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The semi-transparency property of smoke integrates it highly with the

background contextual information in the image, which results in great visual

differences in different areas. In addition, the limited annotation of smoke

images from real forest scenarios brings more challenges for model training. In

this paper, we design a semi-supervised learning strategy, named smoke-

aware consistency (SAC), to maintain pixel and context perceptual consistency

in different backgrounds. Furthermore, we propose a smoke detection strategy

with triple classification assistance for smoke and smoke-like object

discrimination. Finally, we simplified the LFNet fire-smoke detection network

to LFNet-v2, due to the proposed SAC and triple classification assistance that

can perform the functions of some specificmodule. The extensive experiments

validate that the proposed method significantly outperforms state-of-the-art

object detection algorithms on wildfire smoke datasets and achieves

satisfactory performance under challenging weather conditions.

KEYWORDS

wildfire smoke detection, semi-supervised learning, smoke-aware consistency, triple
classification assistance, smoke detection network
1 Introduction

Failure to detect and control wildfire in a timely manner can result in devastating

disasters to forests (Ray et al., 2017; Niccoli et al., 2019). Therefore, it is very important

that forest safety monitoring systems are able to detect fire and smoke in a timely and

effective manner (Barmpoutis et al., 2014). Early research into fire monitoring systems

mainly focused on the detection of flames. However, smoke detection is more suitable

than fire detection for forest monitoring systems because fires develop slowly in the early

stages and are not easily detected by cameras. As a result, fire detection-based security

monitoring systems do not provide alerts in time compared to smoke detection-based
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security monitoring systems. Therefore, smoke detection is more

suitable than fire detection for the role of fire monitoring

algorithms in forest scenarios (Filonenko et al., 2017). Sensor-

based smoke detectors rely on smoke ionization to produce

particulate matter and then perform smoke detection (Adamian

et al., 1996). This principle means that the sensor-based smoke

detector can only achieve good performance in small scale

scenarios, but it cannot be applied to forests with large areas

and complex landscapes like forests (Lin et al., 2018). To solve

this problem, many researchers have carried out studies on

computer vision-based smoke detection algorithms

(Dimitropoulos et al., 2016). Earlier smoke detection

algorithms could only determine the presence of smoke in a

scene and could not localize it (Miyazawa, 2002). However,

precise localization of smoke areas can help fire-fighting systems

to provide more accurate alerts. Therefore, the accurate

localization of smoke has become an important issue in the

field of computer vision in recent years (Jia et al., 2016). In this

article, we will refer to this as smoke detection.

Most of the early vision-based smoke detection was based on

inference algorithms with shallow feature representations (Kaabi

et al., 2017). These methods use visual features to represent

smoke, such as color, speed, transparency and direction

(Barmpoutis et al., 2014). However, current smoke detection

algorithms based on feature representations still suffer from

some shortcomings due to the lack of robust mechanisms for

characterizing smoke motion and external morphology (Jia

et al., 2019), which means that the performance will decline

significantly when the running environment changes. Therefore,

these kinds of smoke detection methods still need further

improvement in terms of generalization and interference

(Yuan et al., 2019).

With the development of artificial intelligence in industry,

agriculture and forestry (Chen et al., 2017; Ferrag et al., 2017;

Ray et al., 2017; Zhu et al., 2018; Ferrag et al., 2020; Liu et al.,

2020), many researchers have begun to focus on deep learning-

based smoke detection algorithms, while the performances

remain unsatisfactory for the following reasons: 1) The shape
Frontiers in Plant Science 02
of the smoke is constantly changing and its visual characteristics

are susceptible to be influenced by the background; 2) Smoke has

different visual features at different stages of combustion, so it is

difficult for CNNs to learn high-dimensional features of smoke

that are adapted to different stages of combustion; 3) As shown

in Figure 1, some of the objects that appear in the forest have an

appearance similar to that of smoke, which makes the model

susceptible to misinterpretation of these normal conditions in

practical applications. Therefore, a good wildfire smoke

detection algorithm needs to be able to accurately detect

smoke regions in the complex environments.

Combining the above issues with the current problems in the

field of smoke detection, this paper proposes SAC for the

following reasons: 1) the traditional learning-based object

detection algorithms are usually dedicated to the design of the

model structure, ignoring the impact of the training data on

performance in different scenarios. 2) traditional object

detection algorithms are designed to working in clear scenes

by default. However, in real-world applications, the images

captured by camera are often affected by unusual weather

conditions, resulting in reduced detection accuracy. 3)

traditional fully supervised object detection relies to some

extent on over-fitting of background information. Thus, when

the running scenario changes significantly, the performance of

the model will be severely degraded.

In order to address the above issues, the following

contributions have been made in this paper:
• In this paper, a new SACmethod is proposed to solve the

problem of insufficient amount of training data.

Specifically, we first obtain pseudo-labels for the

unlabeled data by using a preliminary model trained

on the labelled data. The original unlabeled image was

then cropped into eight patches based on pseudo-

labelling, and eight different data augmentation

methods were then randomly applied to these patches.

The next step is to make the model’s detection on the

patch consistent with the pseudo label by back
A B DC

FIGURE 1

Some challenging images. (A, B) are smoke images; (C, D) are vapour and fog images.
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Fron
propagation. The experimental results show that the

proposed SAC can effectively improve the detection

accuracy as well as the robustness of the model.

• In this paper we optimized the traditional fully

supervised LFNet model for fire smoke detection and

proposed a simplified LFNet-v2. Specifically, we remove

the multi-scale feature extraction module and attention

mechanism used in LFNet due to the proposed SAC

method and triple classification assistance can help the

model to better understand the smoke and background.

In addition, the removal of these two modules could

improve the inference speed of LFNet-v2.

• In order to avoid the disturbance of smoke in forest

scene by objects with similar visual features, a triple

classification assistance is proposed. Specifically, in the

training phase, the proposed method adds the sky class

as a detection class compared to the traditional smoke

detection. This training strategy can help the model

better recognize the smoke and the background.
The rest of this article is arranged as follows. Related work on

traditional fire monitoring methods and learning-based fire

monitoring methods are given in Section 2.1 and Section 2.2

respectively. The proposed method is introduced in Section 3.

The comparison and ablation experimental results are

introduced in Section 4. The conclusion is drawn in the

Section 5.
2 Related Work

Early work in the computer vision community on smoke

monitoring focused on smoke detection based on visual features,

but this approach tended to have significant false positives and

negatives. Recently, learning-based smoke detection methods have

evolved significantly with the increase in computing power. In order

to describe the progress made in the field of artificial intelligence in

terms of fire and smoke detection algorithms, this section analyzes

the relevant literature from two different perspectives, namely

traditional machine learning-based and modern deep learning-

based fire monitoring algorithms respectively.
2.1 Traditional fire monitoring methods

Early research into smoke detection focused on the

underlying visual features of the image. For example, Chen

et al. simultaneously used the RGB and HIS color spaces to

studying the dynamic characteristics of the smoke (Chen et al.,

2004). Marbach et al. studied the YUV color space at the pixel

level and used it to determine whether a fire was occurring in the
tiers in Plant Science 03
current scene (Marbach et al., 2006). Celik et al. proposed a fire

detection algorithm based on the pixel-level YCbCr color space,

and also put forward a new rule for distinguishing chromaticity

and brightness (Celik and Demirel, 2009). Habiboğlu et al.

proposed a real-time fire detector based on SVM (Habiboğlu

et al., 2012).

The smoke detection methods based on color representation

are susceptible to brightness and are poorly robust to changes in

the environment (Chaturvedi et al., 2022). In recent years, more

and more researchers have been using different characterization

methods for smoke detection of fires. Among these works,

Borges et al. combined color, texture and roughness with the

Bayesian classifier to recognize the fire and smoke (Borges and

Izquierdo, 2010). Toreyin et al. adopted spatiotemporal wavelet

analysis to detect the areas of fire in the video (Töreyin et al.,

2006). Di Lascio combined the color and motion information in

the video to detect the fire (Lascio et al., 2014). Dimitropoulos

et al. adopted the spatiotemporal features for fire detection, and

then used SVM to classify the candidate regions (Dimitropoulos

et al., 2014). Even though these methods can improve the

performance of the model, they often have poor robustness

and generalization abilities. To address this problem, many

researchers have begun to focus on deep learning-based smoke

detection methods.
2.2 Deep learning-based fire
monitoring methods

Recently, deep learning has gradually replaced machine

learning as a mainstream approach to fire and smoke

detection (LeCun et al., 2015). Based on SqueezeNet (Iandola

et al., 2016), Khan et al. proposed a lightweight fire detection

algorithm, which can locate and identify objects simultaneously

(Muhammad et al., 2018). This method can balance fire

detection accuracy and inference speed well with few

parameters. Yin et al. adopted a deep normalized CNN to

speed up training and improve the performance of the smoke

detection (Yin et al., 2017). Zhang et al. used both real and

synthetic smoke images in their training set (Zhang et al., 2018).

However, the experimental results show that these methods

cannot solve the problem of insufficient training dataset.

Learning-based detection methods can automatically extract

features that are beneficial for smoke detection. However, the

performance of these methods will be severely degraded by the

lack of training data for forest scenes due to the inherent

disadvantages of the fully supervised training strategy. To

address this problem, this paper proposes a semi-supervised

smoke detection method that allows the model to achieve high

accuracy despite using insufficient data. The specific details of

the proposed method are described in detail in the next section.
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3 Methodology

The structure of the LFNet-v2 is shown in Figure 2. Since the

SAC and triple classification assistance proposed in this paper

can provide the functionality of some special modules applied in

LFNet to a certain extent, this paper simplifies the classical fire

and smoke detection model LFNet (Shen et al., 2020) and

proposes LFNet-v2. Specifically, we removed the multiscale

feature extraction module from LFNet because the SAC

strategy proposed in this paper allows the network to adapt to

different contexts. In addition, we also removed the attention

mechanism that plays an important role in LFNet for the same

reason. Lastly, since our work focuses on smoke detection only,

we discard the original loss function SCP (x) designed

specifically for the fire detection, and merely use the loss

function employed in YOLOv3 (Redmon and Farhadi, 2018)

for LFNet-v2.
3.1 The framework of LFNet-v2

The structure of LFNet-v2 is shown in Figure 2. Similar to

YOLOv3, LFNet-v2 first normalizes the size of the input image

to 416 * 416 * 3 by using a uniform grey fill box, and then halves

the image size by Conv2D, which has a convolution kernel of 3, a

step size of 2 and a padding of 1. Finally, an input image of size
Frontiers in Plant Science 04
(416, 416, 3) will eventually be transformed by LFNet-v2 into a

high-dimensional feature map of size (13, 13, 256). One

important characteristic of LFNet-v2 is the incorporation of a

residual block (He et al., 2016). The advantages of residual

network is easiness for optimization, which can also improve

accuracy by increasing network depth. Internal skip connections

are adopted in the residual block, which can deal with the

gradient vanishing problem caused by the increasing depth in

the depth of the neural network. A residual block with kernel size

3 and step size 2 is first run for LFNet-v2. We perform this

convolution at this feature layer and add the results to LAYER.

As a result, the network structure of LFNet-v2 can be

deepened considerably.

The PReLU (He et al., 2015) is used for each convolution of

LFNet-v2. After convolution, each part will be normalized using

Instance Normalization (IN) (Ulyanov et al., 2016), and then

PReLU will be employed. A common ReLU sets all negative

values equal to zero, whereas a nonzero slope is assigned by

PReLU to all negative ones, and its mathematical expression is:

f  yið Þ  =  
yi, if yi > 0

aiyi,  if yi ≤ 0

(
(1)

In the last step, convolution is performed to the Resblocks of

the 6th, 8th and 10th layers of the network, and the convolution

blocks of size (13,13,6), (26,26,6) and (52,52,6) are output

respectively. Lastly, features of uniform size are spliced together
FIGURE 2

The framework of the proposed LFNet-v2.
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by feature splicing, and the heads of three different sizes of

(52,52,18), (26,26,18) and (13,13,18) are obtained, which are

used to detect large, medium and small size of smoke, respectively.
3.1.1. Loss function
The task of the LFNet-v2 is the accurate localization of the

smoke region. Therefore, the loss function in YOLOv3 is used

directly in this paper, which consists of object location offset loss,

classification loss and target confidence loss as follow:

L  o, c, O, C, l, gð Þ 

=  l1Lconf  o, cð Þ  + l2Lcla  O, Cð Þ 

+ l3Lloc  l, gð Þ (2)

where, l1, l2 and l3 are the balance coefficients, Lconf (o, c) is
the confidence loss, Lcla (O, C) is the classification loss, and Lloc
(l, g) is the localization loss. In this paper, We set l1, l2 and l3 to
1, 0.5 and 1 respectively. Notice that since an auxiliary multi-

class strategy is used to enable the model to better extract scene

information in this paper, the classification loss is retained in our

model. It should be emphasised that the design of the loss

function is not the focus of this paper, but the model proposed

in this paper can still achieve better results using this underlying

loss function.
3.2 Smoke-aware consistency

Methods that can maintain consistency between image

features under perturbation have achieved good performance

in semi-supervised learning (Tarvainen and Valpola, 2017). On
Frontiers in Plant Science 05
the other hand, as the surface features of smoke images are not

very distinct and there is no fixed paradigm for the shape and

color of smoke, it is difficult to perturb the network on the

extracted smoke image features by applying simple data

augmentations to the input image. Furthermore, one reason

for the apparent discrepancy in detection results obtained on

different images is that the model was over-fitted to the limited

training data, which made the model overly dependent on

background information when extracting smoke features. This

means that although the model achieves consistency in low-

dimensional augmentation, it still fails to produce a consistent

embedding distribution across content. In addition, one reason

for the significant variation in features across backgrounds is

that the model over-adapts to the limited training data, resulting

in features that are too dependent on contextual cues and not

sufficiently self-aware. One way to deal with this problem is to

generate more robust features by maintaining consistency

between features across contexts, which can also alleviate the

over-fitting problem to some extent. Inspired by this, we propose

the SAC method, which is a novel and effective semi-supervised

training strategy. Experimental results show that the proposed

method outperforms general data augmentation methods.

Figure 3 shows the semi-supervised training framework used

in this paper. Specifically, there are two groups of different

inputs, which are xl and xu, representing the labeled and

unlabeled data respectively. The labeled image xl is input to

the encoder network e to obtain the feature map fl = e(xl); then,
the detection head H obtains prediction result pl = H(fl); finally,

it is supervised by the ground truth label yl for back propagation.

The model can obtain certain smoke detection ability using the

labeled data, which can help the unlabeled data to obtain the

pseudo-label ỹo.
FIGURE 3

Overview of the proposed SAC.
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For the unlabeled image data xu, eight different patches are

obtained based on the pseudo-label ỹo by random matting in

eight different directions on the same overlapping area. Then,

one of eight different image augmentations is chosen randomly

and performed to one of these eight different patches, and these

augmentations are: 1. Glass Blur; 2. Histogram Equalization; 3.

Motion Blur; 4. Gamma Contrast; 5. Gaussian Noise; 6. Average

Blur; 7. Fliplr; 8. Snow. The example of image augmentation and

image matting are shown in Figure 4.

Subgraphs of unlabeled image data after low dimensional

data augmentation are then fed into LFNet-v2 for smoke

detection. Notice that since LFNet-v2 is a model trained using

a small amount of labeled data, the model detection accuracy is

not very reliable. Therefore, this paper proposes to improve the

detection performance of LFNet-v2 on unlabeled data by

following two supervised methods. First, it is required that the

pseudo-labelling of xu in the perturbed cropping region is back-
Frontiers in Plant Science 06
propagated between the detection result of xu and ỹu by the

formula (2); second, it is required that all subgraphs between ỹu1
and ỹu8 are back-propagated by the formula (2).

In the meantime, the availability of pseudo-labels ỹo for

unlabelled data xu cannot be determined as the shape of smoke

produces different visual features during drifting, which would

pose a significant challenge for fire and smoke detection where

training data is scarce. To address this problem, we set the offset

coefficient m of the pseudo-labels according to the detection

accuracy achieved on the labeled validation set, so that the

pseudo-labels will drift in a certain random direction

according to the coefficient m. As the detection accuracy

decreases, the larger the scale in which the pseudo-labels drift.

During the experiment, the performances of the proposed

SAC method in this paper were proved via specific comparison

and ablation experiments. The proposed SAC framework is

optimized following Algorithm 1.
FIGURE 4

Examples of data augmentation and patch interception schemes used in the SAC.
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Input: labeled & unlabeled images ∈
DatasetOutput: detection results1. N1  
302. N2  303. i  counter  04. For i 0 to

N1 by 1 do5. Loss(LFNet – v2(images), label)

6. lterative7. Optimization8. End for9. i 
counter 010. For i 0 to N2 by 1 do11. pseudo

label  LFNet – v2(images)12. cropped area

 LFNet – v2(augmentation(cropped area))

13. Loss(pseudo label, LFNet – v2 (cropped

area))14. Loss(LFNet – v2 (cropped area),

LFNet – v2 (cropped area))15. lterative16.

Optimization17. End for18. Return 0;
ALGORITHM 1. SMOKE-AWARE CONSISTENCY
3.3 Triple classification assistance

Figure 1 indicates that forest smoke is often easily confused

with objects in the background, such as clouds and the sky. For

the model to better distinguish the background and smoke

region, this paper proposes a triple classification assistance

strategy. Specifically, images of smoke in forests fall into three

categories: background, smoke and sky. Extensive experiments

show that the proposed triple classification assistance can help

the model distinguish the image features that are easily confused

with the smoke features and improve the model’s detection

performance. We compared the performance of this model with

or without classification assistance to verify its practical value for

forest scene smoke detection.
4 Experiments

To verify the superiority of the proposed method, this

section compares it with other state-of-the-art algorithms for

classification and detection of smoke images. In addition, we

have carried out sufficient ablation experiments to prove the

practical value of the innovation proposed in this paper. All the

comparison algorithms train a total of 60 epochs and performed

on a server with Intel (R) Core (TM) i7-8750H CPU 10720GHz,

16.0GB RAM, and NVIDIA 1070. The deep learning framework

used to train these algorithms is PyTorch 1.7.
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4.1 Dataset

In order to prove that the proposed method can provide stable

performances under suboptimal imaging conditions, we classify

images into the following categories by refer to the method in

(Khan et al., 2019): 1) Smoke; 2) Smoke with fog; 3) Non-smoke;

4) Non-smoke with fog. It is worth noting that the method

proposed in (Khan et al., 2019) is a smoke recognition

algorithm for the haze weather only, but the proposed method

is applicable to any specific conditions. For example, the

experimental results show that the proposed algorithm has good

performance in foggy forest scene. In this case, the smoke images

for foggy days are synthesized using the atmospheric scattering

model (McCartney, 1977). The mathematical equation for the

atmospheric scattering model is as follows:

I  xð Þ  =  J  xð Þ t  xð Þ 
+ a  1  − t  xð Þð Þ (3)

Where I(x) is the haze-degraded image, J(x) is the haze-free

scene, a is the global atmospheric light representing the ambient

light in the atmosphere, and t(x) is the transmission of the

intrinsic luminance in the atmosphere. In this paper, we set a
and t(x) to 0.7 and 0.5, respectively.

As shown in Table 1, the data set used in this paper includes

4,014 images, 50% of which are synthetic foggy images, and the

rest 50% are the original images. We use fully supervised smoke

detection (FSSD) and semi-supervised smoke detection (SSSD)

methods as comparison algorithms to demonstrate the

superiority of the proposed method. Table 1 details the

distribution of the dataset, and Figure 5 shows some images of

the dataset used in this paper. For fully supervised learning, 60%

labeled images are used for training, 20% labeled images for

verification and 20% unlabeled images are used for testing. For

semi-supervised learning, 30% labeled images and 50%

unlabeled images are used for training, and 50% unlabeled

images are used for testing. But, the test sets of FSSD and

SSSD are consistent. Many smoke detection algorithms can

only determine the presence or absence of smoke in the

current scene, but cannot accurately locate areas of smoke.

Therefore, in order to compare algorithms that can only

accomplish smoke image classification as comparison

algorithms as well. We evaluate the proposed method from

two perspectives, image classification and object detection.
TABLE 1 Overall statistics of training, validation, and testing data for the proposed system.

FSSD SSSD Total Non-smoke Smoke Non-Smoke With fog Smoke With fog

Total 4014 1546 461 1546 461

Training Data 2406 1202 927 463 276 138 927 463 276 138

Validation/Semi Data 802 2006 309 773 92 230 309 773 92 229

Testing Data 806 806 310 310 93 93 310 310 93 94
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4.2 Smoke classification

Some security systems only need the model to determine if

there is smoke in the current scene and do not need to obtain the

exact location of the smoke area. Therefore, image classification

methods are sufficient to meet the requirements of such systems.

To demonstrate the image classification capability of the

proposed model, we set the confidence level of smoke

detection to 0.4 and then compare this method with other

state-of-the-art image classification algorithms.

Comparison algorithms can be classified into three different

types: the first type is the fully supervised image classification

algorithm applied to non-specific scenes, the second type is fully

supervised images classification algorithms specifically designed

for smoke image classification, and the third type is common

semi-supervised image classification algorithms. Specifically, the

fully supervised image classification algorithms for non-specific

scenes include mobileNet (Howard et al., 2017), ResNet18 (He

et al., 2016) and VGG16 (Simonyan and Zisserman, 2014); the

fully supervised smoke image classification algorithms include

DCNN (Gu et al., 2019), SIUM (Yu et al., 2019) and DarkCDCN

(Liu et al., 2019); the semi-supervised image classification

algorithms include SESEMI (Tran, 2019) and SRC-MT (Liu

et al., 2020).

Figure 6 represents the training process and the final

classification accuracies of each model. Specifically, Figure 6A

shows that MobileNet is a fully supervised image classification

algorithm with an accuracy of 81.5%, and the accuracies of

VGG16 and ResNet18 are 82.1% and 84.1%, respectively.

Therefore, ResNet18 achieved the best performance among all
Frontiers in Plant Science 08
fully supervised algorithms for non-specific scenes. Although the

proposed method only achieved an accuracy of 79.1%, it was

only trained on 30% labeled data. In contrast, MobileNet,

VGG16 and ResNet18 were subjected to 80% of the labeled

data. Nevertheless, the accuracy of the LFNet-v2 was merely 5%

lower than that of ResNet18, which shows that the proposed

LFNet-v2 still managed to achieve great classification

performance with insufficient training data.

Figure 6B shows that LFNet-v2 outperformed the other fully

supervised smoke detection algorithms, with a classification

accuracy of 79.1%. The classification accuracies of the

algorithms for comparison are as follows: the DCNN (Gu

et al., 2019) had an accuracy of 78.5%, SIUM (Yu et al., 2019)

achieved an accuracy of 76.2%, and the accuracy of DarkC-DCN

(Liu et al., 2019) was 77.1%. The classification accuracy of

LFNet-v2 was 0.6%, 2.9% and 2.0% higher than that of

DCNN, SIUM and DarkC-DCN, respectively. Experiments

have shown that smoke image classification algorithms that

are not specifically designed for forest scenes do not provide

accurate classification when applied to forest scenes.

Figure 6C demonstrates the performances of two classic

semi-supervised image classification algorithms, i.e., SESEMI

(Tran, 2019) and SRC-MT (Liu et al., 2020), which achieved

the classification accuracies of 72.5% and74.1%. LFNet-v2 had

an accuracy of 79.1%, 6.6% and 5% higher than that of SESEMI

and SRC-MT, respectively.

In summary, Figure 6 shows that although the classic semi-

supervised image classification algorithms can generally achieve

relatively good performances on the smoke images with forest

scenes, these models cannot achieve very high accuracy because
A B DC

FIGURE 5

Representative images of smoke, smoke with fog, non-smoke, non-smoke with fog.
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there is no special module designed for such forest scene. However,

the proposed algorithm achieves better classification results than the

usual semi-supervised image classification algorithms.

Table 2 describes the performance of smoke detection

algorithms based on image classification in more detail. As can

be seen from the Table 2, the proposed LFNet-v2 performs better

in fog than other comparison algorithms. Specifically, in the

foggy non-smoke scene, the classification accuracy of the

proposed model was as higher as 73.4%, which was the second

highest among all algorithms for comparison, only next to

ResNet18 with a classification accuracy of 74.3%. In the foggy

smoke scenes, the accuracy of the proposed method was 91.2%,

which was the highest among various algorithms. In contrast,

the accuracies of ResNet18 and SIUM were both 82.1%, which

was in the second place. Therefore, the proposed method is more

suitable for classification of degraded images under sub-optimal

imaging conditions. However, for the clear non-smoke forest

scenes, other algorithms for comparison slightly outperformed

the algorithm proposed in this paper. Specifically, the detection

accuracy of the algorithm was only 90.1% for obvious smoke

scene, 8.3% lower than the SRC-MT maximum.

Table 2 shows that the proposed method achieves a

classification accuracy of only 79.1%, ranking fourth among all

comparison algorithms. However, it is worth noting that the top

three algorithms are fully supervised detection algorithms with

80% of the labelled training data, while the proposed algorithm
Frontiers in Plant Science 09
are trained using only 30% of the labeled data. However, the

classification accuracy of this algorithm is still 6.6% and 5%

higher than the other two semi-supervised image

classification algorithms.
4.3 Smoke detection

Advanced intelligent fire-fighting robots need to accurately

locate areas of smoke in order to complete a series offire-fighting

instructions (Park et al., 2019). To the best of our knowledge,

this paper is the first semi-supervised smoke detection

algorithm. Therefore, the proposed method is compared with

the general fully supervised smoke detection algorithms, general

fully supervised object detection algorithms and general semi-

supervised object detection algorithms to be used to demonstrate

the superiority of the algorithm proposed in this paper.

Specifically, the fully supervised object detection algorithms

include the Faster RCNN (Ren et al., 2015), CenterNet (Zhou

et al., 2019), and YOLOx (Ge et al., 2021); the fully supervised

smoke detection algorithms include the DSATA (Zhao et al.,

2020), Frizzi et al. (2016), and 3DCNN (Lin et al., 2019); the

semi-supervised object detection algorithms are the Soft-

Teacher (Xu et al., 2021) and STAC (Sohn et al., 2020).

Although many excellent evaluation strategies have been

proposed recently (Rodrıǵuez-Fdez et al., 2015), we still choose
A B C

FIGURE 6

Study on the performance of wildfire scene image classification algorithm. (A) denotes the classification accuracy of the commonly used
superintendency image classification algorithm; (B) denotes the classification accuracy of the commonly used superintendency image
classification algorithm; and (C) denotes the classification accuracy of the commonly used semi-superintendency image classification algorithm.
TABLE 2 Comparison of the proposed method with eight state-of-the-art image classification methods.

Networks MoblieNet ResNet18 VGG16 DCNN SIUM DarkC- DCN SESEMI SRC-MT LFNet-v2

Foggy Non-smoke 71.9% 74.3% 69.3% 67.8% 66.9% 68.1% 61.1% 60.4% 73.4%

smoke 77.1% 82.1% 82.8% 74.8% 82.1% 75.5% 77.2% 69.5% 91.2%

Total 73.1% 76.1% 72.4% 69.4% 70.4% 69.8% 64.8 62.5% 77.5%

Clear Non-smoke 79.1% 82.2% 94.9% 85.6% 80.6% 81.9% 78.9% 81.9% 77.9%

smoke 84.5% 91.2% 95.6% 94.3% 86.7% 92.8% 84.6% 98.4% 90.1%

Total 89.9% 88.1% 98.8% 87.6% 82.0% 84.4% 80.2% 85.7% 80.7%

Total 81.5% 82.1% 84.1% 78.5% 76.2% 77.1% 72.5% 74.1% 79.1%
fro
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the most classic COCO criteria as our evaluation strategy,

including AP (averaged average precision over different IoU

thresholds, the primary evaluation metric of COCO), AP50
(average precision for IoU threshold 0.50), AP75 (average

precision for IoU threshold 0.75), APS (AP for small objects),

APM (AP for medium objects), and APL (AP for large objects).

The smoke detection results are shown in Table 3. The

proposed LFNet-v2 achieved the highest mAP of 0.452, meaning

that it had the best overall performance in the whole dataset.

Moreover, the mAP achieved by LFNet-v2 under foggy scenes

was 0.427, which was still significantly higher than the mAPs

achieved by other comparison algorithms. For clear scenes, the

mAP value of the algorithm proposed in this paper is 0.477,

the third lowest of all algorithms, 0.026 and 0.006 lower than the

mAP of CenterNet and STAC respectively. Furthermore, Table 3

shows that the proposed method achieved the highest AP50,

AP75, APM and APL in foggy scenarios and the highest AP50 and

APM in clear scenes. For images in the whole dataset, the

proposed LFNet-v2 achieved the best performances in AP50,

AP75, APM and mAP, and the second best performances in APL,

which was 0.004 lower than the highest APL obtained by the
Frontiers in Plant Science 10
CenterNet. The APS of LFNet-v2 ranked only third, 0.056 and

0.037 lower than the APS achieved by SoftTeacher and

CenterNet, respectively.
4.4 Running times

The inference speed of LFNet-v2 presented in this article is

shown in Table 4. In this experiment, the proposed method is

compared with other algorithms in terms of model size and

inference speed, and these algorithms include SSD (Liu et al.,

2016), M2DET (Zhao et al., 2019), Faster R-CNN (Ren et al.,

2015), YOLOv3 (Redmon and Farhadi, 2018), YOLOv4

(Bochkovskiy et al., 2020), YOLOv5 and LFNet (Shen et al.,

2020). The sizes of all images input into the model were 416 *

416. The model’s inference speed of 34.30 FPS ranked third

among all comparison algorithms. SSD and YOLOv3 had the

highest inference speeds of 37.03 and 36.55 respectively.

However, the inference speed of LFNet-v2 was only 7.37% and

6.15% lower than that of these two methods, respectively. Since

SSD and YOLOv3 are classical real-time object detection
TABLE 3 Comparison of the proposed method with eight state-of-the-art object detection methods.

Networks Faster-RCNN CenterNet YOLOx DCNN SIUM DarkC-DCN SoftTeacher STAC LFNet-v2

Foggy AP50 0.228 0.541 0.512 0.289 0.368 0.392 0.563 0.42 0.592

AP75 0.194 0.329 0.396 0.211 0.313 0.325 0.409 0.372 0.491

APS 0.091 0.212 0.205 0.101 0.137 0.136 0.241 0.181 0.195

APM 0.161 0.367 0.412 0.218 0.297 0.315 0.384 0.361 0.519

APL 0.187 0.414 0.407 0.268 0.314 0.305 0.414 0.413 0.501

mAP 0.178 0.321 0.325 0.162 0.248 0.287 0.383 0.311 0.427

Clear AP50 0.464 0.663 0.710 0.475 0.574 0.606 0.721 0.679 0.750

AP75 0.308 0.511 0.588 0.365 0.421 0.427 0.521 0.478 0.563

APS 0.209 0.356 0.301 0.213 0.267 0.274 0.365 0.287 0.299

APM 0.357 0.565 0.548 0.364 0.439 0.447 0.590 0.493 0.605

APL 0.363 0.680 0.575 0.394 0.484 0.481 0.618 0.511 0.585

mAP 0.270 0.503 0.469 0.352 0.406 0.385 0.471 0.483 0.477

Total AP50 0.346 0.602 0.611 0.382 0.471 0.499 0.642 0.550 0.671

AP75 0.251 0.420 0.492 0.288 0.367 0.376 0.465 0.425 0.527

APS 0.150 0.284 0.253 0.157 0.202 0.205 0.303 0.234 0.247

APM 0.259 0.466 0.480 0.291 0.368 0.381 0.487 0.427 0.562

APL 0.275 0.547 0.491 0.331 0.399 0.393 0.516 0.462 0.543

mAP 0.224 0.412 0.397 0.257 0.327 0.336 0.427 0.397 0.452
fro
TABLE 4 Inference speed and model size.

Networks SSD M2DET Faster RCNN YOLOv3 YOLOv4 YOLOv5m LFNet LFNet-v2

Backbone VGG16 VGG16 ResNet50 DarkNet53 CSPDarkNet53 CSPDarkNet53 – –

FPS 37.03 11.96 8.06 36.35 21.42 27.27 27.92 34.30

Size 100 MB 238 MB 108 MB 236 MB 245 MB 81.7 MB 22.5 MB 21.5 MB
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algorithms, it can be inferred that the proposed LFNet-v2 can

also perform real-time smoke detection tasks in forest scenes. In

addition, the model size of LFNet-v2 is 21.5MB, which is much

smaller than other algorithms. Specifically, the model size of

LFNet-v2 is 90.8% smaller than that of YOLOv3. This suggests

that the algorithm proposed in this paper is more suitable than

other real-time object detection algorithms for devices with

limited storage resources. Therefore, the proposed LFNet-v2

possess high practicality.
4.5 Ablation study

To demonstrate the practical value of the innovation

proposed in this paper, we conduct ablation experiments by

removing or replacing certain modules in this section.

4.5.1 Smoke-aware consistency
As shown in Figure 7, the red curves represent the

classification performances achieved by LFNet-v2 with the SAC

approach, while the green curves represent the classification

performances achieved by LFNet-v2 without the SAC approach;

the yellow curves represent the detection performances achieved

by LFNet-v2 with the SAC approach, while the black curve

represents the detection performances achieved by LFNet-v2

without the SAC.

From Figures 7A–F show the cases of two, four, six, eight, ten,

and twelve patches cropped from the original images according to

the pseudo labels, respectively. Figure 7D shows that for smoke
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classification and detection, the best strategy is to crop eight

patches from the original images according to the pseudo labels.

Specifically, when eight patches were cropped from the original

image for SAC, the classification accuracy improved by 28% and

the mAP improved by a value of 0.19 compared to the model

without the SAC method. Classification and detection

performance then did not improve significantly as more patches

were cropped out of the original image. The main reason for this is

that the eight patches cover eight directions centered on the

pseudo label as shown in Figure 4. Therefore, cropping too

many patches leads to redundancy of background information

and does not significantly improve model performance. With the

number of cropped patches still increasing, the performance

impact of SAC will trend downwards.

4.5.2 Different image augmentation strategies
Table 5 illustrates the impact of low dimensional data

augmentation on the wildfire smoke detection. As can be seen

from Table 5, the model performs best when eight different data

augmentation methods are used simultaneously. When only one

data augmentation method was chosen, the model performed

the worst, with mAP of only 0.427. In addition, we can see from

the trend in the Table 5 that the more methods of data

augmentation that are used, the better the performance of the

model are achieved.

4.5.3 Triple classification assistance
In this paper, we propose a triple classification assistance

strategy to divide the forest smoke detection task into three
A B

D E F

C

FIGURE 7

The smoke classification and detection accuracy when the proposed SAC adopts different numbers of image patches.
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categories: i.e., smoke, sky, and background. The results of the

ablation experiments associated with it are shown in Table 6.

In Table 6, the double means that the scene is divided into

background and smoke only, while the triple means that the scene

is divided into background, smoke and sky. Table 6 shows that

triple classification assistance had the greatest impact on

CenterNet, with its detection performance improved by 0.111,

followed by SIUM (0.105) and STAC (0.103). In addition, the triple

classification help also improved the mAP of LFNet-v2 by 0.07.
4.6 The effectiveness of smoke-aware
consistency

In this subsection we analyze the practical effectiveness of

the proposed SAC for smoke detection in forest scenes based on

intuitive sensing effects.
4.6.1 Adaptive ability for different background
This subsection mainly focuses on the adaptability of LFNet-

v2 to different backgrounds. As shown in Figure 8, the first and

second rows of images are the detection results of LFNet-v2

without the SAC training strategy, while the third and fourth

rows are the detection results of LFNet-v2 with the SAC training

strategy. The front and back of/represent confidence and

intersection over Union (IOU) respectively. The front and

back of/in each captions for sub-image represent the mean

value of confidence and IOU respectively. It can be observed

from Figure 8 that when SAC strategy is applied, LFNet-v2 can

obtain better confidence, and the variance between IOU is

smaller for different environmental backgrounds than the case

when SAC is not used.
4.6.2 Adaptive ability for different size
The influence of SAC on the performance of smoke image

detection of different sizes is discussed in this paper. The first and

second rows of Figure 9 are the results of LFNet-v2 output

without SAC training, while the third and fourth rows are the

results of LFNet-v2 output with SAC training. Moreover, the

images in the first row and the third row are the images of fires

and smoke in the original forest scene, while the images from the

second row and fourth row are those after our method was carried

out on the smoke region. As shown in Figure 9, when using the

SAC strategy in the model, LFNet-v2 could achieve higher

confidence, which hardly affected the accuracy of the smoke.
4.6.3 Anti-disturbance ability for
different degradation

This subsection discusses how the detection capability of the

model will change when it is exposed to different disturbances.

As shown in Figure 10, it is obvious that when LFNet-v2 uses the

SAC strategy, the detection ability of the model was significantly
T
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TABLE 6 Ablation study for triple classification assistance on eight state-of-the-art object detection networks.

Networks Faster-RCNN CenterNet YOLOx DCNN SIUM DarkC-DCN SoftTeacher STAC LFNet-v2

double 0.107 0.196 0.216 0.076 0.157 0.197 0.276 0.206 0.352

Foggy triple 0.178 0.321 0.325 0.162 0.248 0.287 0.383 0.311 0.427

double 0.211 0.405 0.381 0.272 0.287 0.277 0.397 0.381 0.411

Original triple 0.270 0.503 0.469 0.352 0.406 0.385 0.471 0.483 0.477

double 0.159 0.301 0.299 0.174 0.222 0.237 0.337 0.294 0.382

Total triple 0.224 0.412 0.397 0.257 0.327 0.336 0.427 0.397 0.452

difference 0.065 0.111 0.098 0.083 0.105 0.099 0.090 0.103 0.070
Frontiers in Plant Scien
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FIGURE 8

Ablation experiment on the adaptability of SAC to different backgrounds.
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A B
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FIGURE 9

Ablation experiment on the adaptability of SAC to smoke with different size.
A B

DC

FIGURE 10

Ablation experiment of anti-disturbance ability of SAC to different degraded environments.
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improved, both in terms of confidence and IOU. As can be seen

from Figure 10, SAC increases the confidence of the model by

0.798 and 0.645 and increases the IOU by 0.165 and 0.170

respectively for the same scenario.
5 Conclusion

In this paper we propose a deep learning-based smoke

detection model for forest scenes with smaller model size and

faster inference. In addition, we also design a new semi-

supervised training strategy, SAC strategy, which can improve

the performance of the model against interference in different

scenes and with different smoke sizes. The experimental results

show that this method is better than other smoke detection

algorithms in forest scenes.

However, the inference speed of the current model remains

relatively slow. For this reason, in the future we will continue to

optimize the model structure so that the computational

complexity of the model enable real-time smoke detection on

high-resolution images captured by drones (Alsamhi et al., 2021;

Saif et al., 2021; Alsamhi et al., 2022; Alsamhi et al., 2022).
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