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Fresh weight is a widely used growth indicator for quantifying crop

growth. Traditional fresh weight measurement methods are time-consuming,

laborious, and destructive. Non-destructive measurement of crop fresh

weight is urgently needed in plant factories with high environment

controllability. In this study, we proposed a multi-modal fusion based deep

learning model for automatic estimation of lettuce shoot fresh weight

by utilizing RGB-D images. The model combined geometric traits from

empirical feature extraction and deep neural features from CNN. A lettuce

leaf segmentation network based on U-Net was trained for extracting leaf

boundary and geometric traits. A multi-branch regression network was

performed to estimate fresh weight by fusing color, depth, and geometric

features. The leaf segmentation model reported a reliable performance

with a mIoU of 0.982 and an accuracy of 0.998. A total of 10 geometric

traits were defined to describe the structure of the lettuce canopy from

segmented images. The fresh weight estimation results showed that the

proposed multi-modal fusion model significantly improved the accuracy

of lettuce shoot fresh weight in different growth periods compared with

baseline models. The model yielded a root mean square error (RMSE) of

25.3 g and a coefficient of determination (R2) of 0.938 over the entire lettuce

growth period. The experiment results demonstrated that the multi-modal

fusion method could improve the fresh weight estimation performance by

leveraging the advantages of empirical geometric traits and deep neural

features simultaneously.
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Introduction

Plant factories have recently gained vast popularity owing
to the advantages of growing efficiently and controlled
environment. Plant factory, also known as vertical farm, is an
advanced stage of controlled environment agriculture (CEA)
that features high yield, high quality, and high efficiency
(Graamans et al., 2018; Shamshiri et al., 2018). Compared with
traditional agriculture, the internal environmental factors of
plant factories can be controlled precisely and automatically.
Crop yield and quality are significantly correlated with genetic,
environmental factors (physical, chemical, and biological) and
cultivation methods during crop growth (Kozai et al., 2019).
Growing crops in a plant factory can be regarded as a process
of control and optimization, in which crop growth monitoring
is a crucial step. Accurate and timely crop growth information
can reveal the current growth status and yield potential of crops,
which are essential for management decision-making.

Fresh weight is a widely used growth indicator for
quantifying crop growth. Crop growth can be defined as a
process of increment in biomass or dimensions of a plant
(Bakker et al., 1995). The fresh weight is one important
quantitative factor that dynamically changes during crop
growth. Automatic quantitation of fresh weight can help
researchers better understand the crop growth process and
the dynamic relationship between crop and environment.
For leafy vegetables like lettuce, the fresh weight of plant is
composed of the root part and the shoot part. The fresh
weight of the shoot part is more directly related to yield as the
leaves and stems are harvested as final products. Traditional
fresh weight measurement methods are mainly based on
destructive sampling, which are time-consuming, laborious,
and destructive. Nowadays, most commercial greenhouses and
plant factories can grow over 10,000 individual plants per
day. Traditional methods by manually operation are facing
challenges at this large production scale. Thus, automatic
and non-destructive monitoring of crop fresh weight is
urgently needed.

Image-based approaches have been widely used in fresh
weight monitoring of lettuce (Table 1). Images can provide
non-destructive, convenient, and low-cost access to crop
growth information (Lin et al., 2022). The main processing
steps of image-based approaches include image preprocessing,
feature extraction, and fresh weight regression. Constructing an
appropriate feature extraction method is the key to improving
the model performance. Relating size and shape to weight
is a common empirical concept in the field of agriculture
(Kashiha et al., 2014; Konovalov et al., 2019). Geometric features
extracted from lettuce images can quantitatively describe the
characteristic of the canopy, which is helpful in fresh weight
estimating. Many image segmentation algorithms are developed
to segment plant leaves and backgrounds from RGB images
or 3D point clouds and then calculate geometric features such

as leaf projection area, volume, and plant height from the
segmented data to construct a fresh weight regression model
(Jung et al., 2015; Jiang et al., 2018; Mortensen et al., 2018;
Reyes-Yanes et al., 2020). These empirical feature extraction
approaches show promising results, indicating the low-level
features extracted from images have strong correlations
with fresh weight.

Deep learning techniques such as deep convolutional neural
networks (DCNNs) can extract and learn intricate relationships
from data through multiple levels for representation (LeCun
et al., 2015). End-to-end deep learning methods based on
DCNNs have recently emerged and show opportunities to
estimate fresh weight directly from input images (Zhang
et al., 2020; Buxbaum et al., 2022). Although most DCNNs
are initially designed for classification tasks, they can also
perform regression tasks well because of their strong feature
learning capability. These end-to-end approaches eliminate
the cumbersome efforts of extracting features from plant
segmentation results and show potential for the practical
application of crop growth monitoring.

Some works demonstrate that combining empirical-
constructed and deep neural features is an effective method for
image-based applications (Nanni et al., 2017; Kan et al., 2019).
The data-driven deep learning methods naturally meet their
limits when sufficient training data are unavailable (von Rueden
et al., 2021). The low-level features extracted by experience can
help to provide complementary information for optimizing
the initialization and filtering of proposals for deep learning
networks, which leads to higher estimation accuracies.

Multi-modal fusion has received intensive research covering
different application domains in recent years. Extracting and
combining information from multiple modalities considered for
a given learning task can produce an improved performance
(Ramachandram and Taylor, 2017). Encouraged by the growing
availability of image acquisition devices, RGB-D (Red, Green,
Blue – Depth) data has attracted increasing attention in
agriculture. As a typical multi-modal data, RGB-D images can
provide not only color information but also depth information
for each pixel. With the combination of color and depth
information, the geometrical traits of targets (size, length, or
width) can be accurately measured (Fu et al., 2020), which is
more advantageous for describing crop growth status. Fusing
color and depth features based on DCNNs is a promising
approach for achieving better performance (Eitel et al., 2015;
Zeng et al., 2019; Quan et al., 2021). However, existing depth
sensors still have some limitations, and depth images are prone
to holes on transparent or shiny surfaces (Song et al., 2015),
which challenges applying multi-modal fusion for extracting
and combining information in practical applications.

In this study, we proposed a multi-modal fusion based
deep learning model for automatic monitoring of lettuce shoot
fresh weight by utilizing RGB-D images. The model combined
geometric traits from empirical feature extraction and deep
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TABLE 1 An overview of existing image-based methods for lettuce fresh weight monitoring.

Method type Input data
types

Sample
sizes

Methods Descriptions References

Empirical feature extraction RGB / Traditional image
processing + quadratic regression

Regression by projected area
from top view images

Lee, 2008

RGB 82 Traditional image
processing + linear regression

Regression by pixel counting
from top view images

Jung et al., 2015; Jiang et al., 2018

RGB / OpenCV-based
segmentation + linear regression

Regression by extracted 2D
and 3D geometric features
from a stereo-vision system

Yeh et al., 2014; Chen et al., 2016

3D point
clouds

230 Rule-based segmentation + linear
regression

Regression by extracted
geometric features from
colored 3D point clouds.

Mortensen et al., 2018

RGB 338 Optical flow analysis + gradient
boost regression

Regression by extracted leaf
movement features from top
view images.

Nagano et al., 2019

RGB 750 CNN segmentation + linear
regression

Regression by extracted
geometric features from the
side and top view images

Reyes-Yanes et al., 2020

End-to-end deep learning RGB 286 CNN regression Regression directly by a CNN
model

Zhang et al., 2020

RGB-D 3,888 CNN regression Regression directly by an
RGB-D fusion CNN network

Buxbaum et al., 2022

FIGURE 1

Examples of RGB images (cropped) of the AGC dataset.

neural features from CNN. A lettuce leaf segmentation network
based on U-Net was trained for extracting leaf boundary
and geometric traits. A multi-branch regression network was
performed to estimate fresh weight by fusing color, depth,
and geometric features. Specifically, the objectives of the
study were to (1) achieve an accurate and automatic fresh
weight estimation of lettuce by a multi-modal fusion based
deep learning model; (2) quantify the benefits of combining
geometric traits with deep neural features in improving the
model performance; (3) investigate the performance variances
of fresh weight estimation for different lettuce varieties in the
entire growth period.

Materials and methods

Dataset

The 3rd Autonomous Greenhouse Challenge: Online
Challenge Lettuce Images dataset (AGC dataset) was used
in this study (Hemming et al., 2021). The dataset was
generated for the needs of the 3rd International Autonomous
Greenhouse Challenge, a famous international competition held
by Wageningen University & Research. Top-view RGB images
and aligned depth images of 388 lettuces were provided in the
dataset. The dataset contains references to images and measured
data on a lettuce crop growing in well-controlled greenhouse
conditions. The sampled plants include four different lettuce
varieties suitable for hydroponics: Aphylion, Salanova, Satine,
and Lugano. Five crop traits were destructively measured at 7-
day intervals, including fresh weight of shoot, height, diameter,
leaf area, and dry weight of shoot. A total of seven batches of
data were collected, covering the entire growth period of lettuce
(Figure 1). The AGC dataset did not provide ground truth
annotation for leaf segmentation. The CVAT tool (Sekachev
et al., 2020) was used to label the leaves and background pixels
from RGB images manually.

Data preprocessing and augmentation
The original top-view RGB and depth images of the AGC

dataset were captured with an image size of 1,920 × 1,080
pixels. We applied the same preprocessing strategy for RGB and
depth images of each sample. First, all images were cropped to
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FIGURE 2

The structure of the U-Net based leaf segmentation network.

1,080 × 720 with the same position parameters (the x and y
coordinate of the upper-left corner is 515 and 210) to remove
invalid pixels at the edges. The cropped image dataset was used
as the input of the proposed method. We used 70% of the image
dataset for training and the rest for testing.

The proposed method consists of two independent
networks, which used the same training set and test set, but
their data preprocessing and data augmentation methods
were different. For the segmentation network, each image is
resized to 960 × 640 before being fed to the network. The
Albumentations tool was used for data augmentation (Buslaev
et al., 2020). Image rotation, rescale, flip, shift, brightness
change, contrast change, and RGB change were used in this
study. The input images of the segmentation network were
augmented one-to-one during training without duplication.
For the regression network, the original images of the cropped
dataset were used. Since the image scale significantly affects the
estimation of fresh weight, only spatial level transforms that
maintain the image scale was applied. As a result, an augmented
training set containing 2,439 images was constructed before
network training.

Multi-modal fusion model

System pipeline for the model
The multi-modal fusion model composed of a lettuce

segmentation network and a multi-branch regression network
was developed for automatic estimation of the fresh weight of
lettuce. The system pipeline of the proposed model included
the following steps: (i) data preprocessing, (ii) geometric traits
extraction, and (iii) fresh weight estimation. The model’s input
was the top-view RGB image, depth image, and empirical

geometric traits of lettuce, and the output was the estimation
of shoot fresh weight. In the model-building stage, we trained
the leaf segmentation network and multi-branch regression
network with the same dataset.

Leaf segmentation network
A leaf segmentation network based on U-Net architecture

was employed to automatically segment lettuce leaves and
backgrounds from RGB images (Figure 2). U-Net is a
semantic segmentation network based on fully convolutional
networks with a typical U-shaped encoder-decoder architecture
(Ronneberger et al., 2015). The U-Net architecture used in this
study consists of two parts: contractive path (encoder) and
expanding path (decoder). The contractive path can extract
feature maps of different resolutions by stacking convolutional
layers and max-pooling layers, thereby capturing both global
and local features of the input images. The expanding path
combines features and spatial information at each level by a
sequence of up-sampling and concatenation.

As a pixel-wise classification network, each pixel in the input
image of the leaf segmentation network corresponds to one
instance, where leaf pixels are labeled as 1, and background
pixels are labeled as 0. The input image size is 960 × 640 × 3
to balance further processing requirements and the memory
limitation. The number of levels, resolutions and channels of
each feature map is shown in Figure 2. The Dice loss was used
as the loss function (Milletari et al., 2016). The 2-class variant of
the Dice loss function was calculated as follows (Equation 1):

Lossdice = 1−
2
∑N

i pigi∑N
i p2

i +
∑N

i g2
i

(1)

where N is the sum of pixels, pi and gi are the ground truth and
prediction label at pixel i, pi, gi ∈ [0, 1].
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To quantitatively evaluate the performance of the leaf
segmentation model, different metrics were used, including
intersection over union (IoU), F1 score, pixel accuracy,
precision, and recall.

Geometric traits extraction
A total of 10 geometric traits were defined to describe

the structure of the lettuce canopy (Table 2). We used edge
and contour detection methods based on OpenCV to extract
geometric traits from segmented images, and the processing
step were as follows: (1) removing blobs in the binary image
by morphological operations, (2) detecting the largest contour,
(3) detecting the minimal circumcircle, minimal area rectangle
and convex hull of the contour, (4) calculating geometric traits.
The size-related geometric traits (PA, PP, CA, CP, PCD, ARW,
and ARH) were obtained directly by pixel counting, and the
remaining morphology-related geometric traits (PPR, CPR, and
CAR) were calculated by size-related geometric traits.

Multi-branch regression network
A multi-branch architecture regression network was built

to fuse multi-modal data for lettuce fresh weight monitoring
(Figure 3). The multi-branch regression network was made up
of two blocks: feature extraction block and regression block.
Min-max normalization was applied for all input variables to
speed up the training process. We employed a late fusion
architecture to effectively extract and fuse RGB, depth, and
geometric features. For RGB and depth branches, we utilized
ResNet-34 for feature extraction (He et al., 2015). As a popular
network that is widely used in the field of image classification,
ResNet can extract deep features from images and have good
feature extraction performance. We removed the final 1,000× 1
fully connected layer of ResNet and obtained the features of
RGB and depth from the last flatten layer (average pool). As
for geometric features extracted from the leaf segmentation
network, we utilized a multilayer perception (MLP) for feature

TABLE 2 Geometric traits extracted from the segmented images.

Traits type Traits Description

Size related PA Projected area

PP Projected perimeter

CA Convex hull area

CP Convex hull perimeter

PCD Circumcircle diameter of the projected
area

ARW Width of minimal area rectangle of the
projected area

ARH Height of minimal area rectangle of the
projected area

Morphology-related PPR Projected area/projected perimeter

CPR Convex hull area/convex hull perimeter

CAR Projected area/convex hull area

extraction. All outputs of three branches were flattened to ensure
they have the same dimensions. Finally, these three feature
sets were concatenated and passed to the regression block. The
regression block consists of three sequential fully connected
layers. In our tests, we found that increasing the depth or width
of the regression blocks had little effect on the prediction results.
We employed a retraining strategy to train the whole network
since the dataset is quite different from ImageNet. The multi-
branch regression network used the mean-squared-error (MSE)
loss as the loss function (Equation 2).

LossMSE =
1
N

N∑
i

(yi − ŷi)
2 (2)

where N is the number of samples, yi and ŷi are the ground truth
fresh weight and predicted fresh weight for sample i.

Root mean square error (RMSE), mean absolute percentage
error (MAPE), and coefficient of determination (R2) were
used as performance indicators for the multi-branch
regression network.

Experimental design and
implementation

We performed a model ablation study to comprehensively
evaluate the fresh weight estimation capability of the multi-
modal fusion model. The multi-modal input of the model
consists of RGB images, depth images, and geometric traits
extracted from segmented images. It is worthwhile to investigate
the performance variances of models with these inputs
individually and in different combinations. Specifically, we
built three dual-branch baseline models and three single-
branch baseline models. The regression block and training
configurations of baseline models were as same as the three-
branch multi-modal fusion model. Moreover, the fresh weight
estimation results of a dataset without data augmentation were
presented to evaluate the performance of the model under
insufficient data sizes.

All models were trained and tested on a Linux workstation
(Ubuntu 16.04 LTS) with two Intel Xeon Gold Processors
(2.1G/20 Core/27.5M), 128 GB of RAM, and four NVIDIA
GeForce RTX 2080 Ti graphics cards (11 GB of RAM). All the
deep learning models were implemented on the Python platform
based on PyTorch.

Results and discussion

Analysis of the distribution of the
lettuce dataset

The AGC dataset contains 388 lettuce samples of four
varieties growing in 7 weeks. To better describe the dataset, we
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FIGURE 3

Overall structure of the multi-branch regression network.

FIGURE 4

Data distribution of the AGC dataset: (A) sample size of the four varieties, and (B) fresh weight distribution of the four varieties.

TABLE 3 Pixel-level accuracy indices of the leaf segmentation network.

Class mIoU Accuracy IoU F1 score Precision Recall

Training set Leaf 0.988 0.998 0.978 0.989 0.989 0.989

Background 0.998 0.999 0.999 0.999

Test set Leaf 0.982 0.998 0.968 0.983 0.984 0.983

Background 0.997 0.999 0.999 0.999

summarized the data frequency and fresh weight distribution
(Figure 4). The sample size of four lettuce varieties was evenly
distributed, with a maximum of 102 and a minimum of 92.
However, the dataset distribution was skewed toward larger
and older plants in terms of the growth period. Moreover,
the fresh weight of lettuce varied significantly in different
growth periods, ranging from 1.4 to 459.7 g. We also observed

that the fresh weight varied across different lettuce varieties,
especially in the maturity period. For example, the green
leaf varieties (Lugano and Aphylion) were heavier than the
red leaf varieties (Satine and Salanova). The unbalanced
data distribution potentially challenged the fresh weight
estimation of different lettuce varieties in the entire growth
period.
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FIGURE 5

Qualitative results obtained by the leaf segmentation network. 10 samples (A–J) were randomly selected.

FIGURE 6

Data distribution of extracted geometric traits of the four lettuce varieties in 7 weeks.
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Evaluation of leaf segmentation and
geometric traits

The leaf segmentation network based on U-Net architecture
showed good performance in the AGC dataset (Table 3). We
evaluated the pixel-level classification performance of the leaf
segmentation network. The leaf segmentation network achieved
a mIoU of 0.982 and an accuracy of 0.998 in the test set. For
background pixels, all indices were above 99% in the test set. The
leaf pixels also obtain satisfactory performance, with an IoU of
0.968 and an F1 score of 0.983 for the test set. The background
pixels were more accessible to classify than leaf pixels since
background scenes vary less across the dataset. It is noteworthy
that the network achieved similarly high results across the
test and training sets, indicating that the network was well
trained on the dataset without overfitting. Some representative
results generated by the leaf segmentation network were also
provided (Figure 5). We found the network performed slightly
worse in small lettuce through visual appraisal. This may be
caused by the relatively small proportion of leaf pixels in the
image of small lettuce. The lighter color and loose shape of
the leaves also can be factors that influence the performance.

In general, the background and leaves were well segmented
for lettuce images in different varieties and growth periods,
demonstrating the geometric traits extracted from segmented
images can accurately describe the morphology of the leaves.

We also analyzed the data distribution of extracted
geometric traits of the four lettuce varieties (Figure 6). Both
size-related and morphology-related geometric traits showed
significant variance in different growth periods. We observed
that the canopy size among different varieties had high
variance at the maturity period. For example, Aphylion and
Salanova had larger canopy sizes than the remaining varieties
in weeks 6–7. However, compared with the distribution of
fresh weight, Aphylion has a large fresh weight while the
fresh weight of Salanova was relatively small. Inconsistencies
in canopy size and fresh weight made it difficult for the
model to learn comprehensive information for fresh weight
estimation at maturity. The correlation between fresh weight
and geometric traits of lettuce was analyzed (Table 4). All
geometric traits showed significant positive correlations with
fresh weight (P < 0.001). Such high correlations provide an
opportunity for using canopy geometric features to improve
fresh weight estimation.

TABLE 4 Correlation coefficients between fresh weight and geometric traits of lettuce.

FW PA PP ARW ARH PCD CA CP PPR CPR CAR

FW 1

PA 0.904*** 1

PP 0.799*** 0.945*** 1

ARW 0.856*** 0.963*** 0.944*** 1

ARH 0.838*** 0.955*** 0.928*** 0.896*** 1

PCD 0.862*** 0.980*** 0.967*** 0.968*** 0.962*** 1

CA 0.885*** 0.997*** 0.959*** 0.964*** 0.955*** 0.985*** 1

CP 0.868*** 0.986*** 0.965*** 0.973*** 0.970*** 0.994*** 0.988*** 1

PPR 0.876*** 0.933*** 0.817*** 0.906*** 0.919*** 0.908*** 0.911*** 0.932*** 1

CPR 0.873*** 0.985*** 0.954*** 0.969*** 0.971*** 0.983*** 0.982*** 0.996*** 0.950*** 1

CAR 0.607*** 0.627*** 0.500*** 0.600*** 0.632*** 0.575*** 0.579*** 0.622*** 0.807*** 0.674*** 1

FW, fresh weight. ***Correlation is significant at the 0.001 level.

TABLE 5 Fresh weight estimation result of different models in the test set.

With data augmentation Without data augmentation

RMSE/g MAPE (%) R2 RMSE/g MAPE (%) R2

RGB + D + G 25.3 17.7 0.938 30.3 21.6 0.910

RGB + G 25.5 18.2 0.936 29.3 23.1 0.916

D + G 31.2 21.2 0.905 35.9 48.2 0.874

RGB + D 29.5 19.6 0.915 36.0 27.8 0.873

RGB only 28.8 17.9 0.919 30.4 39.9 0.910

D only 32.0 25.8 0.900 37.8 44.6 0.861

G only / / / 37.9 34.8 0.860

D, depth; G, geometric features.
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FIGURE 7

Scatter plots between predicted and observed fresh weight for the test set of augmented models (A) RGB + D + G, (B) RGB + G, (C) D + G,
(D) RGB + D, (E) RGB only, and (F) D only. The red solid lines represent the fitting lines, and the gray dotted lines represent the 1:1 lines.

Fresh weight estimation results

The multi-branch regression network provided a good fresh
weight estimation performance for different lettuce varieties in
the entire growth period (Table 5). The triple-branch fusion
architectures network with RGB, depth and geometric features
exhibited the highest estimation performance with an RMSE of
25.3 g, a MAPE of 17.7%, and an R2 of 0.938. Compared to
the dual-branch fusion networks with RGB and depth images,
the RMSE was reduced by 4.2 g (14.2%). This improvement
mainly came from the late growth period samples (Figure 7).
In addition, the models with geometric features showed higher
estimation accuracies than the models without geometric
features, with a reduction of RMSE by 0.8–4.2 g. The results
indicate that fusing the geometric features with deep neural
features can lead to a more accurate fresh weight estimation
for the image-based deep learning model. Interestingly, the
performance of the RGBG fusion model and RGB model was
superior to the RGBD fusion model, which was different from
prior knowledge. The main reason was that the inevitable noise
of depth images made the learning process of the network
difficult. Similar results have been found in the field of object
detection (Sun et al., 2022). On the other hand, the results
implied that the addition of geometric features could help the
fusion of multi-modal features.

We also compared the impact of data augmentation on
model performance. All models performed better when data
augmentation techniques were applied, with a reduction of
RMSE by 1.6–6.5 g. The noticeable improvements demonstrated
that data augmentation techniques significantly improved the
data generalization and reduced overfitting. We also observed
that the models containing depth features were more sensitive
to the dataset size. Similar results were found when comparing
the performance of models with and without geometric features.
The geometric features can improve model performance
whether dataset size is limited or sufficient. The model only
containing geometric features showed the worst performance
among the models, and the performance difference became
larger when the model was trained with sufficient data. The deep

TABLE 6 The triple-branch fusion network’s performance of each
lettuce varieties.

Variety RMSE MAPE (%) R2

Aphylion 29.9 17.4 0.927

Salanova 30.3 24.2 0.899

Lugano 21.3 14.0 0.964

Satine 16.6 15.3 0.956

All 25.3 17.7 0.938
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neural features extracted from images are dominant, however,
geometric features still provide complementary information
that can help improve the model performance. The reliability
of the multi-branch regression network was evaluated. We
randomly produced another five different data partitions for
training and testing the triple-branch fusion network, with a
ratio of 7:3. The triple-branch fusion network showed high
performance stability, with a standard deviation of RMSE equals
0.81 g (Supplementary Table 1). The results indicated that the
proposed method provides reliable performance for lettuce fresh
weight estimation.

Model performance across different
varieties

We compared the model performance of the triple-branch
fusion network of each lettuce variety to analyze the influence
of varieties (Table 6). The results showed that the varieties with
large leaf areas or canopy had poor fresh weight estimation
performance. For example, the Satine showed the lowest RMSE
of 16.6 g, while Salanova showed the highest RMSE of 30.3 g.
As we mentioned in 3.2, Salanova had a large canopy size and
a relatively small fresh weight, which affected the estimation
performance. The variance in fresh weight distribution and
leave color potentially led to inconsistencies in the complexity
of model learning in different varieties that affect the model’s
generalization ability.

The proposed model with a flexible multi-modal fusion
framework showed potential for automatic growth monitoring
across different crops in the CEA. Although the model showed
high estimation accuracy, many possibilities still remain to be
further studied to improve the model, such as its robustness and
interpretation capability. For example, the model’s performance
in larger lettuce should be further improved. The light
environment in plant factories with artificial lighting could
be inconsistent with the AGC dataset. It is worthwhile to
further perform our model in practical agricultural applications.
Enlarging the dataset with more scenarios and applying
transfer learning algorithms will effectively improve the model’s
robustness. Another limitation is the interpretation capability
of the model. Further work could be done to understand and
evaluate the contribution of each modality to the performance
of the multi-modal fusion model. Adopting model visualization
tools such as Grad-CAM (Selvaraju et al., 2017) and SHAPley
Additive exPlanations (Lundberg and Lee, 2017) will improve
the understanding of the multi-modal fusion model.

Conclusion

This study proposed a multi-modal fusion based deep
learning model for automatic estimation of lettuce shoot

fresh weight by combining deep neural features and empirical
geometric features. The model is composed of a lettuce
segmentation network and a multi-branch regression network.
A lettuce leaf segmentation network based on U-Net was trained
for extracting leaf boundary and geometric traits. A multi-
branch regression network was performed to estimate fresh
weight by fusing color, depth, and geometric features. The
results demonstrated that: (1) the multi-modal fusion showed
good fresh weight estimation performance for different lettuce
varieties in the entire growth period. (2) The triple-branch
fusion regression network outperformed baseline models,
suggesting that the combination of deep neural features
and geometric features improves fresh weight estimation
performance. (3) The empirical geometric features provided
complementary information for improving the model learning
ability of lettuce fresh weight estimation, especially for the
lettuce with a complex canopy. This study highlights that the
fusion of multi-modal data and the combination of deep neural
and empirical geometric features are promising approaches for
fresh weight estimation of lettuce. The flexible fusion framework
can be further applied to the growth monitoring of other crops.
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