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Plants are often adversely affected by abiotic stresses such as drought, low 

temperature, and salinity during growth, and plant NAC-like transcription factors 

are involved in regulating growth and developmental processes in response to 

stresses such as drought and salinity. In this study, to investigate the function 

of AfNAC1, a co-expression network of AfNAC1 genes was constructed using 

gene expression data from the Chinese legume deciduous shrub, Amorpha 

fruticosa Linn. A 576 bp NAC transcription factor (AfNAC1 gene, MN180266) 

encoding 191 amino acids was isolated from Amorpha fruticosa seedlings by 

RT-PCR. qRT-PCR showed that the AfNAC1 gene was expressed in the roots, 

stems, leaves, and flowers of Amorpha fruticosa. However, drought stress 

significantly increased root expression, and the AfNAC1 protein was localized 

in the nucleus by green fluorescence detection. This study analyzed the 

drought resistance of overexpressing tobacco in depth. Under natural drought 

stress, the chlorophyll and antioxidant enzyme activities of overexpressing 

plants were significantly higher than those of wild-type (WT) plants, but the 

MDA content was lower than that of WT; after rehydration the Fv/Fm values 

of AfNAC1-overexpressing tobacco recovered faster than those of wild-type 

tobacco and rapidly reached the control levels; AfNAC1 may be involved in the 

regulation of the photosystem and indirectly in the regulation of the plant in 

response to drought stress.
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Introduction

Drought is one of the most important abiotic stresses that limit plant growth, 
development, and productivity, and drought stress severely limits plant growth and crop 
yield. Therefore, reducing the effects of drought injury is of considerable agro-pastoral 
importance (Harris et al., 2007; Martínez et al., 2007; Rivero et al., 2007; Degenkolbe et al., 
2009) The drought resistance of plants has been studied for many years, and current studies 
have shown that species with increased drought resistance include buckthorn, crested hazel, 
tiger hazel, and Amorpha fruticosa (Wang, 2003; Hou et al., 2009; Gao, 2018), and the major 
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silvicultural species of the Loess Plateau: oleander, cypress, and 
acacia (Liu et al., 2003). NAC-like transcription factors are one of 
the largest families of transcription factors specific to plants, and 
they play an important role in response to various abiotic stresses, 
such as salt, drought, and damage. In herbaceous plants such as 
Arabidopsis thaliana (Mahmood et al., 2019), rice (Li, 2014), alfalfa 
(Shen et al., 2014), and land cotton (Shah, 2013), NAC transcription 
factors were found to be upregulated in response to abiotic stresses, 
and in woody plants such as tamarisk (Lu et al., 2019) and poplar 
(Wang et  al., 2015), PEG-6000 mimics drought stress; the 
transcriptome detected upregulation of NAC-like transcription 
factors in response to drought-induced differences in gene 
expression (Sun et al., 2021). The NAC family has been found to 
function in a variety of processes, including apical meristem 
organization (Takada et al., 2001), flower development (Sablowski 
and Meyerowitz, 1998), cell division (Kim et  al., 2006), leaf 
senescence (Breeze et al., 2011), secondary wall formation (Zhong 
et al., 2010), and biotic and abiotic stress responses (Olsen et al., 
2005; Christianson et al., 2010; Tran et al., 2010; Nakashima et al., 
2012). To date, intensive studies in model plants such as 
Arabidopsis and rice have revealed that a typical NAC protein 
contains a highly conserved N-terminal DNA-binding NAC 
structural domain and a variable C-terminal transcriptional 
regulatory region. The NAC structural domain containing 150–160 
amino acids is divided into five sub-structural domains. Three of 
these sub-structural domains, A, C, and D, are highly conserved 
across species, whereas the other two sub-structural domains, B 
and E, are relatively less conserved (Ooka et al., 2003). The function 
of the NAC structural domain is related to nuclear localization and 
DNA binding, forming homodimers or heterodimers with other 
NAC structural domain-containing proteins (Olsen et al., 2005). In 
contrast, the highly differentiated C-terminal region functions as a 
transcriptional regulatory region, acting as a transcriptional 
activator or repressor, but it often has simple amino acid repeats 
and regions rich in serine and threonine, proline and glutamine, or 
acidic residues (Olsen et al., 2005; Puranik et al., 2012). Some NAC 
TFs also contain transmembrane patterns in the C-terminal region 
responsible for anchoring the plasma membrane or endoplasmic 
reticulum, and these NAC TFs are membrane-associated and are 
referred to as NTLs (Seo et al., 2008; Seo and Park, 2010). The 
drought tolerance function of NAC-like transcription factors in 
A. fruticosa has not been studied in sufficient depth.

Amorpha fruticosa Linn. is a perennial, leguminous, easily 
propagated shrub of the genus Amorpha with less stringent soil 
requirements and many favorable characteristics such as 
tolerance to cold, infertility, flood, drought, and salt (Kim et al., 
2011; Yin et al., 2014; Fan et al., 2017). In this study, the AfNAC1 
gene was cloned from the leaf transcriptome sequence of 
A. fruticosa by RT-PCR, and the specificity of AfNAC1 gene 
expression was examined by bioinformatics analysis; validation 
experiments were conducted for the prediction of bioinformatics 
subcellular localization of the AfNAC1 gene; drought tolerance of 
overexpressed tobacco plants at the germination and seedling 
stages was analyzed. The molecular mechanism of the AfNAC1 

transcription factor that is indirectly or directly involved in the 
photosystem II response of plants to enhance the regulation of 
drought stress was investigated; the findings provide a theoretical 
basis for studying the drought resistance function of NAC 
transcription factors in woody plants.

Materials and methods

Plant material

Seeds of A. fruticosa were collected from the green belt of 
Songyuan East Highway, Ningjiang District, Songyuan City, Jilin 
Province, China. The seeds of Nicotiana benthamiana were kept 
by this laboratory, the Key Laboratory of the Ministry of Education 
for Restoration and Reconstruction of Saline Land Vegetation, 
Northeast Forestry University (NEFU).

Strain, vector, and reagents

E. coli JM109 and Agrobacterium EHA105 were stored in our 
laboratory. pMD18-T vector was purchased from TaKaRa, and the 
pBI121-MCS-GFP plant expression vector was stored in our 
laboratory. T4-DNA ligase and Ex-Taq DNA polymerase were 
purchased from TaKaRa. The real-time quantitative fluorescent dye 
SYBR Green qPCR Master Mix was purchased from Gel Extraction 
Kit; acetosyringone was purchased from Solarbio Biologicals. 
Other reagents were made in China with analytical purity.

Co-expression network analysis of 
AfNAC1 gene

The seeds were surface disinfected with 75% alcohol and 5% 
sodium hypochlorite for 5 min and then rinsed three times with 
distilled water. The seeds were sown in fine sand and placed in an 
incubation chamber with water. Four-week-sized seedlings of 
A. fruticosa were grown hydroponically in a 20% PEG 6000 
(polyethylene glycol 6,000) solution for 72 h. Whole seedlings 
were sampled separately from the stressed and unstressed 
treatments, rapidly frozen in liquid nitrogen, and stored in 
a − 80°C refrigerator. After transcriptome sequencing results were 
obtained (Sun et al., 2021), co-expression networks of genes were 
constructed using the WGCNA (Weighted Gene Co-expression 
Network Analysis) R package.

Cloning and bioinformatics analysis of 
the AfNAC1 gene in Amorpha fruticosa 
Linn.

The sequence of the upregulated NAC1 gene (c169215.graph_
c0) of A. fruticosa under drought stress was analyzed by 
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transcriptome sequencing. Sequencing data can be found in the 
Big Sub database1 under the login number CRA002113. The 
online website NCBI was used to find the ORF and code amino 
acids of AfNAC1, among others. Specific primers (see 
Supplementary Table S1 for AfNAC1-F1/R2) were designed using 
Premier 5.0 software, and the ORF fragment was amplified by 
RT-PCR using cDNA from A. fruticosa seedlings as a template, 
and the product was ligated to the pMD18-T vector. Various 
physicochemical properties of the proteins were analyzed using 
EXPASy; the protein structures were predicted using online 
software.2 An amino acid sequence homology match was 
performed using DNAMAN, and a phylogenetic tree was 
constructed using MEGA6.

Expression characteristics of AfNAC1 
gene in shoots under drought stress

Total RNA was extracted from the roots, stems, leaves, and 
flowers of A. fruticosa, and seedlings were treated with different 
concentrations of PEG-6000 (0, 10, 20, and 30% w/v groups) for 
72 h. All aboveground seedlings (stems and leaves) of all groups 
were sampled for total RNA extraction. Total RNA was extracted 
from leaves and roots of seedlings treated with 20% PEG for 0, 6, 
12, 24, and 48 h, separately. cDNA was obtained by reverse 
transcription and used as a template to design the internal 
reference and gene quantification primers (qRT-PCR-F3/R4; see 
Supplementary Table S1) for qPCR reactions. The data were 
collected using an MxPro-Mx3000P mechanical system, then 
analyzed using a DPS data processing system and plotted using 
Origin software.

Subcellular localization analysis of 
AfNAC1

The specific primers (AfNAC1-GFP-F5/R6  in 
Supplementary Table S1) were designed by introducing XbalI and 
SalI digestion sites, and the recombinant plasmid pBI121-
AfNAC1-GFP (a binary plant expression vector under CaMV 35S 
initiation) was constructed by double digestion after PCR 
amplification using this primer. Agrobacterium tumefaciens 
EHA105 containing the pBI121-AfNAC1-GFP recombinant 
plasmid was selected for injection into fresh tobacco leaves, and 
the injected-infested tobacco was incubated in the dark for 
12–16 h. After incubation under normal light for 3 days, 
fluorescence and DAPI staining for subcellular localization were 
observed under confocal microscopy (Tian et al., 2021).

1 https://bigd.big.ac.cn/gsub/

2 http://smart.embl-heidelberg.de/smart/set_mode.cgi?NORMAL=1

Genetic transformation and resistance 
analysis of tobacco overexpressing 
AfNAC1

Acquisition of transgenic tobacco
Tobacco leaves were infested with recombinant Agrobacterium 

tumefaciens EHA105 containing pBI121-AfNAC1-GFP plasmid 
DNA and cultured on MS-As medium for 3 days. Shoot 
differentiation was induced on tobacco screening differentiation 
medium at 50 mg/l Kana (Kanamycin), and rooting was further 
induced in rooting medium (1/2MS + 50 mg/l Kana +250 mg/l 
Carbenicillin). Seeds of the T1 generation were harvested in pot 
culture (Cui et al., 2006), and seeds of the T3 generation were 
harvested by Kana screening sowing transplantation.

Analysis of drought resistance in tobacco 
overexpressing AfNAC1

Transgenic and wild-type tobacco plants were subjected to 
qRT-PCR analysis to detect relative expression. T3-generation 
tobacco seeds were spotted in MS medium at various mannitol 
concentrations (0, 200, 250, and 300 mm) to simulate drought; 
20 days after germination, the germination rate and fresh weight 
were measured; and the plants were tested for MDA content, SOD 
enzyme activity, and chlorophyll content, and analyzed for 
changes in root length in each strain. WT and overexpression 
(T3-#1, #2, #5) seeds were sown in soil and incubated at 25°C 
under 8/16 h light/dark conditions for 4 weeks followed by 15 days’ 
drought treatment and 3 days’ rehydration treatment. 
Morphological observations were performed and photographed 
before treatment, at 15 days of drought and at 3 days of rehydration, 
and the photosynthetic capacity, Fv/Fm values of drought-
rehydrated leaves were measured with a FluorCam open 
chlorophyll fluorescence imaging system (Miura et  al., 2007). 
Statistical analysis of the transgenic and control lines was 
conducted using Prism9, and a DPS data processing system was 
used to analyze the significance of one-way differences.

WT and overexpressed (T3-#1, #2, and #5) tobacco seeds were 
sown in soil and incubated for 4 weeks at 25°C under 8/16 h light/
dark conditions， with drought treatment as the experimental 
group and watered roots as the control group. Both the DAB 
staining method and the NBT staining method have been 
described in previous reports (Guan et  al., 2015, 2018). The 
experimental and control groups were sampled, RNA was 
extracted, and NtActin was used as an internal reference to 
analyze the expression levels of oxidative stress genes. The levels 
of chlorophyll (Qiu et  al., 2016), proline (Ryu et  al., 2014), 
superoxide dismutase (SOD; Kang et al., 2016), and peroxidase 
(POD; Wang et al., 2018) were also measured.

Statistical analysis of transgenic and control lines was 
performed using Prism9 and the significance of ANOVA was 
analyzed using the DPS data processing system. Data are 
expressed as mean ± SE with three biological replicates. 
Student’s t-test was performed at p < 0.05 to analyze 
significant differences.
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Results

Gene co-expression network analysis

After screening the transcriptome sequencing results, 6,979 
genes were obtained to construct a co-expression network, 
yielding a total of 11 modules (Figure 1). The AfNAC1 gene was 
found in the “blue,” “MEred,” and “pink” modules. The “blue” 
module showed a significant positive correlation (r2 = 0.98, value 
of p = 5 × 10−4). It was also found that major types of gene clusters, 
including ABA assimilation classes and proline assimilation 
classes, were directly correlated with the AfNAC1 co-expression 
network in the local co-expression network map. This suggests 
that AfNAC1 transcription factors are involved in the regulation 
of drought resistance in plants.

Cloning and bioinformatics analysis of the 
AfNAC1 gene of Amorpha fruticosa Linn.

The transcriptome AfNAC1 gene (c169215.graph_c0) was 
analyzed for its full length of 1887 bp, of which the non-translation 
area at the 5′ and 3′ ends are 498 and 813 bp, respectively. The CDS 
fragment ORF was obtained by RT-PCR and ligated to the pMD18-T 
vector. Sequencing and analysis showed that the ORF is 576 bp, 
encoding 191 amino acids (Supplementary Figure S1); the predictive 
protein molecular weight is 22.04 kDa. The analysis showed that the 
primary structure of the AfNAC1 protein consists of an NAC 
domain (NAM) at the N terminus (Figure  2A). The secondary 
structure consists of 46 α-helixes (24.08% of the total length), 9 
β-turns (4.71%), 32 extended strands (16.75%), and 104 random 
coils (54.45%; Figure  2B). SWISS-MODEL online analysis tool 
analyzed the tertiary structure; it was found that the existence of the 
NAC structure was consistent with the predicted results of the 
secondary structure (Figure  2C). The amino acid sequences of 
AfNAC1 were analyzed by multiple sequence alignment and have the 
sequence characteristics of the NAC family (shown in Figure 2D). 
The construction of a phylogenetic tree revealed that AfNAC1 is 
most closely related to the GmNAC51 protein (Figure 2E).

Expression characteristics of AfNAC1 
gene under tissue and drought stress

Quantitative real-time PCR (qRT-PCR) analysis showed that 
AfNAC1 is constitutively expressed in different tissues of 
A. fruticosa, including roots, stems, leaves, and flowers, with the 
highest abundance in flowers and the lowest abundance in the 
roots (Figure 3A).

We also evaluated the differential expression of the AfNAC1 
gene under PEG6000 simulated drought stress treatment (72 h), 
and the gene expression level increased significantly with 
increasing PEG6000 concentration. Compared with the control, 
the abundance of AfNAC1 was increased by approximately 55-fold 

and 64-fold in stems and leaves of A. fruticosa under 20 and 30% 
PEG6000 treatment (Figure  3B), respectively. Under 20% 
PEG6000 treatment, the highest level was accumulated in leaves 
at 24 h (Figure 3C), but the highest expression level was reached 
in roots at 6 h (Figure 3D), and then gradually decreased with the 
increase in treatment time.

AfNAC1 was localized in the nucleus

To investigate the subcellular localization of AfNAC1, the green 
fluorescent protein (GFP)-AfNAC1 fusion protein was driven by the 
35S promoter and transiently expressed in Nicotiana benthamiana 
leaves. AfNAC1 localized in the nucleus and was able to overlap 
with the signal of the nuclear–specific dye DAPI (Figure 4).

Overexpression of AfNAC1 transgenic 
tobacco

To examine whether AfNAC1 could enhance the drought 
tolerance of plants, transgenic tobacco was generated. Constructs 
of the AfNAC1-fused GFP gene driven by the 35S promoter were 
transformed into tobacco, and five independent transgenic lines 
were identified (Supplementary Figure S2). The expression level 
of AfNAC1 transgenic tobaccos was analyzed by quantitative 
RT-PCR, and the expression of lines one, two, and five was 
relatively higher than that of others, so these three lines were 
selected for subsequent studies (Supplementary Figure S2).

Tolerance of drought stress during 
germination in tobacco overexpressing 
AfNAC1

In this study, we analyzed the germination rate of transgenic 
tobacco under mannitol treatment. The germination rate of 
wild-type tobacco was significantly inhibited by increasing 
mannitol concentration than that of transgenic tobacco. After 
20 days of incubation, the two pairs of leaves of AfNAC1 
transgenic tobacco were significantly larger than the wild type 
under 250 mm mannitol treatment, whereas the leaves of 
transgenic tobacco had significantly more leaves than the wild 
type under 300 mm mannitol conditions (Figure 5A). The fresh 
weight of wild-type tobacco decreased significantly with 
increasing mannitol concentration, while the fresh weight of 
transgenic tobacco was consistently higher than wild type under 
mannitol treatment (Figure 5B). More transgenic tobacco was 
detected with significantly lower malondialdehyde content than 
wild-type tobacco (Figure  5C). These results suggest that 
overexpression of the AfNAC1 gene improves the tolerance of 
tobacco to mannitol stress during the germination growth 
period and suggest that AfNAC1 may play a regulatory role in 
the drought stress response.
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Tolerance to mannitol mimetic drought 
stress at the seedling stage

Seedlings at the four-leaf stage with consistent germination 
growth were pressurized with mannitol and incubated 
vertically for 20 days (Figure 6A). Wild-type tobacco was more 
severely inhibited than transgenic tobacco as mannitol 

concentration increased, and root growth was similarly 
inhibited. Under mannitol treatment, root length was 
significantly shorter, whereas the root length of transgenic 
tobacco was longer than that of wild type, especially under 
300 mm mannitol treatment (Figure 6B). The findings suggest 
that overexpressed AfNAC1 tobacco has higher drought 
tolerance during the seedling stage.

A

C

B

FIGURE 1

Results of gene co-expression analysis. (A) Gene clustering map. The different colors indicate the constructed vector complex modules, the 
phylogenetic tree indicates the hierarchical clustering of different samples, and each sample corresponds to one color of the corresponding 
module (B) Heat map of co-expression module associated with 20% PEG6000. (C) Correlation analysis between genes.
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Tolerance of transgenic tobacco to 
natural drought stress

Wild-type and transgenic tobacco seedlings cultured in soil 
for 20 days were subjected to natural drought treatment for 

15 days, and drought-treated and untreated tobacco leaves were 
cut and subjected to DAB staining and NBT staining, respectively 
(Figure  7A). DAB staining was deepened in drought-treated 
leaves, but lighter in transgenic leaves compared to wild type. 
NBT staining was similar to DAB staining, indicating that the 

A C

B

D

E

FIGURE 2

Results of bioinformatics analysis of the AfNAC1 gene. (A) Primary structure of the protein, including the NAM structural domain (1–100 aa). 
(B) Secondary structure, where the blue color indicates α-helix, the green color indicates β-steering, the red color indicates extended chain, and 
the purple color indicates irregular coiling. (C) Tertiary structure. (D) Results of multiple comparisons of amino acid sequences of NAC 
transcription factors with other different species. (E) Phylogenetic evolutionary tree. Scale bar indicates 0.1 amino acid substitution per site.
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scavenging ability of overexpressed tobacco was stronger for 
superoxide anion than wild type. This may indicate that AfNAC1 
overexpressing tobacco improves plant drought tolerance by 
scavenging ROS. By qRT-PCR analysis, the gene expression of 
NtSOD and NtPOD in overexpressing tobacco was higher than 
that in wild-type tobacco under drought stress (Figures 7B,C). 
In addition, the physiological and biochemical indicators of 
tobacco were also measured, and the results showed that the 
chlorophyll, proline, SOD, and POD in the overexpressed 
tobacco were higher than those in the wild type 
(Supplementary Figure S4).

Wild-type tobacco and transgenic tobacco is sown in soil 
for 20 days and were taken to control water and drought 
treatment. The phenotypic changes were investigated after 
15 days and 3 days of rehydration. The Fv/Fm values of tobacco 
during the drought treatment period and after rehydration 

were detected by instrument value (Figure 8). After 15 days of 
water-controlled natural drought treatment, tobacco leaves 
were wilted and yellow, and transgenic tobacco still had bright 
green leaves. After 3 days of rehydration, transgenic tobacco 
revived significantly more leaves than WT; PSII maximum 
photochemical efficiency determined by FluorCam open 
chlorophyll fluorescence imaging system (Fv/Fm) values at 
15 days of drought stress showed that WT was significantly 
lower than the three transgenic lines. After rehydration, the 
Fv/Fm values of transgenic tobacco were close to the level of 
untreated control, and that of WT was still very low. A 
comparison of chlorophyll fluorescence imaging of wild-type 
and transgenic tobacco showed that before drought treatment, 
chlorophyll fluorescence imaging of all plants tended to 
be  bright orange-yellow regions; after drought treatment, 
wild-type tobacco had larger dark blue low-dark regions than 

A B

C D

FIGURE 3

Expression characteristics of AfNAC1 gene in tissue organs and under PEG6000 stress. (A) Tissue organs: root, stem, leaf, and flower; (B) 0, 10, 20, 
and 30% PEG6000 stress; (C) leaves under 0, 6, 12, 24, and 48  h PEG6000 stress; (D) roots under 0, 6, 12, 24, and 48  h PEG6000 stress; error lines 
indicate standard error of three biological replicates, significant difference at p < 0.05 level.
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overexpressed tobacco. These results suggest that AfNAC1 
overexpressing tobacco can restore photosynthesis better than 
wild type under drought rehydration treatment and improve 
drought tolerance.

Discussion and conclusion

Water deficit (drought) is one of the most detrimental 
factors affecting plant growth and development, and NAC 

FIGURE 4

Subcellular localization of AfNAC1 protein in tobacco cells. Bar, 50 μm.

A B

C

FIGURE 5

Plant root growth of an AfNAC1-overexpression strain and wild-type plants under different concentrations of mannitol stress treatment. WT: wild-
type plants; #1, #2, and #5 are three different strains of overexpression plants. (A) Plant root elongation phenotype. (B) Plant root measurement 
data. (C) Malondialdehyde content measurement data. Error lines indicate the standard errors of three biological replicates with significant 
differences at the p < 0.05 level. Bar, 7.5  mm.
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A B

FIGURE 6

Plant root growth of strain overexpressing AfNAC1 and wild-type plants under different concentrations of mannitol stress treatment. WT: wild-type 
plants; #1, #2, and #5 are three different strains of overexpressing plants. (A) Plant root elongation phenotype. (B) Plant root measurement data. 
Error lines indicate the standard errors of three biological replicates with significant differences at the p < 0.05 level. Bar, 20  mm.

A

B C

FIGURE 7

(A) Analysis of H2O2 and superoxide anion in tobacco leaves under drought conditions. (B) Quantitative expression of NtSOD in real time under 
drought stress. (C) NtPOD quantitative expression in real time under drought stress. Error lines indicate standard errors of three biological 
replicates with significant differences at the p < 0.05 level. Bar, 2  mm.
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transcription factors play a key role in different 
developmental and stress responses of plants. They play an 
important role in regulating plant growth and development, 
affecting cell wall formation and coping with abiotic stresses 
(Meng et  al., 2007). AfNAC1 is a hydrophilic protein 
encoding a specific NAM structural domain. 20% PEG stress 
upregulates the relative expression of AfNAC1 and the stress 
time gradient shows a gradual increase in expression in 

leaves and an increase followed by a decrease in expression 
in roots. Transcriptional regulators mostly function in the 
nucleus by binding to downstream target genes. The 
subcellular localization of AfNAC1 protein in this study 
suggests that it is a nuclear-localized protein. It has been 
shown that ChNAC4 protein is a cell membrane protein that 
exhibits activation properties in the nucleus and forms 
homodimers that are regulated in response to salt and 

A

B

C D

FIGURE 8

Overexpression of AfNAC1 improves the resistance of tobacco to drought stress. (A) Tobacco phenotypes of transgenic tobacco before drought 
treatment, under drought treatment, and after re-watering treatment. (B) RGB image on the left, chlorophyll fluorescence parameter image on the 
right. (C) Fv/Fm values of a strain overexpressing AfNAC1 and wild-type plants at days 0, 3, 6, 9, 12, and 15 after watering was stopped. (D) Control, 
drought treatment, and 3 days after watering were resumed. Fv/Fm values of wild-type tobacco WT compared with those of tobacco 
overexpressing AfNAC1; Error lines indicate standard errors of three biological replicates with significant differences at the p < 0.05 level.
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drought (Trishla and Kirti, 2021). Many NAC TFs have also 
been reported to enhance tolerance to biotic stresses. 
Overexpression of Arabidopsis ANAC019, ANAC055, and 
ANAC072 has been shown to confer drought tolerance in 
plants (Fujita et al., 2004). Figueroa et al. (2021) concluded 
from the meta-analysis that driving NAC expression using 
the CaMV35S strong promoter improved plant drought 
tolerance significantly more than other promoters. Li et al. 
(2021) found that overexpression of VyDOF8 in tobacco 
significantly enhanced drought tolerance under drought 
conditions, with better root length and lateral root number 
than wild-type tobacco. Lang (2021) found that XsNAC genes 
have different expression profiles in response to various 
abiotic stresses through transcriptome analysis, suggesting 
that XsNAC genes This suggests that XsNAC genes may also 
play a key role in the response to drought stress. The results 
showed that the malondialdehyde content of transgenic 
tobacco was significantly lower than that of wild-type 
tobacco under drought conditions, and the root length of 
transgenic tobacco was also longer than that of wild-type 
tobacco. Under stress conditions, the plants were able to 
activate their antioxidant enzyme protection system, thus 
mitigating the damage caused by reactive oxygen species and 
eventually scavenging a large amount of ROS accumulated in 
the plants (Chen et al., 2016). The experimental data showed 
that the transgenic plants mitigated the oxidative damage 
caused by drought stress and enhanced the drought resistance 
of the transgenic plants, which is like the results of Li et al. 
NAC proteins are transcription factors with plant specificity. 
Vikas Shalibhadra Trishla et al. studied GhNAC4 and found 
that its transfer into tobacco resulted in higher seed 
germination and longer root length in transgenic tobacco 
than in wild-type tobacco, indicating that GhNAC4 is 
involved in the process of plant response to drought stress, 
which is consistent with the results of the present experiment. 
In this study, to analyze the drought resistance of the AfNAC1 
gene, we detected the content of H2O2 and superoxide anion 
in leaves by DAB staining and NBT staining. The expression 
levels of NtSOD and NtPOD genes were upregulated after 
drought treatment, and we hypothesized that overexpression 
of AfNAC1 could reduce the accumulation of ROS and 
enhance the drought resistance of plants. Drought resistance 
was further demonstrated by measuring chlorophyll, proline, 
and antioxidant enzyme contents of wild-type and transgenic 
tobacco after natural drought. In addition, drought stress 
affected the photosynthesis of plants and altered chlorophyll 
fluorescence parameters. In this study, the Fv/Fm values of 
transgenic tobacco were found to be  close to those of the 
untreated control after rehydration recovery, whereas the Fv/
Fm values of WT remained low. This indicates that AfNAC1 
improved the resistance of tobacco to drought stress, 
reflecting the important role of stress resistance through 
plant photosynthetic responses; the use of AfNAC1 provides 
a reference for improving plant drought resistance.
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