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Growth traits, such as fresh weight, diameter, and leaf area, are pivotal

indicators of growth status and the basis for the quality evaluation of

lettuce. The time-consuming, laborious and inefficient method of manually

measuring the traits of lettuce is still the mainstream. In this study, a three-

stage multi-branch self-correcting trait estimation network (TMSCNet) for

RGB and depth images of lettuce was proposed. The TMSCNet consisted

of five models, of which two master models were used to preliminarily

estimate the fresh weight (FW), dry weight (DW), height (H), diameter (D), and

leaf area (LA) of lettuce, and three auxiliary models realized the automatic

correction of the preliminary estimation results. To compare the performance,

typical convolutional neural networks (CNNs) widely adopted in botany

research were used. The results showed that the estimated values of the

TMSCNet fitted the measurements well, with coefficient of determination

(R2) values of 0.9514, 0.9696, 0.9129, 0.8481, and 0.9495, normalized root

mean square error (NRMSE) values of 15.63, 11.80, 11.40, 10.18, and 14.65%

and normalized mean squared error (NMSE) value of 0.0826, which was

superior to compared methods. Compared with previous studies on the

estimation of lettuce traits, the performance of the TMSCNet was still better.

The proposed method not only fully considered the correlation between

different traits and designed a novel self-correcting structure based on this

but also studied more lettuce traits than previous studies. The results indicated

that the TMSCNet is an effective method to estimate the lettuce traits

and will be extended to the high-throughput situation. Code is available at

https://github.com/lxsfight/TMSCNet.git.
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Introduction

Lettuce is a leaf-consuming crop, which has high economic
benefits and nutritional value and is planted in a large area
all over the world (Adhikari et al., 2019). Lettuce has become
a popular vegetable and is often used in salads because of
its refreshing and delicious taste, low energy intake, and rich
in vitamins and antioxidants (Xu and Mou, 2015). Although
lettuce has a rapid growth rate (Grahn et al., 2015) and multiple
harvest times, it is sensitive to the growth environment, such
as poor adaptability to saline alkali land (Adhikari et al., 2019)
Fresh weight (FW), dry weight (DW), height (H), diameter (D),
and leaf area (LA) of lettuce are critical indicators to evaluate
lettuce (Lati et al., 2013; Teobaldelli et al., 2019; Zhang et al.,
2020). Therefore, it is of great significance to monitor the growth
traits of lettuce, evaluate the quality of lettuce and determine the
harvest time through the growth traits of lettuce.

Plant phenotypic analysis is a significant branch of
agriculture (Xiong et al., 2021). It is of great value in determining
the best harvest time of crops (Andujar et al., 2016), monitoring
crop health, evaluating crop quality and yield, crop management
decision-making (Bauer et al., 2019), scientific breeding (Xiong
et al., 2017) and so on. The traditional plant phenotype analysis
is mainly a manual task, which needs intensive manpower and
consumes a lot of time (Casadesus and Villegas, 2014). Yet,
the analysis effect is closely related to the operator’s experience
requirements, and the analysis effect is often unstable and
inaccurate (Zhang et al., 2018). In recent years, non-destructive
determination has become a popular and potential method
(Jiang et al., 2016). Many researchers have introduced machine
learning methods into the non-destructive testing of crops
(Greener et al., 2022). Chen et al. built multiple machine
learning (ML) methods, including random forest (RF), support
vector regression (SVR), and multivariate linear regression
(MLR), to estimate the barley biomass (Chen et al., 2018). The
study concluded that the RF method estimated barley biomass
more accurately than other methods. Fan et al. used the MLR
method to estimate the LA of Italian ryegrass and the R2 value
reached 0.79 (Fan et al., 2018). Yoosefzadeh adopted some
algorithms such as ensemble bagging (EB), ensemble stacking
(E-S), and deep neural network (DNN) to evaluate the soybean
yield (Yoosefzadeh, 2021). Tackenberg proposed using linear
regression (LR) to estimate growth traits of grass, with the
R2 value of 0.85 (Tackenberg, 2007). Sakamoto et al. (2012)
estimated the leaf area index of maize.

Convolutional neural network (CNN) is a typical deep
learning method with powerful feature extraction capability,
which takes images as input (Ma et al., 2019). Compared with the
early machine learning methods, CNN is more stable (Ma et al.,
2017) and usually has better performance (Uzal et al., 2018), so
it is widely applied to agriculture. Nevertheless, CNN has been
widely used in classification tasks, such as plant disease diagnosis
(Mohanty et al., 2016; Nachtigall et al., 2016; Ferentinos, 2018),

and weed recognition (Dyrmann et al., 2016; Grinblat et al.,
2016), and rarely applied to regression tasks of plant phenotype.
Ferreira et al. (2017) designed a Deep Convolutional Neural
Network to estimate above ground biomass of winter wheat,
with the R2 value of 0.808, and the NRMSE value of 24.95%.
Zhang et al. (2020) proposed a convolutional neural network to
monitor FW, DW, and LA of lettuce. The result showed that the
estimated values had good agreement with measurement results
(Zhang et al., 2020).

Although previous studies have achieved good estimation
results of lettuce traits, these studies did not consider and
make use of the correlation between various traits, and
the estimated number of lettuce traits is still insufficient,
which will not be conducive to a comprehensive assessment
of lettuce growth. For this reason, we developed a three-
stage multi-branch self-correcting trait estimation network
(TMSCNet) to estimate the fresh weight (FW), dry weight
(DW), height (H), diameter (D), and leaf area (LA) of lettuce
using RGB images and depth images as input. Then we
analyzed the correlation between different traits of lettuce and
designed a data preprocessing pipeline. Finally, R2, NRMSE,
and NMSE were used to evaluate the performance of the
TMSCNet. To improve the applicability of the TMSCNet,
we also discussed the high-throughput case and proposed a
processing pipeline.

Materials and methods

Dataset and preprocessing

The data used in the experiment came from the public
dataset of the 3rd international challenge on autonomous
greenhouses organized by Tencent and Wageningen University
and Research. As one of the participating teams, we participated
in this international competition. The public dataset was
collected from the lettuce planting laboratory at Wageningen
University and research in the Netherlands. All crops were
planted in well-controlled greenhouse conditions. Since the
enclosure of the greenhouse was highly transparent, the images
were collected under natural light. A RealSense D415 depth
sensor was used for image collection, which was hung about
0.9 meters above the crop to capture RGB images and depth
images. The original pixel resolutions of collected images were
1,920 × 1,080. Those images were stored in PNG format. It
is worth noting that the range of image acquisition is about 1
m2 of planting area, but the area of the crop only accounts for
5%, as shown in Figure 1A. Four cultivars of lettuce, Aphylion,
Salanova, Satine, and Lugano, were grown in a hydroponic
growing system, as shown in Figure 1B. The time interval of
data acquisition was set to once a week, including six times in
total. During this period, 340 images for training and 50 images
for validation were obtained (Autonomousgreenhouses, 2018).
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FIGURE 1

Examples of the RGB images from the public dataset of the 3rd international challenge on autonomous greenhouses. (A) The original images, in
which the lettuce only accounts for a small proportion. (B) The cultivar of Aphylion, Salanova, Satine, and Lugano at different growth stages in
the dataset.

Measurements of fresh weight (FW), dry weight (DW),
height (H), diameter (D), and leaf area (LA) were conducted
simultaneously with image collection, which used a destructive
sampling method. The units of these measurements were
“gram/plant,” “gram/plant,” “cm,” “cm,” and “cm2,” respectively.
Among these lettuce traits, height refers to the distance
from the first leaf to the highest point of the crop,
diameter is the principal diameter of the projection on a
horizontal surface, and leaf area is the surface projected
on a horizontal surface of all leaves torn from the stem.
Fresh weight and dry weight include the weight of root and
shoot of lettuce.

Since the original RGB images just contained a small
proportion of lettuce area, this study firstly automatically
cropped images by a 600 × 600 pixels cropping box centered
in the center of the image to eliminate the useless part. Then,
to improve operating speed, the cropped images were further
resized to 64× 64 pixels. To improve the effect of model training
and prevent overfitting, we designed a data augmentation
method to enlarge the 340 images of the training dataset. The
augmentations method included: rotating the image randomly
within 10 degrees, randomly adjusting the brightness of
the image in the range of 0.6 to 1.2, flipping the image
horizontally and vertically, and shifting the image from width
and height by nearest filling mode. Through this series of
random augmentation, the training dataset was enlarged by
100 times, resulting in 34,000 RGB images. The complete
preprocessing process of the RGB image is demonstrated in
Figure 2.

Compared with the RGB image, the depth image looked
pure black, because it contained depth information, it was used
to estimate the height of lettuce. The preprocessing of depth
images was almost the same as that of RGB images, except that
the depth images were first converted into the pseudo color map
(Liu et al., 2020) before cropping.

Correlation analysis of growth traits of
lettuce

In the dataset, the measurements of FW, DW, H, D, and
LA corresponding to 340 lettuce images were organized in
a JSON file. It is easy to consider that these traits are not
completely independent, but are interrelated. For example,
when the fresh weight of lettuce is large, the corresponding
dry weight will be heavier; When the diameter of lettuce is
longer, the height and leaf area of lettuce will also increase.
Therefore, the correlation coefficient was used to perform the
correlation analysis on those five traits of lettuce. Figure 3A
was the heat map of the correlation analysis of the five traits
corresponding to the 340 lettuce images. The number on this
figure represented the correlation coefficient of the two traits,
and the color depth also reflected the value of the correlation
coefficient. It could be seen from the figure that the correlation
coefficient between FW and DW was as high as 0.96, the
correlation coefficient between FW and LA was 0.91, and the
correlation coefficient between H and D was the lowest but still
as high as 0.78. This showed that these five traits of lettuce
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FIGURE 2

Image process scheme. Input the original image of 1,920 × 1,080 pixels, scale it to 64 × 64 pixels after cropping, and then expand it by 100
times through six ways of random data augmentation.

FIGURE 3

The heat map of correlation analysis of different traits. (A) Correlation analysis of all samples. (B) Correlation analysis of four lettuce varieties on
their traits.

were highly correlated, and it was unreasonable to ignore the
correlation between them.

In addition, it could be seen from Figure 1B that different
varieties of lettuce had differences in color, shape, growth
speed, and so on. Therefore, we further performed the
correlation analysis on the five traits of different varieties of

lettuce. Figure 3B showed the correlation heat map between
those traits of four lettuce varieties, respectively. It could
be seen that the correlation coefficient in the heat map of
different lettuce varieties was quite different. For example,
the correlation coefficient of FW and DW of Aphylion was
as high as 0.99, while that of Lugano was only 0.89; The
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correlation between DW and H of Satine was 0.92, while that
of Lugano was only 0.76. This indicated that different lettuce
varieties also had an obvious impact on the growth traits of
lettuce. Detailed correlation analysis data were illustrated in
Tables 1–5.

A three-stage multi-branch
self-correcting trait estimation
network

Construction of the three-stage multi-branch
self-correcting trait estimation network

Accurate and efficient traits estimation is the crux to precise
control and decision-making of lettuce crops and a precondition
for quantifying plant traits. The estimation of lettuce traits is a
regression task, whose goal is to estimate the five traits of FW,
DW, H, D, and LA through images. Compared with the RGB
image, the depth image was more suitable for lettuce height
estimation because it contained depth information. Therefore,
we proposed two master models. One master model used RGB
image as input to estimate LW, DW, D, and LA of lettuce;
The other master model used the pseudo color image of depth
image conversion as input to estimate H. After the analysis, we
found that the five lettuce traits were highly correlated with each
other, and were affected by the variety of lettuce, so we further
proposed three auxiliary models. One of the three auxiliary
models was used to predict the variety of lettuce through RGB
images, and the function of the other two auxiliary models was
to cooperate with the classification auxiliary model of variety to
automatically correct the estimation results of master models.
The above five models constituted a three-stage multi-branch
self-correcting trait estimation network (TMSCNet), and its
overall structure was shown in Figures 4A,B. Model_11 and
Model_13 were two master models, which were located in the
first stage of the network. In the first stage, there still had
a Model_12 for predicting lettuce varieties; The second stage
and the third stage of the network each had an auxiliary self-
correcting model, which were named Model_2 and Model_3.

The operating principle of TMSCNet was as follows: 340
RGB images and depth images were preprocessed and then
inputted into the two regression master models in the first stage
to get the preliminary five growth traits; Then, the prediction
varieties of lettuce obtained by the classification model and
DW estimated by the Model_11 were used as the input of the
regression model in the second stage to generate new values
of H and D, and they corrected the values of preliminary H
and D obtained by the Model_11 in the first stage; Finally,
DW obtained in the first stage, the variety of lettuce, and the
corrected values of D and H obtained in the second stage were
fed into the regression model of the third stage to calculate new
values of FW and LA, and they were further used to correct the

values of FW and LA obtained in the first stage. So far, all lettuce
traits have been estimated and automatically corrected.

It is worth noting that the second and third stage models
take DW obtained in the first stage as the input and take it as the
final DW of lettuce. The reason is that DW is the most accurate
prediction among all traits, which may not be intuitive, but it is
the conclusion obtained through our experiments.

Master model
The main model included Model_11 for estimating FW,

DW, D, and LA, and Model_13 for estimating H. Model_11 was
a convolutional neural network (CNN) model with single input
and four outputs. The input of Model_11 was RGB images of
lettuce with a size of 64 × 64 × 3 (width × height × channel).
Model_11 has one convolutional layer to extract features that
adopted kernels with a size of 3 × 3 and the number of kernels
was 32. The batch normalization layer was used to prevent the
elimination of gradient. The max pooling function was adopted
in the pooling layer, which had a pooling size of 2 × 2 and
a stride of 2 to reduce the size of feature maps. The rate of
the dropout layer was 0.1. After passing through the flatten
layer, the dimension of the feature was reduced so that it was
sent to the fully connected network. The fully connected layers
included four branches, each branch had five fully connected
layers, and the number of neurons was 128, 32, 16, 8, and 4.
Each branch outputted one result for estimating FW, DW, D,
and LA, respectively. The structure of Model_11 was shown in
Figure 5A.

Model_13 had the same structure and network parameters
as Model_11, except that its input was the pseudo color image
obtained by depth image conversion, and there was only one
trunk in the full connection layer to estimate H, as shown in
Figure 5B.

Auxiliary model
The proposed TMSCNet included three auxiliary models,

which were located in three stages to assist the master
model to complete the automatic correction of estimation
traits. These three auxiliary models included a classification
model for predicting lettuce varieties and two self-correcting
regression models.

The input of Model_12 was also RGB images with a size
of 64 × 64 × 3. The structure of Model_12 was shown in
Figure 5C, with three convolutional layers, which adopt kernels
with the size of 3 × 3. The number of kernels in the three
convolutional layers was 32, 64, and 64. The max pooling layer
had a pooling size of 2 × 2 and a stride of 2 too. The full
connection layer had only one hidden layer with 512 units,
followed by a dropout layer with a rate of 0.5. The output
layer included four units, which were used to predict the four
varieties of lettuce.

The two self-correcting models located in the second and
third stages of TMSCNet were two deep neural networks
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TABLE 1 Correlation between FW and other traits of different lettuce varieties.

Traits Correlation coefficient

Salanova Lugano Satine Aphylion All

DW 0.98 0.89 0.99 0.99 0.96

H 0.87 0.88 0.90 0.93 0.88

D 0.83 0.89 0.81 0.91 0.80

LA 0.95 0.94 0.92 0.96 0.91

The bold values indicate that the values are greater than or equal to 0.95.

TABLE 2 Correlation between DW and other traits of different lettuce varieties.

Traits Correlation coefficient

Salanova Lugano Satine Aphylion All

FW 0.98 0.89 0.99 0.99 0.96

H 0.86 0.76 0.92 0.93 0.84

D 0.84 0.80 0.84 0.91 0.81

LA 0.94 0.86 0.91 0.96 0.90

The bold values indicate that the values are greater than or equal to 0.95.

TABLE 3 Correlation between H and other traits of different lettuce varieties.

Traits Correlation coefficient

Salanova Lugano Satine Aphylion All

FW 0.87 0.88 0.90 0.93 0.88

DW 0.86 0.76 0.92 0.93 0.84

D 0.85 0.85 0.82 0.88 0.78

LA 0.85 0.87 0.88 0.94 0.84

TABLE 4 Correlation between D and other traits of different lettuce varieties.

Traits Correlation coefficient

Salanova Lugano Satine Aphylion All

FW 0.83 0.98 0.81 0.91 0.80

DW 0.84 0.80 0.84 0.91 0.81

H 0.85 0.85 0.82 0.88 0.78

LA 0.83 0.89 0.84 0.90 0.86

TABLE 5 Correlation between LA and other traits of different lettuce varieties.

Traits Correlation coefficient

Salanova Lugano Satine Aphylion All

FW 0.95 0.94 0.92 0.96 0.91

DW 0.94 0.86 0.91 0.96 0.90

H 0.85 0.87 0.88 0.94 0.84

D 0.83 0.89 0.84 0.90 0.86

The bold values indicate that the values are greater than or equal to 0.95.

(DNN), whose input data was not images, but values read from
label files. Their model structure was shown in Figures 5D,E.
Model_2 took DW and lettuce varieties as input. After passing

through a flatten layer, the data was divided into two branches,
each branch had two full connection layers with 32 units and
finally outputted the estimated values of H and D. Model_3
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FIGURE 4

Architecture of the three-stage multi-branch self-correcting network (TMSCNet). (A) The principle of TMSCNet. (B) Schematic diagram of the
models in the TMSCNet.

FIGURE 5

Structure of each model. (A) Model_11 of the master models for estimating FW, DW, D, and LA. (B) Model_12 of the auxiliary models for
predicting lettuce varieties. (C) Model_12 of the master models for estimating H. (D) Model_2 of self-correcting models of the auxiliary models
for automatically adjusting H and D, which are located in the second stages of TMSCNet. (E) Model_3 of self-correcting models of the auxiliary
models for automatically adjusting FW and LA, which are located in the third stages of TMSCNet.

had the same structure and parameter settings as Model_2. Its
inputs were DW, H, D, and lettuce varieties, and its outputs were
estimated values of FW and LA.

The output results of Model_2 and Model_3 were not the
final lettuce estimated values but were only used to automatically
correct the output of master models. The modified calculation
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formula of Model_2 was shown in Equation 1, where kH and kD

were weight values for adjustment parameters, and the footmark
indicates the stage of traits acquisition. In other words, yH 1 and
yD1 were the results of master models estimation, yH 2 and yD2

were the results of Model_2 estimation, and the revised new H
and D estimates were obtained through weighted calculation.

yH = yH1 × kH + yH2 × (1− kH)

yD = yD1 × kD + yD2 × (1− kD)
(1)

Similarly, the correction formula of Model_3 was
demonstrated in Eq. 2, which was used to correct FW and
LA of Model_11 estimation by the two results estimated by
Model_3.

yFW = yFW1 × kFW + yFW3 × (1− kFW)

yLA = yLA1 × kLA + yLA3 × (1− kLA)
(2)

By analyzing the correlation between the traits of lettuce and
the actual experimental results, it was determined that kH , kD,
kFW , and kLA were 0.59, 0.98, 0.60, and 0.96, respectively.

Results

Experimental setup

In this study, the construction of the TMSCNet and image
preprocessing were implemented using TensorFlow 2.4 under
the Windows 10 operating system. The configuration of the
computer was as follows: Intel(R) Core (TM) i7-10875H CPU
@ 2.30 GHz, 16.0 GB RAM, NVIDIA GeForce GTX1650.

We adopted the normalized root mean square error
(NRMSE) and the coefficient of determination (R2) to evaluate
the performances of a single trait and used the normalized
mean squared error (NMSE) to comprehensively evaluate the
performance of five lettuce traits, as shown in Eq. 3.

NRMSE =
√∑n

i=0(yi−ŷi)2
√∑n

i=0(yi)2

R2
= 1−

∑n
i=0(yi−ŷi)

2∑n
i=0(yi−ȳi)2

NMSE =
∑m

j=0

∑n
i=0(yij−ŷij)

2∑n
i=0(yij)2

(3)

Where y referred to the measured value, ŷ was the value
estimated by the network, ȳ was the average value of the
measured value, n was the number of samples, and m was the
number of lettuce traits.

In this study, the five models of the TMSCNet used the
Adam optimizer with the learning rate of 0.001 to optimize the
model weights and split 340 training samples into the training
dataset and test dataset according to the ratio of 8:2. The batch
size of Model_11, Model_12, Model_13, Model_2, and Model_3

was set to 170, 32, 500, 16, and 16, respectively. The number
of epochs was set to 50, 50, 50, 200, and 200. Besides, the loss
function of four regression models was the mean square error
(MSE), and the classification model of lettuce varieties used
cross entropy as the loss function.

Training and estimation of the
three-stage multi-branch
self-correcting trait estimation
network

Trained each model of the TMSCNet according to the
configuration in the experimental setup. After 50 epochs, the
loss curves of Model_11 were shown in Figure 6A. It could be
seen that those four curves dropped rapidly at the beginning,
and then the curves were stable without significant fluctuation.
In addition, the training curves were very close to the testing
curve, indicating that the model had no prominent overfitting
and underfitting problems. Figure 6B showed the training curve
of Model_12, the left was the loss curve, and the right was the
accuracy curve. Although there were some fluctuations in the
curve of the test set, it still overlapped with the training curve
as a whole, and after the 80th epoch, the accuracy rate exceeded
99%, indicating that the trained model could accurately predict
lettuce varieties. Model_13 was only used to estimate H. It could
be seen from the loss function curve in Figure 6C that after the
10th epoch, MSE was almost reduced to 0, and the curve was
relatively stable. Then, two self-correcting models in the second
and third stages were trained.

To evaluate the performance, 50 validation images were
used to test the TMSCNet that has completed the training.
Figure 7 showed the results on the validation set. The abscissa
represented the measured value, the ordinate represented the
estimated value, and the scatter points reflected the prediction
results. The magenta straight line was the curve of the equation
between the measured value and the estimated value fitted by the
least square method. The lower right corner of each subgraph
showed the evaluation score and fitting curve equation of every
single trait. Where R2 was in the range of 0–1, the larger its
value was, the better the estimation effect was. While the smaller
the NRMSE value was, the better the network performance
was. The fitting line also reflected the performance of the
network. When it was closer to the diagonal represented by the
dotted line, the better the evaluation effect was. For the five
growth traits of FW, DW, H, D, and LA, the TMSCNet had
R2 values equal to 0.9514, 0.9696, 0.9129, 0.8481, and 0.9495,
respectively, and NRMSE values equal to 15.64, 11.80, 11.40,
10.18, and 14.66%, respectively. The results reflected that the
proposed lettuce estimation network had a great performance
and estimation ability.

In order to verify that the proposed multi-stage self-
correcting network was better than the evaluation effect
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FIGURE 6

Training curves of different models. (A) Training curves of FW, DW, D, and LA of Model_11. (B) Training curve and accuracy curve of lettuce
varieties of Model_12. (C) Training curve of H of Model_13.

FIGURE 7

Estimation result of lettuce traits based on the TMSCNet. Five subgraphs show the estimated results of FW, DW, H, D, and LA, respectively.

of using only the master model, the results of evaluating
lettuce traits using only Model_11, combined Model_11 and
Model_13, and TMSCNet using five models were compared.
The comparison results were shown in Figure 8, where

cyan represented TMSCNet, magenta represented Model_11
of TMSCNet, and yellow represented Model_13 of TMSCNet.
From the comparison results, it could be seen that the result of
using the self-correction model of the five models was indeed
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FIGURE 8

Estimation result of lettuce traits based on the Model_11, Model_13, and TMSCNet.

TABLE 6 R2 values and NRMSE values of the estimated lettuce traits by different classical CNNs and TMSCNet.

Method Fresh weight Dry weight Height

R2 NRMSE R2 NRMSE R2 NRMSE

VGG16 0.8208 30.02% 0.8621 25.15% 0.7265 20.20%

Xception 0.8135 30.63% 0.8875 22.71% 0.6824 21.77%

Resnet50 0.9123 21.01% 0.9433 16.13% 0.7791 18.16%

Densenet121 0.9243 19.52% 0.9540 14.53% 0.8055 17.04%

TMSCNet 0.9514 15.63% 0.9696 11.80% 0.9129 11.40%

Method Diameter Leaf area

R2 NRMSE R2 NRMSE

VGG16 0.7928 11.88% 0.9333 16.85%

Xception 0.7275 13.63% 0.8894 21.69%

Resnet50 0.7693 12.54% 0.9329 16.89%

Densenet121 0.8498 10.12% 0.9188 18.59%

TMSCNet 0.8481 10.18% 0.9495 14.65%

The bold values indicate the best results.

better than using only the master model. In the subgraph of FW,
the R2 value of TMSCNet increased by 0.0032, and the value
of NRMSE decreased by 0.5%, while in the subgraph of LA,
the R2 value of TMSCNet increased by 0.048 and the value of
NRMSE decreased by 0.54%. From the subgraph of H, the effect
of evaluation with depth image was indeed better than that with

RGB image, which was also the reason why Model_13 was used
in the master model. Compared with them, TMSCNet further
improved the estimation result of H, the R2 value was equal to
0.9129, which was 0.0174 higher than Model_13, NMSE value
was equal to 11.4%, which was 1.09% lower than Model_13.
Since the DW estimated by Model_11 was its final estimation
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result, there was no other comparison curve in the sub-graph of
DW. In addition, from the estimation results of DW, it could
be seen that among the five traits, its estimation result was the
most accurate, which was the reason why the DW estimated by
Model_11 was used as the final result without correction, and
also the reason why DW was used as the input of Model_2 and
Model_3 to correct other traits.

Comparison of the results with the
classical convolutional neural
networks methods

At present, many classical deep learning networks had
been proposed. These networks had a more complex network
structure and great operation effect and had been widely used
in botany research. To verify the superiority of the proposed
TMSCNet, we did comparative experiments to compare the
performance of the model on 50 validation datasets under
basically the same conditions. The models used for comparative
experiments were VGG16 (Simonyan and Zisserman, 2014),
Xception (Chollet and Ieee, 2017), Resnet50 (He et al., 2016),
and Densenet121 (Huang et al., 2017). VGG model had two
convolution and three convolution modules, which improves
the feature extraction ability of the convolution layer. Xception
network adopted deep separable convolution. Resnet model
introduced the idea of residual, which effectively alleviated the
problem of gradient disappearance caused by the deepening
of network layers. Densenet network adopted an intensive
connection mode to reduce information loss.

Table 6 demonstrated the R2 values and NRMSE values
of five traits of lettuce estimated by different methods. It
was known from this table that Resnet50 and Densenet121
performed well, and Densenet121 had the best estimation effect
on D, while the R2 values and NMSE values of FW, DW,
H, and LA estimated by the proposed TMSCNet were better
than other methods.

Normalized mean squared error was used to further
comprehensively evaluate each method. The calculated NMSE
values of VGG16, Xception, Resnet50, Densenet121, and
TMSCNet were 0.2367, 0.2584, 0.1474, 0.1330, and 0.0826,
respectively, as shown in Table 7. In the table TMSCNet_1 and
TMSCNet_2 referred to only using Model_11 and combined
Model_11 and Model_13. To more intuitively displayed the
estimated results of several methods, the estimated value and
measured values of five traits were drawn, in which the
measured values were arranged in the order from small to
large, and the estimated values also were arranged in this
way, as shown in Figure 9. In the figure, the measured value
was represented by blue lines, the proposed TMSCNet was
represented by red lines, and VGG16, Xception, Resnet50, and
Densenet121 were represented by green lines, cyan lines, yellow
lines, and magenta lines, respectively. It could be seen that

TABLE 7 NMSE values of the estimated lettuce traits by different
classical CNNs and TMSCNet.

Method NMSE

The classical models VGG16 0.2367

Xception 0.2584

Resnet50 0.1474

Densenet121 0.1330

The proposed model TMSCNet_1 0.0952

TMSCNet_2 0.0896

TMSCNet 0.0826

The bold values indicate the best results.

the estimated results fluctuated around the measured values, in
which the curve of Xception deviates from the measured value
most obviously, and the red line was closest to the measured
value curve. In comparison with the classical CNN methods, the
proposed TMSCNet showed superior estimation performances
in estimating the five growth traits of lettuce.

Discussion

Preprocessing method for estimating H

For the H of lettuce, we proposed four preprocessing
methods in the early stage, as shown in Figure 10. The first
method was to use RGB image as input; The second method
was to use RGB image and depth image combined with camera
internal parameters to convert 3D point cloud, and then project
them along the direction of the main view to get a front view
that can reflect the height; The third method was to convert the
depth image into the gray-scale map after standardization; The
fourth method was to use OpenCV to convert depth image into
the pseudo color map. Those four preprocessing methods had
a similar process, which was resized from 600 × 600 pixels to
64× 64 pixels and augmented 100 times.

To select the most suitable data preprocessing method for
lettuce height estimation, the four methods were evaluated by
the R2 values and NRMSE values on the validation dataset
containing 50 samples. Table 8 showed the evaluation scores
of different data preprocessing methods for H. The R2 values
of methods 1 to 4 were 08537, 0.6337, 0.8130, and 0.8912,
respectively, while the NRMSE values were 14.78, 23.38, 16.71,
and 12.74%, respectively. Among them, the best way to estimate
the height of lettuce was to convert the depth image into a
pseudo color map.

To more intuitively displayed the estimated results of the
height value of each method, Figure 11A was drawn, in which
the blue line represented the measured value, the red line
represented the method of estimating the height with the RGB
image, and the green line, cyan line and yellow line, respectively,
represented the method of converting the depth image into
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FIGURE 9

Comparison curve of evaluation results based on different classical convolutional neural networks (CNNs) and TMSCNet.

FIGURE 10

Four different processing methods for estimating H. The first one is to estimate H with the cropped RGB image; The second is the front view
estimation of H obtained from the point cloud projection synthesized by RGB and depth images; The third is to convert the depth image into
the grayscale image; The fourth is to convert depth image into the pseudo color image. Among them, the fourth method to convert the depth
image into the pseudo color image is the data processing method of TMSCNet for estimating H.

front view, gray map, and pseudo color map. It could also be
seen from this figure that the evaluation curve of the method
of converting the depth map into a pseudo color map was the

closest to the measurement result curve, so the estimation effect
was the best. Figures 11B,C showed the evaluation scores of
these four methods more intuitively in the form of a histogram.
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TABLE 8 Results of the estimated H by four date processing methods.

Method Fitted formula R2 NRMSE

H RGB y = 0.8613×x+1.5161 0.8537 14.78%

Depth_Front_view y = 0.6442×x+2.2012 0.6337 23.38%

Depth_grayscale y = 0.9164×x+2.1408 0.8130 16.71%

Depth_pseudo_color y = 0.9317×x+1.6150 0.8912 12.74%

The bold values indicate the best results.

FIGURE 11

Estimation result of H based on four different processing methods. (A) Comparison curve of evaluation results. (B) Histogram and line chart of
R2 value of evaluation results. (C) Histogram and line chart of NRMSE value of evaluation results.

TABLE 9 The MSE results of different machine learning algorithms in
the third stage.

Order number Method MSE

Fresh weight Leaf area

1 Linear regression 1187.5472 156874.7535

2 Decision tree regressor 1171.7190 706175.2030

3 Support vector regressor 656.8072 116738.7902

4 K neighbors regressor 1094.8050 123418.9811

5 Random forest regressor 842.7343 181768.7793

6 Adaboost regressor 885.7827 199491.6020

7 Bagging regressor 903.6413 210840.3104

Therefore, the Model_13 of TMSCNet used the pseudo color
map converted from the depth image as input to train the model
and to estimate the H.

The selection of self-correcting
models of the TMSCNet

Since the input of the auxiliary models in the second and
third stages of the TMSCNet was the numerical data rather than
the image, the classical machine learning regression algorithm
and fully connected network (FCN) were considered. There
were many classical regression models in machine learning,
such as Linear Regression (Austin and Steyerberg, 2015),

Support Vector Regressor (Cortes and Vapnik, 1995), K-Nearest
Neighbors Regressor (Song et al., 2017), Decision Tree Regressor
(Luo et al., 2021), Random Forest Regressor (Ding and Bar-
Joseph, 2017), AdaBoost Regressor (Chen et al., 2019), and
Bagging Regressor (Dal Molin Ribeiro and Coelho, 2020).
For selecting more suitable self-correcting models, we first
conducted comparative experiments on the classical machine
learning regression algorithm to select the best performing
method, and then implement comparative experiments on
the optimized classical machine learning algorithm and fully
connected network to determine the method of the auxiliary
model in the second and third stages of the TMSCNet.

Because the auxiliary models in the second stage and the
third stage had similar structures, here we took Model_3 in the
third stage of the TMSCNet as an example to carry out the
comparative experiment of classical machine learning regression
algorithms. The input data of the comparison experiment went
through the same operation: extracted the information from the
label file, next standardized the data, and then randomly shuffled
the data and fed them into the different models. The effect of
different algorithms was evaluated by the mean square error
(MSE), as shown in Eq. 4.

MSE =
1
n

m∑
i=1

(yi − ŷi)
2 (4)

In the regression model of the third stage, the input data
were the values of DW, variety, H, and D, and the output
results were the values of FW and LA. A 340 samples were
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FIGURE 12

Estimation result of lettuce traits based on TMSCNet with different self-correcting models. TMSCNet_SVR uses SVR as self-correcting models.
TMSCNet_FCN adopts FCN as self-correcting models. Among them, the network takes FCN as the self-correcting model.

FIGURE 13

The process of lettuce traits estimation in the high-throughput situation. The lettuce in the high-throughput image is detected based on YOLO
v3, and then the detected lettuce is cropped out from the high-throughput image to form new datasets containing only single lettuce. Finally,
after data processing, it is inputted to the TMSCNet to estimate the lettuce traits.
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TABLE 10 Results of the estimated lettuce traits by previous studies and TMSCNet.

Method Fresh weight Dry weight Leaf area

R2 NRMSE R2 NRMSE R2 NRMSE

Zhang et al., 2020 0.8938 26.00% 0.8910 22.07% 0.9156 19.94%

Mortensen et al., 2018 0.9400 / / / / /

Hu et al., 2018 0.9281 / 0.8402 / / /

TMSCNet (ours) 0.9514 15.63% 0.9696 11.80% 0.9495 14.65%

Method Fresh weight Height

R2 NRMSE R2 NRMSE

Concepcion et al., 2020a,b SVM 0.5683 / 0.7656 /

RF 0.7567 / 0.7164 /

GPR 0.7939 / 0.7662 /

TMSCNet (ours) 0.9514 15.63% 0.9129 11.40%

The bold values indicate the best results.

used to train each model, and 50 verification samples were
estimated. The results of each model were shown in Table 9.
It could be seen from this table that the MSE value of the
Decision Tree Regressor (DTR) algorithm for the leaf area
was quite large, indicating that the effect of this algorithm
was unsuited; The MSE values of Support Vector Regressor
(SVR) and Random Forest Regressor (RFR) were low, indicating
that the two algorithms had better estimation effect, and the
performance of SVR was best. Therefore, the SVR algorithm was
selected as an alternative algorithm applied in the second and
third stages of the TMSCNet.

Figure 12 showed the details of the evaluation on the
validation dataset. From the R2 value and NRMSE value
calculated in the figure, it could be seen that H and LA estimated
with FCN as the self-correcting model were slightly better than
those estimated with SVR, and for D, the estimation effect of
SVR was better. To finally determine the method used as self-
correcting models of the TMSCNet, the SVR algorithm was
compared with the FCN method, and 50 validation samples
were estimated to calculate NMSE values. The NMSE value
obtained by using SVR as the self-correcting model algorithm
was 0.091425, while the NMSE value obtained by using FCN
as the self-correcting model algorithm was 0.082658. From
the results, the NMSE value obtained by the FCN method
was smaller, which showed that the FCN method had a
better automatic correction effect. So, the FCN algorithm was
determined as self-correcting model of the TMSCNet.

High-throughput detection and
evaluation pipeline

In the actual lettuce planting process, to ensure the yield,
lettuce was intensively planted in the greenhouse, so the images

collected by the camera were high-throughput, namely, the
images contain many lettuces rather than just single lettuce.
To improve the generality of the proposed TMSCNet, we
discussed a high-throughput estimation of the lettuce traits
method based on YOLO v3. It included two parts of lettuce
detection and traits estimation of lettuce. Lettuce detection was
used to identify the position of lettuces and cropped those
detected lettuce from the high-throughput image into images of
single lettuce. Then the processed image was used to estimate
the traits of lettuce using TMSCNet. The process was shown in
Figure 13.

Advantages, limitations and future
work

Estimating traits to monitor crop growth is critical for
crop production and management (Tudela et al., 2017). In
recent years, non-destructive determination has become an
efficient and potential method. In the existing studies of lettuce
traits estimation, we proposed the method still has advantages.
Table 10 shows the details. Zhang et al. (2020) proposed a
convolutional neural network to monitor LW, DW, and LA
of lettuce, which R2 values were 08938, 0.8910, and 0.9156,
respectively, while the NRMSE values were 26.00, 22.07, and
19.94%, respectively. Mortensen et al. (2018) adopted 3D
point clouds to estimate FW, which R2 values were 0.9400.
For FW and DW, the R2 values of Hu et al. (2018) were
0.9281 and 0.8402. Concepcion et al. (2020a,b) used Gaussian
processing regression (GPR) to estimating FW and H with
R2 values of 0.7939 and 0.7662. In addition, the study also
carried out comparative experiments with SVR and RF and
gave the evaluation scores of these two methods. Compared
with these studies, our proposed TMSCNet not only estimates
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more lettuce traits but also has better evaluation scores
than other studies. In addition, TMSCNet fully considers the
correlation of various traits and the differences in lettuce
varieties and designs an automatic correction network structure
based on this, which further improves the accuracy of lettuce
trait estimation.

In addition, there are some studies on other lettuce traits,
which have similar names to the lettuce traits we studied.
Lauguico et al. (2020) adopted DarkNet-53 to predict modeling
area and equivdiameter with R2 values of 0.99 and 0.98.
Since the modeling area and equivdiameter of this study had
different concepts from the LA and D we evaluated, and the
measurements used in this study were measured by image
calculation rather than measured by destructive experiments,
it was incompatible with our research. Concepcion et al.
(2020b) adopted a new genetic algorithm (GA) to compensate
peak wavelength sensitivities of the generic camera, and then
used a convolutional neural network of MobileNetV2 to
estimate canopy area with R2 values of 0.9805. However, the
canopy area was the area measured by the binary image,
which was different from the LA measured by the destructive
experiment. Therefore, this study was still not comparable
with our research.

Although the proposed method has been proven to be
superior and accurate, there are still some limitations that we
need to be considered. The first limitation is that lettuce at
different growth stages has different characteristics, yet the time
sequence is not taken into account in traits estimation. The
second limitation is that in these five traits, the R2 value of D
is 0.8481, which still has a large deviation from other traits.

In the future work, we will first consider the estimation
of lettuce traits under the high-throughput situation, and then
intend to deploy TMSCNet to the controller to realize real-time
monitoring and automatic control of lettuce. In addition, we
also plan to apply this method to other crops.

Conclusion

In this study, we developed a three-stage multi-branch self-
correcting trait estimation network (TMSCNet) to estimate the
fresh weight (FW), dry weight (DW), height (H), diameter
(D), and leaf area (LA) of lettuce based on RGB and
depth images. The TMSCNet was composed of two master
models (Model_11 and Model_13) and three auxiliary models
(Model_12, Model_2, and Model_3), which were distributed
in three stages. Firstly, we carried out the correlation analysis
on the five traits of lettuce and found that the five traits
were highly correlated and the variety of lettuce also had a
great impact on these traits. This analysis provided a basis
for the proposed TMSCNet. An appropriate data processing
method was the key to model training. Through cutting,
resizing and data augmentation, the data preprocessing of RGB

images and depth images effectively improved the operation
efficiency and estimation effect of the models. Then, we trained
the master models and auxiliary models of the proposed
TMSCNet and estimated them on the verification dataset, then
calculated the R2 value and NRMSE value of each trait and
comprehensively evaluated network performance by NMSE
value. Finally, we carried out comparative experiments, and
compare the proposed TMSCNet with the classical CNNs on
lettuce trait estimation. The proposed network was superior
to other models, and the estimated values of lettuce traits
were in good agreement with the measured values with
R2 value of about 0.92, NRMSE value of about 13%, and
NMSE value of 0.0826. Moreover, the performance of the
proposed method was also superior to that of the previous
studies to estimate lettuce traits. It indicated that the proposed
TMSCNet is an effective and accurate tool for the estimation
of lettuce traits and has the feasibility of extending to high-
throughput data. Furthermore, this method can be applied to
the estimation of other crops.
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