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Quantifying the phenolic compounds in plants is essential for maintaining the

beneficial effects of plants on human health. Existing measurement methods

are destructive and/or time consuming. To overcome these issues, research

was conducted to develop a non-destructive and rapid measurement of

phenolic compounds using hyperspectral imaging (HSI) and machine learning.

In this study, the Arabidopsis was used since it is a model plant. They were

grown in controlled and various stress conditions (LED lights and drought).

Images were captured using HSI in the range of 400–1,000 nm (VIS/NIR)

and 900–2,500 nm (SWIR). Initially, the plant region was segmented, and

the spectra were extracted from the segmented region. These spectra were

synchronized with plants’ total phenolic content reference value, which

was obtained from high-performance liquid chromatography (HPLC). The

partial least square regression (PLSR) model was applied for total phenolic

compound prediction. The best prediction values were achieved with SWIR

spectra in comparison with VIS/NIR. Hence, SWIR spectra were further used.

Spectral dimensionality reduction was performed based on discrete cosine

transform (DCT) coefficients and the prediction was performed. The results

were better than that of obtained with original spectra. The proposed model

performance yielded R2-values of 0.97 and 0.96 for calibration and validation,

respectively. The lowest standard errors of predictions (SEP) were 0.05 and
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0.07 mg/g. The proposed model out-performed different state-of-the-art

methods. These demonstrate the efficiency of the model in quantifying the

total phenolic compounds that are present in plants and opens a way to

develop a rapid measurement system.

KEYWORDS

plant stress, total phenolic compounds, hyperspectral, prediction, non-destructive

Introduction

As the global population continues to increase, there will
be a huge demand for food in the near future. Hence, it is
important to increase food production. There are abundant
sources of phytochemicals, nutrients, etc., in the food that we
ingest. Phytochemicals are the compounds that are produced
by the plants. The three major groups of phytochemicals
are polyphenols, terpenoids, and thiols. In plants, dietary
phytochemicals such as flavonoids and phenolic compounds are
present in the vegetables, leaves, fruits, etc. (Liu, 2013).

In recent decades, a lot of research has been conducted on
the biochemical properties and the role of phenolic compounds
(Tsao, 2010; Ignat et al., 2011). In particular, research into
the effects of phenolic compounds on human beings is of
great interest (Seca and Pinto, 2018; Şirin and Aslım, 2019).
The phenolic compounds are key in defense responses such
as antioxidant, anti-aging, and anti-proliferative activities.
The long-term intake of phenolic compounds can help in
fighting against cancer and chronic diseases such as diabetes,
cardiovascular disease (CVD), and impaired cognitive functions
(Del Rio et al., 2013).

Recent developments in plant metabolomics have made
advancements in mapping and screening phenolic contents.
Mass spectrometry has been used for the metabolite imaging
of tissues (Boughton et al., 2016). Based on chemiluminescence
and fluorescence, microfluidic biosensors are used for the
optical analyses of particular compounds in plant tissues (Pires
et al., 2014). Matrix-assisted laser desorption ionization plates
are used for laser pulse analyses of the plant tissues (Sturtevant
et al., 2016). The targeted sample selection is facilitated by
laser micro-dissection technology, and the selected samples
can be analyzed using conventional metabolomic tools in
the laboratory (Gong et al., 2017). Despite advancements in
modern molecular methods, there is great demand for non-
destructive, fast, and accurate methods that can be used to
measure chemical compounds.

To test many samples in a short period of time and in
a non-destructive way, remote sensing methods are required.
Hyperspectral imaging (HSI) is a suitable technique that can be
used for detecting the plant stress and also measuring secondary
metabolites in plants. Recently, many studies have focused on

the HSI system. For instance, Mertens et al. (2021) used HSI
to monitor the drought-induced changes and photosynthetic
efficiency in maize plants with both index-based and PLSR
models. The performance of close-range hyperspectral images
for early drought detection and classification was studied and
evaluated by using visible near-infrared HSI (Dao et al., 2021).
Asaari et al. (2019) analyzed the hyperspectral images to detect
the drought stress and recovery in maize plants. The HSI system
had been used to detect the storage time for strawberries (Gong
et al., 2017). Liang et al. (2018) determined and visualized the
various levels of deoxynivalenol in bulk wheat kernels using HSI.
HSI has been used to identify the chlorogenic acid content in
Flos Lonicerae (Wang et al., 2019). The HSI-based prediction
of the starch content based on a single kernel in corn seeds
has been performed (Liu et al., 2020). The protein content in
a single wheat kernel has been predicted using HSI (Caporaso
et al., 2018a). The moisture content and anthocyanin have been
detected in purple potato slices using visible HSI (Tian et al.,
2021). Erkinbaev et al. (2019) developed an artificial neural
network model that was based on HSI to identify the hardness
of wheat. The random forest model has been applied to study
the bruising degrees of apples (Tan et al., 2018). Aflatoxin has
been detected from peanuts using deep learning and HSI (Han
and Gao, 2019). The machine learning method has been applied
on black rice HSI data to predict the anthocyanin content
(Amanah et al., 2021).

Although there have been multiple studies that have
predicted the phenolic compounds that are present in peated
barley malt (Yan et al., 2021), persimmon leaf (Mayranti et al.,
2019), grape seeds and skins (Zhang et al., 2017), basil seeds
(Choi et al., 2020), and chicory leaves (Sytar et al., 2020),
applying HSI for the non-destructive measurement of the
phenolic compound contents in plants that have been grown
under various stress environments has not been fully explored.
In addition to these research works, the presence of various
amounts of phenolic compounds in plants under different stress
conditions provides an opportunity to assess non-destructive
HSI methods and their ability to identify the total phenolic
compounds in stressed and normal plants. In our research study,
the Arabidopsis thaliana plant was used since it is a model plant.
The main focus of this study was to analyze the hyperspectral
data in order to identify the total phenolic compounds that
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are present in plants. This study also shows that the use of
HSI analysis to assess the induced phenolic content changes in
aboveground plant parts and for rapid prediction paves the way
toward the systematic production of bio-active compounds for
nutraceutical use.

Materials and methods

Plant sample

In our study, we chose Arabidopsis thaliana since it is a
model plant that can be used for genetic studies, and it has
a short life span. The Arabidopsis seeds had been soaked in
medium. Once the seeds had been germinated, they were moved
to chambers with four different light conditions (Figure 1)—
white light (wavelength: 380 nm), red light (wavelength
640 nm), blue light (wavelength 430 nm), and red–blue
light (Red:Blue ratio of 7:3)—for an 8 h photoperiod. The
Arabidopsis plants were grown at 25 ◦C and in 70% humidity
throughout the experiment. After a 2-week growth period in the
abovementioned conditions, half of the plants had been placed
under a drought stress (5 ml water per plant twice in a week) for
a period of 1 week.

NIR-HSI system

In our study, a line scan NIR-HSI system was used to collect
the Visible/NIR (VIS/NIR) and Shortwave Infrared (SWIR)
data of the plants. The VIS/NIR HSI system consisted of an
EMCCD camera (Luca RDL-604M, Andor Technology, South
Windsor, CT, United States), light sources, and a line scan
imaging spectrograph (Headwall Photonics, Fitchburg, MA,
United States). The spectral range of the VIS/NIR HSI system
was 400–1,000 nm. The SWIR HSI system consisted of a line-
scan spectrograph (NIR, Headwall Photonics, Fitchburg, MA,
United States), six 100 W tungsten halogen light sources, a
mercury cadmium telluride (MCT) detector (Model: Xeva-2.5–
320; Xenics, Heverlee, Belgium) to detect the light reflection
produced by the plant sample, a camera with a 320 × 256
pixel resolution, and a translation stage. The spectral range of
the SWIR HSI system was 900–2,500 nm. Both the VIS/NIR
and SWIR HSI systems were controlled by a computer
with Windows OS.

NIR-HSI plant data acquisition and
extraction

The hyperspectral images/data (Ih) of the plants were
collected using an NIR-HSI system, which can be described as
follows: A pot containing an Arabidopsis plant was kept over

a moving table. The table moved from right to left and was
controlled by a stepping motor. To cover the spatial range of
the plants, the distance between the camera and the sample was
set to 80 cm. The plant sample was scanned line by line with
the help of the HSI system. When the plant samples passed the
camera field of view (FOV), 3D hypercubes of the plant samples
were obtained. In total, there are 120 scanned plant samples. To
correct the environmental noise and to calculate the reflectance
value, white (Iw) and dark (Id) reference images were collected.
The dark reference image (0% reflectance) was collected with
the when the lights were switched off and when the camera
lens was covered with an opaque cap. Additionally, the white
reference image (>99% reflectivity) was collected using a white
Teflon plate. The HSI-corrected image (Ic) was obtained using
following equation:

Ic=
Ih−Id

Iw−Id
(1)

The HSI-corrected images (Ic) of plants contain background
regions such as the pot, soil, etc. To extract the spectral
information of each plant from those background regions, the
plant region was segmented. While segmenting the plant region
in the SWIR images, spatial data that corresponded to the
wavelengths of 947, 1,535, and 1,946 nm were used. Similarly,
for plant region segmentation from the VIS/NIR images, spatial
data with the wavelengths 560, 655, and 750 nm were used. The
spectral data were extracted from the segmented images. These
processes were performed using MATLAB software (R2020b).
The workflow of the phenolic content prediction process is given
in Figure 2.

Data pre-processing

The extracted spectral data may contain noise that was
produced by the camera and by the environment. Preprocessing
methods such as the normalization, multiplicative scatter
correction (MSC), standard normal variate (SNV), and
Savitzky–Golay (1st and 2nd derivative) methods were over the
extracted spectral data. To compensate for the inconsistencies
that were caused because of the optical source length and the
sample thickness, the spectral data were fit within the range of
(0–1) using the normalization method. The MSC preprocessing
method was used to correct the scattering intensity of the spectra
(Candolfi et al., 1999). To correct the baseline effect and to
remove the overlapping peaks in the spectra, Savitzky–Golay
(SG) derivatives were applied (Osborne et al., 1993).

High-performance liquid
chromatography for reference data

Since the Arabidopsis plants were all small in size and
did not weigh much, all of the plants that were grown in the
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FIGURE 1

Plant growth in various light conditions. (A) white LED, (B) blue LED (C), red LED (D), and red–blue LED.

FIGURE 2

Workflow of phenolic content prediction in plants.

same growing conditions were analyzed in a group instead
of individually. In our study, we grouped 15 plants into
one growing condition (120 plants/8 conditions = 15 plants
per condition). The protocol that was used to extract and
analyze the phenylpropanoid compounds was explained in
Park et al. (2019). A quantity of 100 mg of each fine powder
sample was taken, and it was mixed with 80% aqueous MeOH
solution. An amount of 3 ml of the MeOH solution was
used for mixing. The mixture was vortexed for 1 min, and

it was sonicated at the temperature of 37 ◦C for a period
of 1 h. Then, the mixture was centrifuged at the speed of
10,000 rpm at the temperature of 4 ◦C for a period of 0.25
h. Then, the supernatants were gathered, and a 0.45 µm
PTFE syringe filter (Millipore, Bedford, MA, United States)
was used to filter sterilize them into an amber glass screw
thread vials (Thermo Fisher Scientific, United States). The
phenylpropanoid compounds were separated through a C18
column (5 µm, 0 × 4.6 mm) at the temperature of 30◦C
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using an Agilent Technologies 1,200 series HPLC system
(Palo Alto, CA, United States) at 280 nm. The mobile phase
contained MeOH/water/acetic acid (5:92.5:2.5,v/v/v) (solvent
A) and MeOH/water/acetic acid (95:2.5:2.5, v/v/v) (solvent B);
an injection volume of 20 µL and a flow rate of 1.0 mL/min
were used. The gradient program was as follows: 0% solvent B;
0–80% solvent B, 48 min; 0% solvent B, 10 min. Each phenolic
compound was determined based on the retention time and
spiking tests results. The quantification of the phenolic contents
of each sample was performed with reference to a corresponding
calibration curve.

Model development

The partial least squares regression (PLSR) method was
applied to predict the total phenolic contents in plants that had
been grown in various conditions, as discussed earlier in this
section. PLSR is a multivariate model that integrates multiple
regression and feature-based extraction over the principal
component method and that can be used to identify the response
of dependent variables based on a huge number of independent
variables. The PLSR model is based on the linear relationship
between the variables X and Y. This builds a possibility for
predicting the X variable component (Kresta et al., 1994). The
PLS model is represented by the following equations:

X = ABT
+ C (2)

Y = DET
+ F (3)

D = AG+H (G =
(

ATA
)−1

ATD) (4)

where X is the spectral data and is an independent variable
matrix, and Y denotes the total phenolic content in plants and
is a dependent variable. A and D represent the score matrices,
and B and E are the loading matrices of X and Y, respectively. C
and F represent the error matrices for X and Y.

The relationship between the total phenolic content and the
spectral data was developed using the least squares method, as
given in Equation 4. This technique was recommended for this
study since it was successfully used to predict phytochemical
compounds in previous studies (Amanah et al., 2021).

In this study, for each of the segmented plant hyperspectral
images, the plant regions were divided randomly into ten
different regions, and the mean spectra for each region were
calculated. The mean process was carried out to accommodate
the physical characteristic differences within a sample (Amanah
et al., 2021). The mean process resulted in 1,200 spectral data
(10 spectra× 120 plant samples). This entire dataset was divided
into calibration and validation datasets in the ratio of 70:30. The
wavelength that was used for model development ranged from
400 to 990 nm for VIS/NIR and from 920 to 1,970 nm for SWIR.

Other wavelengths were not considered in this study since they
contain noisy regions curve.

In this study, the phenolic compounds have been predicted
by selecting a few wavebands using Discrete Cosine Transform
(DCT) coefficients. The DCT coefficients for each waveband
have been calculated. Since the flat (DC) coefficient have more
energy when compared with other coefficients, it is capable
of reconstructing the original spectra (PraveenKumar and
Domnic, 2020). Hence, it is consider as similar to original
spectra and is not considered in our experiment. The remaining
coefficients are known as AC coefficients. The energy of the
coefficients is high in a few leftmost coefficients, decreases
further and becomes less in a few rightmost coefficients.
The high frequency AC coefficients (rightmost coefficients)
are not considered since they represent the edge features
(PraveenKumar and Domnic, 2020). Based on these properties,
we considered the highest energy AC coefficient for selecting
the wavebands in our experiment. Then, the peaks among the
highest AC coefficients of all the wavebands have been identified
and the corresponding wavebands are selected as the reduced
wavebands. In our experiment, these wavebands have been used
for phenolic prediction.

Image processing

HSI can be used to create chemical images while predicting
the chemical compounds that are in the sample. This helps
us to view the chemical distribution throughout the sample.
The beta coefficient of the developed model was used to create
the chemical images. Initially, the 3D hyperspectral image was
converted to a 2D matrix, and then this matrix was multiplied
with PLSR beta coefficients. Finally, the resulting matrix was
converted back to a 3D image. The visualization of the total
phenolic compound concentrations in the plant region was
conducted by summing the corresponding pixels of all of the
band images. This can be represented by following equation:

Ich =

n∑
i = 1

IiKiL (5)

where Ich is the chemical image, Ii represents the ith band of
the hypercube, Ki denotes the PLSR beta coefficients, L is the
constant, and n is the total number of bands.

Results

High-performance liquid
chromatography result

The reference values for the total phenolic compounds in
this study were evaluated from 120 plants grown in various
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TABLE 1 The reference values of phenolic compounds [mg/g dry weight (DW)] obtained from HPLC analysis.

S. No Phenolic
compounds

Growing conditions

White +

Non-
drought

White +

Drought
Blue + Non-
drought

Blue +

Drought
Red + Non-
drought

Red +

Drought
RedBlue +

Non-
drought

RedBlue +

Drought

1 Gallic acid 0.043± 0.010 a1 0.017± 0.002 b ND ND ND ND ND ND

2 Catechin 0.150± 0.011 a 0.145± 0.026 a 0.188± 0.033 a 0.137± 0.013 a 0.141± 0.003 a 0.165± 0.021 a 0.130± 0.014 a 0.134± 0.014 a

3 Chlorogenic
acid

0.123± 0.005 a 0.137± 0.009 a 0.116± 0.019 a 0.122± 0.008 a 0.123± 0.002 a 0.119± 0.011 a ND ND

4 Caffeic acid 0.059± 0.005 b 0.050± 0.011 b 0.093± 0.011 a ND 0.049± 0.010 b 0.060± 0.007 b ND ND

5 (-)-Epicatechin 0.055± 0.011 b 0.037± 0.004 b 0.082± 0.021 a 0.042± 0.006 b ND ND ND ND

6 Epicatechin
gallate

0.743± 0.023 a 0.302± 0.030 b ND 0.151± 0.018 c 0.124± 0.006 c 0.255± 0.030 b ND ND

7 Ferulic acid 0.138± 0.014 b 0.384± 0.029 a ND ND 0.033± 0.013 cd 0.053± 0.001 c ND ND

8 Sinapic acid 0.032± 0.002 a 0.035± 0.007 a 0.005± 0.001 c ND ND 0.015± 0.002 b ND ND

9 Benzoic acid ND ND 0.164± 0.013 a 0.137± 0.013 b 0.136± 0.002 b 0.138± 0.009 b ND 0.135± 0.010 b

10 Rutin 0.39± 0.040 ab 0.390± 0.043 ab 0.324± 0.010 b 0.330± 0.006 b 0.340± 0.005 b 0.339± 0.018 b 0.464± 0.132 ab 0.600± 0.168 a

11 Quercetin 0.287± 0.018 a 0.259± 0.014 a 0.268± 0.018 a 0.271± 0.011 a 0.281± 0.004 a 0.339± 0.049 a 0.283± 0.016 a 0.354± 0.085 a

12 Kaempferol 0.174± 0.038 a 0.104± 0.016 b 0.131± 0.020 ab 0.110± 0.015 b 0.085± 0.008 b 0.098± 0.017 b 0.100± 0.014 b 0.086± 0.013 b

TOTAL 2.194± 0.053 a 1.859± 0.084 b 1.371± 0.017 c 1.300± 0.037 cd 1.311± 0.013 cd 1.582± 0.063 bc 0.977± 0.136 d 1.309± 0.241 cd

*ND denotes compound not detected.
1The different letters followed by the values in a column denote the significant difference (p < 0.005) between the parameter areas using Duncan’s multiple range test (n≥ 3, mean± SD).

light conditions, non-drought, and drought conditions, and the
results are presented in Table 1.

The concentration of each phenolic compound given in
Table 1 varies for each growing condition. Although the
concentrations of certain phenolic compounds may be similar
to one another in each growing condition, the individual
phenolic content may differ significantly. As a result, total
phenolic compound prediction is critical for plants that have
been grown under various stress conditions. In addition, all of
the phenolic compounds are important for plants as well as for

TABLE 2 PLSR model performance of total phenolic compound
prediction in plants grown under various stress conditions
(full waveband).

Pre-processing VIS/NIR SWIR

Rc
2 SEC Rv

2 SEP Rc
2 SEC Rv

2 SEP

Mean normalization 0.84 0.17 0.44 0.27 0.93 0.11 0.89 0.14

Maximum normalization 0.84 0.17 0.51 0.25 0.93 0.11 0.89 0.13

Range normalization 0.83 0.17 0.5 0.26 0.88 0.14 0.85 0.16

MSC 0.79 0.19 0.62 0.27 0.63 0.25 0.24 0.36

SNV 0.80 0.18 0.82 0.17 0.85 0.16 0.71 0.22

SG_1st derivative 0.84 0.16 0.68 0.23 0.91 0.12 0.83 0.17

SG_2nd derivative 0.87 0.15 0.83 0.17 0.94 0.10 0.93 0.11

Raw 0.83 0.17 0.53 0.28 0.93 0.11 0.87 0.15

MSC, multiplication scatter correction; SNV, standard normal variate; SG, Savitzky–
Golay; SEC, standard error of calibration; SEP, standard error of prediction in validation.

human health, and this study focuses on predicting the total
phenolic compounds.

Model prediction result

In this study, a multilinear regression model was developed
using 1,200 spectra ranging from 400 to 990 nm in the
VIS/NIR region and by using 1,200 spectra ranging from
920 to 1,970 nm in the SWIR region. The total phenolic
compound prediction results of the PLSR model (without band
dimensionality reduction) for the that had been plants grown
in various stress conditions are given in Table 2. The PLSR
model shows acceptable performance for the spectra that were

TABLE 3 PLSR model performance of total phenolic compound
prediction in plants grown under various stress conditions (after
waveband reduction).

Pre-processing Rc
2 SEC Rv

2 SEP

Mean normalization 0.89 0.11 0.81 0.16

Maximum normalization 0.84 0.14 0.75 0.19

Range normalization 0.80 0.16 0.73 0.19

MSC 0.75 0.18 0.57 0.24

SNV 0.82 0.15 0.65 0.22

SG_1st derivative 0.97 0.05 0.93 0.10

SG_2nd derivative 0.97 0.05 0.96 0.07

Raw 0.94 0.10 0.91 0.11
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FIGURE 3

Mean of pre-processed spectra using the second Savitzky–Golay derivative of plants based on total phenolic content. (A) VIS/NIR spectra,
(B) SWIR spectra, (C) beta coefficients for VIS/NIR spectra, and (D) beta coefficients for SWIR spectra.

obtained from the VIS/NIR regions, as they obtained high
correlation coefficients (R2) of 0.87 and 0.83 for calibration
and validation datasets, respectively. The model performance
for the spectra that were obtained from the SWIR regions are
better than those that were obtained in the VIS/NIR region
spectra, attaining the R2-values of 0.94 and 0.93 for calibration
and validation datasets, respectively. Hence, the SWIR spectra
is considered for further analysis. The model performance
for the SWIR spectra of the validation dataset is closer to
0.9 (R2-value) for all of the preprocessing methods except
MSC and SNV. The results of the total phenolic compound
prediction with reduced number of wavebands using PLSR
model is given in Table 3. It is observed from Table 3
that the prediction model attains the R2-values of 0.97 and
0.96 for calibration and validation datasets, respectively. These

values are better than the prediction results obtained with full
wavebands.

Discussion

The spectral characteristics

The plant spectral data in the wavelength between 400 and
990 nm for the VIS/NIR spectra and between 920 and 1,970 nm
for the SWIR are characterized by several peaks. In VIS/NIR
the spectra, the wavelength between 442 and 665 nm indicates
the water status (Jopia et al., 2020). Similarly, the wavelength at
around 780 nm is the region that indicates the water absorption
(Zhang et al., 2012). The optimal wavelengths that contain
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phenolic compound information are from 450–475 nm to 535–
565 nm (Mayranti et al., 2019). In SWIR, the water absorption
region is in wavelength at 1,450 nm (OH stretch first overtone)
(Aenugu et al., 2011). The presence of phenolic content can be
identified in the wavelengths between 1,084 and 1,318 nm (CH
second overtone) and between 1,609 and 1,861 nm (CH first
overtone) (Ma et al., 2019). In Kokaly and Skidmore (2015),
the phenolic content is identified by bands near 880, 1,130, and
1,660 nm. The presence of phenolic compounds is confirmed
at the wavelengths between 1,110 and 1,130 nm and at around
1,650 nm (Yan et al., 2021).

Figure 3 also shows a distinct intensity due to the presence
of various concentrations of total phenolic compounds in plants
under different stress conditions. The OH and CH bonds
indicate the main characteristics of phenolic compounds (Frizon
et al., 2015). In the VIS/NIR spectra, there is a peak in the beta
coefficients in the wavelength from 450 to 475 nm and from 535
to 565 nm. These regions are related to the phenolic compounds
(Mayranti et al., 2019). In the SWIR spectra, there is a second CH
overtone band that arises in the band range between 1,110 and
1,130 nm and a first CH overtone band that arises in the band
range between 1,645 and 1,670 nm. Our model also predicts the
presence of OH in the wavelength region between 650 and 780
nm for the VIS/NIR spectra, matching the findings in Zhang
et al. (2012) and Jopia et al. (2020). Similarly, the OH prediction
at the 1,205 and 1,450 nm bands of the SWIR images matches
the findings from Frizon et al. (2015) and Yan et al. (2021).

Model performance

There are various studies related to the phenolic compounds
and plant stress. Sytar et al. (2020) analyzed the hyperspectral
and multispectral fluorescence spectra related to the phenolic

FIGURE 4

Beta coefficients for SWIR spectra after waveband reduction.

compounds in chicory leaves. Liu et al. (2019) studied about the
total phenolics in Flos Lonicerae, grown without any stress, using
HSI. Flos Lonicerae is a Chinese medicinal herb and their quality
is assessed by the total phenolic compounds which acts as one of
the quality factors. In their study, they achieved the prediction
accuracy of above 96% with different preprocessing methods.
The antioxidant activity, polyphenols and fermentation index
were identified in single cocoa beans using HSI (Caporaso
et al., 2018b). They had obtained the total phenolic compound
prediction accuracy of 70%. In addition, Sytar et al. (2019)
studied the phenolic compounds accumulation in plants
exposed to different colors. They analyzed the correlation
indices between the spectral reflectance parameters and the
phenolic compounds. Similarly, there are various studies focus
on analyzing the chemical compounds in plants and food
products (Wold et al., 2016; Morales-Sillero et al., 2018; Shrestha
et al., 2020; Amanah et al., 2021). These studies provide an
opportunity to analyze the SWIR and VIS/NIR spectra and
measure and analyze the changes in phenolic compounds in
plants grown under various stress conditions at the same time.
In our study, the SWIR and VIS/NIR spectra are analyzed
for their changes in various stress conditions, and also the
relationship of spectral changes and stress conditions to the
changes in total phenolic contents are analyzed.

The performance of the developed model is discussed as
follows. The number of wavebands that has been selected
after waveband reduction is 35 including the wavebands
corresponding to the wavelength that represents the phenolic
compounds (1,112, 1,118, 1,135, 1,646, 1,652, 1,658, 1,664,
and 1,670 nm). The beta coefficients of the PLSR model after
waveband reduction is given in Figure 4. The performance
of the PLSR model (over reduced waveband spectra) was also
compared to other regression models, such as the support
vector machine (SVM), regression tree (RegTree), and principal
component regression (PCR) models, and is shown in Table 4.

It can be observed from Table 4 that the standard error
of prediction (SEP) value of the PLSR model is closer to zero
(0.07 mg/g) when compared to the other models. Additionally,
the R2-value of the PLSR model is higher than the other
models. These show that the total phenolic compounds for
all of the stress conditions are predicted accurately by the
PLSR model. On contrary, the other regression methods
that are mentioned in Table 4 produce R2-values that are

TABLE 4 Comparison of PLSR model performance with other
regression models.

Method Rc
2 SEC Rv

2 SEP

SVM 0.94 0.10 0.89 0.14

RegTree 0.92 0.12 0.86 0.16

PCR 0.93 0.11 0.91 0.12

PLSR 0.97 0.05 0.96 0.07
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FIGURE 5

Scatter plot of phenolic concentration reference value versus prediction errors for validation dataset. The average value and the lines of
average ± one standard deviation of prediction error are shown in solid and dashed blue lines respectively. (A) SVM, (B) RegTree, (C) PCR, and
(D) PLSR.

FIGURE 6

Total phenolic content prediction of individual plants in a growing condition (RedBlue+Drought). The predicted value is given in the top-right
corner of each image.

comparatively lower and higher SEP values. This shows that the
performance of those methods is not uniform over the various
stress conditions. In that sense, the PLSR model is capable
of predicting the total phenolic compounds better than the
other models mentioned in Table 4. It can be observed from

Figure 5 that the PLSR model is less biased toward the under-
prediction or over-prediction of total phenolic compounds,
and they are predicted accurately among these models despite
various kinds of stress. Overall, the experiment results show
that the PLSR model is better able to predict the total phenolic
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FIGURE 7

Total phenolic content prediction of individual plants in a certain growing (stress) condition (RedBlue+Non-Drought).

FIGURE 8

Total phenolic content prediction of plants in various growing (stress) conditions. (A) RedBlue+Non-Drought, (B) RedBlue+Drought,
(C) Blue+Non-Drought and (D) Red+Drought.

compounds when compared to the other models given in
Table 4.

Visualization image based on phenolic
content in Arabidopsis

The advantage of HSI in chemometrics is its ability
to generate the chemical compound distribution in the
samples. Many researchers have already proven that compound
visualization is possible with HSI. Amanah et al. (2021)
successfully used HSI and visualized the content of anthocyanins
in black rice powder and seeds. The protein in peanuts (Yu
et al., 2017) and the fat and moisture content in Atlantic solmon
(Zhu et al., 2014) were visualized using HSI and chemometrics.
In addition, the hyperspectral images were used to produce

the chemical images for visualizing the chemical distribution
in peanut samples using the image analysis algorithm and
pseudo color operation (Cheng et al., 2018). Wen et al. (2019)
visualized the distribution of chlorophyll contents in apple
leaves. In general, the advantage of the chemical images is to
recognize the chemical changes in the samples by the changed
color distribution. In our study, the chemical images are helpful
in visualizing the phenolic compounds of Arabidopsis plants
grown under different stress conditions.

To visualize the total phenolic content in the plant, the
chemical images that were obtained from the PLSR model have
been generated. These images provide the spatial distribution
and concentrations, which help to determine the presence of
phenolic compounds. The total concentrations of the phenolic
compounds that are present in the sample are clearly confirmed,
and the color change from blue to red indicates the increase in
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FIGURE 9

Prediction plot of total phenolic compounds in plants under various stress conditions.

FIGURE 10

The comparison of total phenolic compounds in plants under various stress environments. The different letters above the error bars denote the
significant difference (p < 0.005) between the parameter areas using Duncan’s multiple range test (n = 3, mean ± SD).

the total concentrations of the phenolic compounds. Figure 6
shows the total phenolic content prediction. Figure 7 shows
the chemical images of the plants grown in one condition.
The colors of the plants grown within this condition show
some slight variations, indicating the variations in the total
phenolic contents among them. The phenolic compounds

are not uniformly distributed in the, affecting the sample
homogeneity. In this study, the total phenolic content was
examined based on the various growing (either light or drought
stress or combination of both) conditions. The evaluation of
the total phenolic compounds could not be conducted for each
plant because of the minimum weight requirement for HPLC
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analysis. Hence, to justify the prediction on a single plant,
the mean concentration of the total phenolic compounds for
each growing condition was calculated, and Figure 7 shows the
prediction for plants grown in a condition. The mean predicted
value was compared to the reference value that was obtained
from HPLC. To evaluate the prediction accuracy, the root mean
square (RMSE) was calculated and was shown to be equal to
0.11 mg/g (similar to standard error). Figures 7, 8 show the
chemical images of the plants grown in one condition and under
various stress conditions, respectively. It can be observed from
Figure 8 that the color of the plants shows drastic variations
that represent the variations in the total phenolic content of
the plants. It is evident that the stress effects can be identified
through these drastic variations in the chemical compounds.
A prediction plot for all of the growing conditions is given in
Figure 9.

Effects of stresses on total phenolic
contents in Arabidopsis

Many studies were conducted to identify the phenolic
content and other chemical changes in plants due to stresses.
Posmyk et al. (2005) observed the changes in antioxidant
enzymes and isoflavonoids in chilled soybean seedlings. The
changes in phenolic compounds were studied in response to
Phytophthora ramorum infection (Ockels et al., 2007). The
changes in phenolic compounds and antioxidant properties
were observed in grapevine under drought stress and followed
by recovery (Weidner et al., 2009). Similarly, Król et al. (2014)
analyzed the phenolic compounds changes and antioxidant
properties in grapevine grown under long-term drought stress.

In our study, we observed the total phenolic compounds
response under various stress conditions. Arabidopsis plants
were grown under stresses such as various LED lights, drought,
and in combinations of the different LED light sources and
drought, as explained in the Materials and Methods section.
Then, their total phenolic contents were predicted using
HSI image analysis. The concentrations of the total phenolic
contents were affected by the different stress environments, the
effects of which are shown in Figure 10. It can be observed from
Figure 10 that the total phenolic contents have reduced been
by the stress environments (WD: white + drought; BND: blue
+ non-drought; BD: blue + drought; RBND: red–blue + non-
drought; RBD: red–blue + drought; RND: red + non-drought;
RD: red + drought) when compared to the plants that had
been grown in the control environment (WND: white + non-
drought). It can also be observed that the total phenolic content
is high in drought conditions in the presence of red light (RBD
and RD) when compared to the corresponding non-drought
conditions (RBND and RD). However, the total phenolic
content is lower in drought conditions in the absence of red
light (WND and BND) when compared to the corresponding

non-drought conditions (WND and BND). In terms of the
morphological structure of the plants, the canopy was increased
by blue light, and the height was increased by the red light when
compared to the control conditions. Additionally, the red–blue
light was shown to have the morphological effects (height and
canopy) of both the red and blue lights. This shows that the red–
blue light and red light can be used as a pre-treatment for plants
that will be grown in drought conditions, which matches with
the results that were determined in the research work (Ahmadi
et al., 2020). Selecting the appropriate wavelengths for LED light
that facilitate the plant growth requires further research.

Conclusion

In our study, a non-destructive and rapid method for
predicting the total phenolic compounds in Arabidopsis plants
using VIS/NIR and SWIR image analysis is reported. In
addition, various LED and drought stresses were imparted
upon the plants, and the phenolic prediction was examined.
HSI combined with the PLSR model shows high prediction
performance, with R2-values of 0.94 and 0.93 for the calibration
and validation, respectively, for the spectra that were extracted
from the segmented images from the SWIR region, and R2-
values of 0.87 and 0.83 for the calibration and validation,
respectively, for the spectra that were extracted from the
segmented images from the VIS/NIR region. The second
Savitzky–Golay (SG) derivative pre-processing method resulted
in high prediction performance, with and R2-value of 0.93
and the lowest SEP value of 0.11 mg/g when compared to
raw and other preprocessing methods. Since the SWIR spectra
yields better prediction results, it is used for further analysis.
After waveband reduction, the PLSR model attains the R2-
values of 0.97 and 0.96 for the calibration and validation,
respectively. This performance was also compared with different
state-of-the-art machine learning methods. The prediction
performance of the PLSR with the SG-2nd derivative after
waveband reduction showed better performance than all of
those models. The chemical images confirm the presence of
phenolic compounds in the Arabidopsis plants. This study
shows the potential of HSI to predict and helps in analysis of
the total phenolic compounds in plants under various stress
conditions. The HSI approach has the potential of rapid analysis
and demonstrates the possibility of developing an automatic
total phenolic prediction mechanism.
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