results, seed coating using antagonistic fungi reduced the disease
severity of several pathogens in various plans. For example, seed
coating by C. globosum reduced Fusarium roseum f. sp. cerealis

infection in corn (Chang and Kommedahl, 1968; Kommedahl
and Mew, 1975), Fusarium solani f. sp. pisi in squash, snap
bean, and pea (Hubbard et al., 2011), and seed coating with
C. globosum and C. funicola reduced the infection of Erysiphe
graminis f. sp. hordei in barley (Vilich et al., 1998). Also, seed
coating with C. globosum, C. cochiodes, and Chaetomium sp.
was effective against Helminthosporium victoriae in oat (Tveit
and Moore, 1954), and treating tomato seeds with Trichoderma
harzianum and T. hamatum was effective against Fusarium sp.,
Verticillium sp. and Alternaria spp. (El-Rafai et al., 2003). In
addition, seed coating with endophytic fungus Pestalotiopsis
microspore induced plant defense responses against A. solani in
tomato (Sujatha et al., 2021).

Also, the effects of A. jodhpurensis on growth parameters of
tomato seedlings were investigated using seed coating method.
The obtained results revealed a significant increase in growth
parameters of tomato seedlings treated with A. jodhpurensis
compared to the controls (un-inoculated with A. jodhpurensis(.
Similarly, inoculation of tomato roots by Piriformospora indica
increased tomato fruit biomass in hydroponic culture (Fakhro
et al., 2010). Inoculation of tomato roots using three grams
of the Nectria haematococca inoculum containing 6 × 106

colony forming units per gram significantly improved all
the plant growth parameters including biomass of drought-
stressed tomato, leaf characteristics and the plant height.
Also, proline accumulation in shoots of the treated plants
was significantly higher than untreated plants (Valli and
Muthukumar, 2018). Inoculation of tomato seedlings using
dipping in conidial suspension of Withania somnifera enhanced
the plant growth parameters (Nefzi et al., 2019). Also,
applications of Ampelomyces sp. and Penicillium sp. endophytes
showed efficiency in enhancing plant growth, stress tolerance,
recovery, and fruit yield (Morsy et al., 2020).

Also, many studies showed that treatment of tomato seeds
with endophytic fungi improved plant growth parameters.
Combined inoculation of Glomus intraradices and Trichoderma
atroviride synergistically increased biomass production
(Colla et al., 2015).
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The results showed that seed coating with spores suspension
of A. jodhpurensis containing sugar and CMC can be the most
effective for colonization of tomato roots. Sugar supplement
with A. jodhpurensis was found to be the most effective in
the control of pathogen and also in plant growth promotion.
These data may be associated with the role of sugar signaling
in plant physiology and defense responses. Similarly, Morkunas
and Ratajczak (2014) reported the importance of sugars in plant
resistance.

Conclusion

This study demonstrated considerable antagonistic activity
of A. jodhpurensis against A. alternata, the causal agent of
tomato early blight, in vitro and in vivo conditions. Also, the
endophytic fungus A. jodhpurensis increased growth parameters
of tomato plants. Therefore, this beneficial fungus could be
used as a biological fertilizer and biocontrol agent for plant
growth promotion and protection against fungal pathogens.
Future studies seem to be necessary to investigate effects of
A. jodhpurensis against other Alternaria species and various
phytopathogens, human and animal safety assays, and finally
formulation of this beneficial fungus or its metabolites and
application in the field conditions.
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