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application in fruit trees:
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For the past fifteen years, significant research advances in sequencing

technology have led to a substantial increase in fruit tree genomic resources

and databases with a massive number of OMICS datasets (transcriptomic,

proteomics, metabolomics), helping to find associations between gene(s) and

performance traits. Meanwhile, new technology tools have emerged for gain-

and loss-of-function studies, specifically in gene silencing and developing

tractable plant models for genetic transformation. Additionally, innovative

and adapted transformation protocols have optimized genetic engineering in

most fruit trees. The recent explosion of new gene-editing tools allows for

broadening opportunities for functional studies in fruit trees. Yet, the fruit tree

research community has not fully embraced these new technologies to provide

large-scale genome characterizations as in cereals and other staple food crops.

Instead, recent research efforts in the fruit trees appear to focus on two primary

translational tools: transgene-free gene editing via Ribonucleoprotein (RNP)

delivery and the ectopic application of RNA-based products in the field for crop

protection. The inherent nature of the propagation system and the long

juvenile phase of most fruit trees are significant justifications for the first

technology. The second approach might have the public favor regarding

sustainability and an eco-friendlier environment for a crop production

system that could potentially replace the use of chemicals. Regardless of

their potential, both technologies still depend on the foundational

knowledge of gene-to-trait relationships generated from basic genetic

studies. Therefore, we will discuss the status of gene silencing and DNA-

based gene editing techniques for functional studies in fruit trees followed by

the potential and limitations of their translational tools (RNP delivery and RNA-

based products) in the context of crop production.

KEYWORDS

gene silencing and editing, RNP delivery, RNA-based ectopic application, fruit trees,
genetic tools
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.979742/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.979742/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.979742/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.979742/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.979742&domain=pdf&date_stamp=2022-10-17
mailto:delucl@oregonstate.edu
mailto:gouthus@oregonstate.edu
https://doi.org/10.3389/fpls.2022.979742
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.979742
https://www.frontiersin.org/journals/plant-science


Gouthu et al. 10.3389/fpls.2022.979742
Introduction

Fruit trees are an essential specialty crop, part of the

worldwide food production and economic system, representing

at least ~750 M metric tons produced in 2020 (www.fao.org).

Conventional breeding has ensured for decades the

improvement of consumer-driven traits, including yield, size,

nutritional properties, aroma, taste, and the introduction of

agronomic characteristics, like tolerance to abiotic and biotic

stress. Even with modern molecular approaches, breeding is slow

due to the long juvenile phase of most fruit tree species, and the

heterozygous nature of the varieties prevents them from

maintaining the integrity of their original genetic makeup

without several cycles of crosses. Therefore, conventional

breeding may not be the most efficient approach to rapidly

developing new varieties to meet the challenges of evolving

climate, “volatile” consumer preferences, and other changing

socio-economic factors such as decreasing labor force and

energy costs.

While the recent increase in fruit tree crop genomic

resources and database availability is regarded as a significant

trigger to improving the understanding of gene function, recent

advances in advanced biotechnology tools like RNAi-based gene

silencing and gene editing are of paramount importance to

accelerating gene function studies beyond the gene-to-traits

associations inferred from most “OMICS” technologies. For

the past twenty years, significant signs of progress have been

made in most fruit trees for reverse and forward genetics

programs (Peña et al., 2004; Malnoy et al., 2009; Chaïb et al.,

2010; Petri et al., 2018; Savadi et al., 2021). Thanks to more

precise and advanced genetic systems, the functional

characterization of key genes to essential performance traits in

fruit trees is rapidly increasing. Yet, there is still a significant gap

in the amount of scientific information generated from fruit

trees compared to other major crops that will incite the

development of more translational and sustainable technology

to respond to immediate needs.

In the first section of this review, we will summarize the most

recently advanced tools, RNAi-based gene silencing and gene

editing via DNA-targeting Cas effectors that could be exploited

to advance fundamental knowledge on the gene(s) to trait

associations for primary fruit and vine trees (apple, grape,

pear, citrus, kiwifruit, and prunus). A few examples from

recent literature will showcase the current knowledge of fruit

trees. In the following two sections, we will discuss the emerging

development of transformative tools that are gaining public and

scientific traction: Ribonucleoprotein delivery and ectopic

application of RNA in plants. We will cover the recent

advances in both technologies, their potential, their limitations,

and the major scientific priorities that need to be addressed for

these tools to become efficient and transformative in fruit trees

for improved crop production.
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Current status of gene silencing and
DNA-based gene editing tools for
fruit trees

Gene silencing involves suppressing gene expression by

either repressing its transcription (Transcriptional Gene

Silencing or TGS) or influencing the mRNA expression or the

protein level, known as Post-Transcriptional Gene silencing

(PTGS). Several tools for PTGS and TGS based on hairpin

RNAs (hpRNA), trans-acting small Interfering RNAs

(tasiRNA), and microRNAs have been developed over the past

ten years. Gene silencing based on hairpin remains the most

popular, with improved versions like introducing an intron

between the RNA arms to enhance the stability of the hpRNA

(Wulfert and Krueger, 2018). Viral-Induced Gene Silencing

(VIGS), based on a modified virus containing a fragment of a

gene to be silenced, leads to the production of double-stranded

RNAs (dsRNA) complementary to the target gene. MicroRNA-

induced gene silencing (MIGS) introduced the multiplexing

approach to target multiple related or unrelated genes (Han

et al., 2015). The development of artificial microRNAs

(amiRNA)-based gene silencing, based on the expression of

custom primary microRNAs, opened new opportunities for a

broader targeting (Carbonell et al., 2014). Like MIGS, artificial or

synthetic tasiRNAs (atasiRNAs and syn-tasiRNAs) operate

through the action of secondary siRNAs that induce selective

gene silencing (Figure 1) (Cisneros and Carbonell, 2020). The

syn-tasiRNAs construct expressing different syn-tasiRNAs from

a single precursor is a potent tool to target multiple viral RNAs.

The simultaneous expression of several syn-tasiRNAs against

Tomato spotted wilt virus (TSWV), an economically harmful

pathogen in tomato crops worldwide, resulted in strong

resistance against the virus in all generated transgenic lines

(Carbonell, 2019). These last systems were proven effective in

monocots and major fruit crops like tomato, but few studies

expanded their use to fruit tree (Charrier et al., 2019b). These

performant genetic tools, in conjunction with the rapidly

increased implementation of machine learning tools, could

exponentially increase the identification of efficient siRNA

species with greater on-target efficacy and fewer off-target risks

in fruit trees models (Wang et al., 2010; Fahlgren et al., 2016;

Ahmed et al., 2020). Yet, in recent years, few of these tools have

been applied to fruit trees studies, except VIGS, sense-gene-

induced post-transcriptional gene silencing (S-PTGS)

approaches (Liu et al., 2018; Qi et al., 2019; Singh et al., 2019;

Werner Ribeiro et al., 2020) and RNAi-based vector systems that

generated a hairpin structure (Pessina et al., 2016; Li et al., 2020;

Huang et al., 2021; Wu et al., 2021). To the best of our

knowledge, no functional gene studies have explored the

advantages of amiRNAs and syn-tasiRNAs studies in fruit

trees with the exception of Charrier’s study (Charrier et al.,
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2019b), while polycistronic amiRNA and syn-tasiRNAs tools

have demonstrated their efficiency in creating antiviral resistance

(Carbonell et al., 2019; Miao et al., 2021). The lack of robust and

tractable genetic systems in fruit trees, in conjunction with the

explosion of the gene-editing multifaceted technology, could

potentially explain this lack of willingness to adopt more

performing and higher throughput RNAi-based technologies

for knock-down generation.

The gene-editing technology, as it is, already offers more

versatile tools than RNAi-based gene silencing for multiplexed

targeting. Implementing sgRNA arrays within the same construct

simultaneously targeting up to 12 genes offers more significant

opportunities for high throughput screening of mutants (Tang

et al., 2016; Stuttmann et al., 2021). If the uncoordinated

expression of the two components of the editing system (Cas

protein and the guide RNAs) had been a significant drawback at

the beginning of the editing era, the progressive adoption of Single

Transcript Unit systems has radically improved the editing

efficiency and the versatility of the tools regardless the targeted

crops (Tang et al., 2016; Tang et al., 2019; Zhong et al., 2020).

Identifying new Cas9 and Cas12a with different PAM
Frontiers in Plant Science 03
requirements has expanded the range of DNA recognition for

the broader-targeted gene editing (Tang et al., 2017; Wang et al.,

2017a; Zhong et al., 2018). Precise genome editing techniques

have suffered from conceptual pitfalls for years. Recent technology

advances have attempted to address major bottlenecks. The

engineering of the genetic cassette enabling for local presence of

the donor template near the cut site was found to improve the

editing efficiency rate (Ali et al., 2020). Using CRISPR base editors

(a modified Cas9 with a cytosine or adenine deaminase domain) is

regarded as a promising and exciting alternative to avoid donor

templates. Still, the catalog is currently limited to C-to-T and A-

to-G base conversion (Komor et al., 2016). To overcome this

limitation, a new type of primer Editors was developed, and based

on chimeric nCas9 protein fused to an M-MLV reverse

transcriptase, a primer-editing guide RNA (pegRNA) designed

to mediate site-specific nicking then serves as a template for RT

(Anzalone et al., 2019). This system was successfully adopted for

monocots and is likely to work for dicots (Butt et al., 2020; Lin

et al., 2020; Xu et al., 2020).

To the best of our knowledge, most gene-editing studies

were designed to create stable knockout via Agrobacterium-
FIGURE 1

Examples of recently developed and validated genetic tools in plants for RNAi-silencing and DNA-based gene editing based on figures from
previously published figures: (1) (Carbonell, 2019), (2) (Cisneros and Carbonell, 2020), (3) (Lowder et al., 2016), (4) (Zhong et al., 2020), (5)
(Hassan et al., 2020).
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mediated transformation to infer association to major

agronomic traits l ike flower and fruit architecture/

composition, disease resistance, and for improving breeding

purposes like in kiwi fruits (Varkonyi‐Gasic et al., 2019;

Charrier et al., 2019a; Pompili et al., 2020; Wan et al., 2020;

Iocco-Corena et al., 2021). All of them used the popular

CRISPR-Cas9 system to achieve editing. A special note should

be made on gene-editing technology to combat Citrus canker

caused by the Xanthomonas citri subspecies a significant disease

for citrus production worldwide (Vojnov et al., 2010). Through

several studies (Hu et al., 2014; Jia et al., 2016; Jia et al., 2017),

one biallelic mutant of the CsLOB1 promoter region involved in

the interaction with the bacterial TALE (transcription activator-

like effector) was found to confer to ‘Duncan’ grapefruits

complete immunity to Xanthomonas (Jia et al., 2022). In other

fruit crops beyond fruit trees, gene editing including in

strawberry (Zhou et al., 2018), banana (Kaur et al., 2018), and

watermelon (Tian et al., 2018), were all through stable

transgenic transformations.

The recent gene-edited crops approved by USDA also used

stable expression throughAgrobacterium-mediated transformation

or particle bombardment but were followed by the segregation of

transgenes through selfing and crossing (Lacroix and Citovsky,

2020; Gao, 2021) to generate transgene-free plants, which is not

possible in clonal fruit crops. Direct modification of crop genomes

to introduce economically essential traits without GMO labels has

strengthened plant breeding efforts. USDA views the crop varieties

developed through genome editing technology as the products of

plant breeding as long as no foreign DNA is inserted into the

genome (“USDA APHIS | Regulated Article Letters of Inquiry”).

This encouraged the development of transgene-free approaches to

introduce agronomic traits, and the number of gene-edited crops

approved by the USDA jumped from 7 to 70 from 2019 to 2020

(Bomgardner, 2020). Country-wide status of the regulatory, and

legislative status towards gene-edited crops has been well discussed

in the review (Turnbull et al., 2021). Yet many clonally propagated

fruit crops did not benefit from this technology mostly because of

the recalcitrance of these crops to have gene-editing reagents

delivered into regenerable plant materials without the need for

further crossings.

Similarly, technologies based on ectopic RNA application to

induce RNAi have also gained significant traction due to the

non-GMO nature of the technology (Taning et al., 2021).

Currently used for plant protection against fungal pathogens

and pests, the technology is an alternative to conventional

pesticides for more sustained production systems. RNAi-based

products offer multiple advantages compared to their chemical

counterparts (Taning et al., 2020). First, the dsRNA active

molecules can be designed to target the expression of different

genes without changing the sequence-dependent mode of action.

Secondly, the availability of increasingly robust in silico tools for

dsRNA design, in conjunction with the growing access to

genomic resources, makes it possible to design species-specific
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molecules with negligible off-target effects compared with

current broad-spectrum pesticides with undesirable side-

effects. dsRNA molecules can be rapidly degraded, limiting

their long-term environmental persistence. RNAi-based

biocontrol delivered by exogenous application of formulated

RNA molecules might have the public favor because plants

treated with exogenous dsRNA are not considered genetically

modified organisms (Shew et al., 2017). Finally, when one

compares transgenic approaches, the fast and temporary use of

this technology during specific times of the growing season may

also offer more leverage, versatility, and reactiveness in the

number of applications and the nature of applied materials.

There is an increasing number of studies reporting RNA-based

product applications in many crops, including fruit trees, but all

were performed in a laboratory setting. The recent study

conducted by Wise et al., 2022 (see below) is encouraging, but

RNAi technology’s applicability to field conditions may vary

from a given crop production system to another. Multiple

limiting factors exist in a field setting, including overcoming

the plant’s physical barriers for uptake, the effects of

environmental factors on the extent of RNA silencing, and

achieving systemic silencing to the whole plant. Altogether,

this will need to be addressed to maximize the scalability and

processibility of the technology in a crop production system.
RNP delivery: Applications
and limitations

Besides eliminating transgenes after generating transgenic

gene-edited plants through conventional stable transformation

methods, direct transgene-free editing can be performed

through either transient expression of plasmids or directly

using CRISPR elements as ribonucleoproteins. Transient

expression of CRISPR elements without integration into the

plant genome has been reported in the grapevine using a

Geminiviral replicon system (Olivares et al., 2021). But direct

gene editing using CRISPR elements as ribonucleoproteins

(RNP), without the use of DNA, first demonstrated by (Woo

et al., 2015), is the most promising and desirable option to

generate transgene-free plants because it avoids DNA insertions

and accomplishes gene editing in one generation without

unwanted crossings in most clonal crops. However, the success

of this technique in fruit crops depends on two main factors:

cellular delivery of RNPs and identification of edited material in

the absence of selection markers, which are discussed below.

Delivery of CRISPR RNPs is a significant challenge in plants

because standard transfection techniques used in animals are

typically ineffective in intact plant cells. The genome editing

reagents can be delivered into protoplasts without cell walls via

polyethylene glycol (PEG)-mediated transfection. Therefore,

protoplast transfection is commonly used in model organisms

and many crops to demonstrate the efficiency of RNP-mediated
frontiersin.org
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gene editing. PEG-mediated RNP delivery into protoplasts has

been performed in many plant species such as Arabidopsis, rice,

lettuce, tobacco (Woo et al., 2015), petunia (Yu et al., 2021),

maize (Sant’Ana et al., 2020), wheat (Liang et al., 2017), soybean

(Kim et al., 2017), potato (Andersson et al., 2018), cabbage

(Murovec et al., 2018), including fruit crops of grapevine, apple

(Malnoy et al., 2016), and banana (Wu et al., 2020). These

studies reported editing efficiencies in regenerated microcalli,

shoots, or plants in the low 11% in petunia to 25% in the potato

model. Besides cellular internalization of RNPs and successful

editing, the editing efficiency estimates largely depend on

protoplast regeneration efficiency, which remains very low in

some species or impossible in many fruit crops. Following PEG-

mediated protoplast transfection, gene-edited plants were

regenerated in some plant models, such as N. benthamiana

and B. oleracea (Woo et al., 2015; Lin et al., 2018; Hsu et al.,

2021). In fruit crops, including grapevine, apple, and citrus, these

studies were limited to demonstrating RNP-mediated transgene-

free gene-editing technique (Malnoy et al., 2016; Zhang et al.,

2022b) mainly due to the challenges in regenerating plants from

protoplasts. In this regard, the recent establishment of protoplast

regeneration protocols in banana, grapevine, guava, and oil palm

holds a lot of promise (Reed and Bargmann, 2021). Still, an ideal

delivery method for fruit crops would be able to carry CRISPR

RNPs and penetrate the cell wall and cell membrane into intact

regenerable cells. To overcome the protoplast regeneration,

CRISPR RNPs can be transfected via PEG transfection into

zygotic cells of rice, taking advantage of the immature cell wall

during the early zygotic period. The researchers achieved

targeted mutations in 14-64% of plants (Toda et al., 2019).

However, in vitro electro-fusion of isolated gametes is

technically challenging for broader application, especially in

clonally propagated crop species. On the other hand,

transgene-free gene editing has been attempted through

biolistic delivery of RNPs in immature wheat embryos and

intact tobacco BY2 cells with 3-5% mutagenesis frequencies

(Liang et al., 2017; Liu et al., 2020a). Other potential

technologies being explored for RNP delivery include

nanoparticles and the cell-penetrating peptides (Bilichak

et al., 2020).

The cell wall, which makes RNP delivery challenging with

current techniques, comprises a complex network of

carbohydrates with a negative charge and allows only small

molecules through. Studies that estimated the pore size of cell

walls found that the cell wall size exclusion limit (SEL) was

generally within the 5-20 nm range (Etxeberria et al., 2016;

Cunningham et al., 2018). Once in the apoplastic space across

the cell wall, the cell membrane has a much larger exclusion limit

of 300-500 nm (Wang et al., 2019). So, to pass these two barriers,

the RNPs and the carrier should be smaller than the cell wall

SEL, and the carrier must have a motif enabling the plasma

membrane passage likely via endocytosis. While the size of the

Cas9 RNP is expected to be 7 to 9 nm, the size of the RNPs with
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individually nanocapsuled Cas9 RNPs to 500 nm in case of

aggregated nano assemblies that are much larger than the cell

wall SEL (Mout et al., 2017a; Mout et al., 2017b; Chen et al.,

2019). Biolistic delivery circumvents the cell wall SEL and cell

membrane permeability issues through mechanical force. Most

plant tissues are amenable to biolistic gene transfer but problems

with strong cuticles, lignified cell walls, or hairy surfaces that

resist particle penetration can occur. RNP-mediated genome

editing using biolistic methods in intact tissues has been

demonstrated in rice (Banakar et al., 2020), maize (Svitashev

et al., 2016), and wheat (Liang et al., 2017; Liang et al., 2019; Liu

et al., 2020b) with editing efficiency usually less than 10%. It was

shown that the protein delivery of the Cas9/gRNA RNPs into

plant cells had lower off-target cleavage rates when compared

with the DNA-based delivery of the Cas9/gRNA complex

(Svitashev et al., 2016; Zhang et al., 2016; Liang et al., 2017).

The limitation of the biolistic approach to delivering CRISPR

RNPs is the need to adapt particle bombardment protocols for

each type of target tissue, which necessitates the adjustment of

several critical variables such as particle diameter and distance

from the target material (Lacroix and Citovsky, 2020) and low

transformation frequency due to a small number of cells

receiving microprojectiles (Banakar et al., 2019). Despite its

low rate of delivery and possible integration of DNA

fragments into the genome and genome-scale sequence

disruptions (Zhang et al., 2016; Banakar et al., 2019; Liu et al.,

2019), CRISPR RNPs delivery through biolistics is still a

practical method in fruit crops. Biolistic RNP delivery into

intact (Awasthi et al., 2022).

There are several reports of large biomolecules measuring >200

nm delivered across the cell wall in calli and intact plant tissues with

the help of nanoparticle carriers and cell-penetrating peptides

(CPPs) without forced biolistics (Ng et al., 2016; Guo et al.,

2019), which is difficult to explain. Specific nanoparticles interact

with the cell wall changing the pore sizes and formation of new

pores (Asli and Neumann, 2009; Ma et al., 2010; Palocci et al., 2017)

and preincubation with certain pro-endocytotic peptide carriers

causing cell wall modifications were also reported (Wang et al.,

2021a). Size dynamics of cell wall pores can also vary depending on

cell type, degree of development, and physiological stage of the cell.

Permeability to nanoparticles might increase in newly synthesized

cell walls of actively dividing cells and cultured cells where the wall

texture is less dense and less structurally organized (Navarro et al.,

2008; Palocci et al., 2017). Assuming interaction occurs between the

carrier particles and the biopolymers of the cell wall, the

internalization of proteins bigger than the exclusion limit is

plausible. Various nanoparticle platforms, including lipid

nanoparticles, polymer-based nanoparticles, DNA nanoclews, and

gold-based nanoparticles, have successfully delivered CRSPR RNPs

across the cell membrane into human cell lines for the genome

editing (Duan et al., 2021). However, there is no literature on

nanoparticle-mediated RNP delivery for genome editing in walled
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plant cells, which could be a massive advantage for fruit crops to

avoid the need for crossing and protoplast regeneration. Other

potential tools for protein delivery into intact plant cells and tissues

are cell-penetrating peptides (Ng et al., 2016; Guo et al., 2019;

Midorikawa et al., 2019). A recent study by Numata’s group

screened 55 CPPs, without protein cargo to determine the

optimal CPP characteristics for penetration into the intact plant

tissues of different species (Numata et al., 2018). The optimal

composition of CPPs for the highest penetrating efficiency and

nuclear localization differ across the plant species. Still, in general,

Lys-containing CPPs seem to be more efficient for plant delivery

(Numata et al., 2018) compared to Arg-rich peptides such as Tat

peptide favored in animal cells (Taylor and Zahid, 2020;

Trofimenko et al., 2021), which could be due to the differences in

significant lipid components of their cell membranes. Generally,

CPPs, similar to nanocarriers, are believed to internalize by classical

endocytic pathways (Xie et al., 2020; Francia et al., 2022), but

detailed studies are needed to clarify the differences. In animal

systems, simple co-incubation is enough to internalize the proteins

delivered through nanocarriers or CPPs. Due to the presence of the

cell wall, mild infiltration force such as vacuum or centrifugal force

is applied to deliver protein cargoes in plants without loss of

regeneration efficiency (Kimura et al., 2019; Watanabe et al.,

2021). CPPs have been used in animal cells to deliver genome-

editing elements as RNPs non-biolistically, and these short,

positively charged peptides were shown to translocate across cell

membranes with high delivery efficiencies (Liu et al., 2014;

Ramakrishna et al., 2014; Alghuthaymi et al., 2021; Gustafsson

et al., 2021). In plants, nanocarriers and CPPs were used to deliver

large proteins such as alcohol dehydrogenase (150 KDa) across the

cell wall into intact plant tissues (Ng et al., 2016;Wang et al., 2021a).

How these proteins attached to CPPs and nanomaterials much

larger than cell wall SEL can pass through remains unanswered.

Regardless of the mechanism, the ability of CPPs to deliver large

proteins across the cell wall highlights their potential for transgene-

free genome editing in clonal fruit plants.

Transgene-free gene editing, either through transient

expression of plasmid DNAs or RNP delivery, does not afford

selection in contrast to stable transformation with selectable

marker genes. The reported transgene-free mutation rate in

tobacco and wheat through transient expression or RNP

biolistic techniques is currently low at 2.5 to 9% using explants

and 0.5% cells while using calli (Svitashev et al., 2016; Chen et al.,

2018a; Zhang et al., 2019b). When no selection pressure is

applied during callus and shoot regeneration following these

techniques, most regenerated embryos/shoots should be non-

mutant. It should be followed by high throughput screenings

such as sequencing, high-resolution melting analysis, etc.

Approaches like selectable co-editing followed by Zhang et al.,

2019b that confers herbicide tolerance via co-editing of

acetolactate synthase gene is appealing but may not be

applicable for all the crop species.
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Ectopic application of siRNA: A real
opportunity for lab-to-field
transitions in fruit trees?

Several factors like penetration, stability and diffusion of

RNA molecules in plants must be considered to evaluate the

ectopic application of RNAs as a promising tool in the field,

especially for tree crops, due to size and field-practice

constraints. dsRNA molecules can be delivered through

different methods, including foliar spray, recombinant

microbes, nanoparticles, trunk injection, and root soaking,

with variable outcomes that rely on the plant model itself

(Koch et al., 2016; Wang and Jin, 2017; Liu et al., 2021;

Pugsley et al., 2021). To the best of our knowledge, there is

currently one study reporting on the systemic effect of trunk

injection-mediated delivery of dsRNA in fruit tree crops under

field conditions (Wise et al., 2022). The two year-study clearly

showed a gradual decline but persistence of dsRNA molecules in

the tree canopies over the growing season following the

treatment in the spring. The potential of dsRNA delivery has

been extensively adopted and reported in many instances with

pests and pathogens as a successful method for plant protection.

However, with few exceptions showing significant results (Wang

et al., 2016) against major pathogens for crop production like

Botrytis cinerea, most silencing studies through RNA application

were validated using transgenic materials that were over-

expressing the transgenes (Dalakouras et al., 2016; Schwartz

et al., 2020; Hendrix et al., 2021). Foliar application is another

promising avenue for tree crops but suffers the same issues as

RNP delivery regarding physical barriers to cross. The lipophilic

nature of the cuticle hampers the absorption of exogenous

hydrophilic and polar molecules like nucleic acids (Schreiber,

2005) that can be penetrated via an abrasion, high-pressure

spraying, and abaxial stomatal flooding but the applicability of

such treatment in a field setting is not realistic (Dalakouras et al.,

2016). Beyond the cuticle, the dsRNA molecules’ size, length,

and shape are essential determining factors in crossing the next

physical barrier, the cell wall. It remains a significant hurdle for

delivering long RNA molecules and even for a siRNA molecule

that does not exceed 26 nucleotide long in many instances. With

an averaged pore size exclusion of 6 nm, the size of dsRNA

cannot exceed, in theory, more than 16 nm to cross the cell wall

(Bennett et al., 2020; Kurczyńska et al., 2021). A recent study in

tobacco BY-2 cells suggests a pore SEL for 90 bp long nucleic

acids corresponding to 31 nm (Bennett et al., 2020), which seems

to suggest that crossing the cell wall is instead a flexible and

dynamic process, which can be potentially manipulated to a

certain extent and for which the use of nanocarriers may play a

critical role in increasing the uptake (Schwartz et al., 2020). The

plasma membrane appears to be less problematic to be crossed

as several studies have reported the internalization of RNA
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molecules as long as 500 nm (Wang et al., 2014). Still, it may

depend on the shape of the nucleic acids (Zhang et al., 2022a).

The use of nanocarriers to deliver drugs, proteins, and

nucleic acids has been widely exploited in the medical sciences

(Zhang et al., 2022a). Their use in plant sciences remains highly

potential but anecdotal for pest and pathogen control.

Nanocarriers serve two purposes for ectopic application of

dsRNA: protection and improved uptake (Šečić and Kogel,

2021). Several classes of nanocarriers/nanoparticles (NPs) were

shown to protect and extend the integrity of RNA molecules at

the leaf surface and inside the cells (Mitter et al., 2017).

Numerous carriers have been tested for delivery to various

plant models (Wang et al., 2021b; Zhang et al., 2022a). The

proper class of NPs used for a given crop primarily depends on

the delivery method (spray techniques, root drenching, or trunk

injection). Additionally, other criteria need to be specifically

evaluated in field conditions because plants may respond

differently to a given nanocarrier depending on the plant’s

architecture and environmental conditions. Some recently

tested carriers include but are not limited to carbon nanodots

(Schwartz et al., 2020), carbon nanotubes (CN) (Kwak et al.,

2019; Demirer et al., 2020), Layered Double Hydroxides of clay

(LDH) (Mitter et al., 2017), iron oxide compounds (Cai et al.,

2020), multifaceted histidine-based nanocarriers (He et al.,

2020), and cationic polymers mimicking Arginine-rich cell-

penetrating peptides (CPP) (Parsons et al., 2018). Studies

comparing naked RNA versus complexed ones to NPs have

ascertained an improved foliar uptake with NPs (Mitter et al.,

2017; Schwartz et al., 2020; Delgado-Martıń et al., 2022).

Whether this improved uptake is associated with better RNA

protection, hence limiting their degradation, or the NPs’ physical

and chemical properties influencing the RNA’s internalization

via endocytosis mechanisms is debatable (Zhang et al., 2022a).

Layered Double Hydroxide molecules were found to increase the

uptake of dsRNA molecules by directly maintaining their

integrity on leave surfaces (Mitter et al., 2017). Finally, non-

engineered and non-metal particles like DNA nanostructures are

also capable of delivering exogenous biomolecules like siRNA

because of their inherent biocompatibility with plant structural

components. The reduced risk of phytotoxicity and traceability

compared with conventional NPs renders their use even more

attractive for sustainability purposes (Zhang et al., 2019a).

Another aspect of the NP’s choice is their size. Carbon Dots

(CDs), besides the simplistic and advantageous scalability of

their synthesis, have an average hydrodynamic diameter of 2.6

nm, which is below the average SEL of the cell wall, even when

combined with siRNA (4.7 ± 0.8 nm) (Wang et al., 2014).

Interestingly, complexes including dsRNA instead of siRNA

showed hydrodynamic diameters in the 160 to 350 nm range

with an efficient RNA uptake (Schwartz et al., 2020; Ng et al.,

2021; Delgado-Martıń et al., 2022). These results again challenge

the issue of crossing the cell wall wherein the SEL can be
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somewhat overcome depending on the employed NP’s

physical and chemical characteristics.

Most efficient silencing experiments were observed with the

ectopic application of 21-22 nucleotide siRNA instead of longer

dsRNA regardless of the silencing extent (local or systemic)

(Bennett et al., 2020). Thus, the selection of an effective siRNA

sequence remains an important prerequisite for potent

applications of RNAi-based products in the field as the

identification of siRNA with high efficacy via genetic

engineering remains largely dependent on genetic studies with

stable transformations (Mitter et al., 2017; Schwartz et al., 2020;

Delgado-Martıń et al., 2022) or experiments targeting GFP

expression (Dalakouras et al., 2018; Schwartz et al., 2020). The

role of 22 nucleotide siRNA species in triggering a systemic

RNAi in the whole plant is well documented. It requires the

action of the RDR6 polymerase that is likely responsible for the

amplification, the transitivity, and the systemic spread of RNAi

(McHale et al., 2013; Taochy et al., 2017; Chen et al., 2018b).

However, the recruitment of RDR6 can occur with any-sized

sRNA that contains an asymmetric bulge in its duplex structure,

which leaves open the opportunity to implement a silencing with

a siRNA species other than 22 nucleotide long (Manavella et al.,

2012; Dalakouras et al., 2016; Dalakouras et al., 2018). Therefore,

coupling the increasing genomic resources of fruit trees to

developing robust in silico tools to predict different classes of

siRNAs species with a systemic silencing potential is a significant

priority. Algorithms like Support Vector Machines (SVM) can

be trained and tested over a sequence dataset, which has already

been experimentally validated. Once the best prediction

parameters are set up, they can be used to predict siRNAs

from long dsRNA sequences. Sequence composition features

have historically represented most of the critical features used in

the SVM pipeline as di- and tri-nucleotide counts, global and

local GC content, duplex flexibility, and thermodynamics

stability (Shabalina et al., 2006; Sciabola et al., 2021).

Additionally, target accessibility and the 5’ siRNA

composition to load into AGO proteins are critical to the

silencing characteristics of a siRNA sequence (Gago-Zachert

et al., 2019). In silico tools that strategize a hybrid-SVM-based

prediction approach based on efficacy scores from previously

designed models (nonspecific and toxic siRNAs removal,

intended versus unintended target transcripts, RISC loading

efficacy of the siRNA, target site accessibility, highly specific

siRNA) combined with training datasets will generate a list of

siRNA to be tested with higher confidence (Ahmed et al., 2020).

Through this approach, Ahmed et al. (2020) identified new

siRNA candidates targeting highly expressed gene (GFP gene)

and endogenous genes in tobacco, Arabidopsis, and periwinkle

with relatively high confidence (correlation coefficient greater

than 0.7 between the measured predicted efficacy) of the siRNA

candidate. Overall, using siRNAs could represent the most

efficient way to overcome the plant’s physical barriers. Still, it
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requires significant progress in developing robust predicting

tools to identify effective siRNA.

Ultimately, the systemic component of silencing remains

essential to assess the technology in a field setting. Optimizing

systemic silencing within trees will reduce ectopic application

costs to a minimum. The plant’s age could also be an important

influencing factor. While young plants tend to be more

susceptible to pathogens and pests due to less accumulation of

waxy cuticles and trichomes, these unprotected portions may be

more amenable to absorbing RNA-based products for better

protection. When plant maturity is reached, both plant size and

mature leaf structure become challenging for efficient absorption

of sprayed RNAs, systemic spread, and the resulting silencing.

Werner et al., 2020 found that the foliar application of small

hairpin dsRNA effectively inhibited Fusarium graminearum

infection in non-sprayed tissues of barley (Hordeum vulgare).

By improving the RNA uptake, the NPs also are likely to impact

the strength of secondary siRNA production and probably the

extent of systemic spread of silencing. Schwartz et al., 2020

demonstrated that carbon nanodots bound to siRNA molecules

silence target genes in both locally and newly emerging leaves.

Mitter et al. (2017) found a more significant systemic movement

of dsRNA-treated with LDH in non-treated parts of the

cucumber and tobacco plants. Delgado-Martıń et al. (2022)

demonstrated greater efficiency of Carbon Dots to induce a

systemic spread of dsRNA with even lesser dsRNA molecules

applied, which could be advantageous in terms of synthesis cost.

Though, very little data have demonstrated systemic silencing of

endogenous genes, which brings uncertainty to the translation of

the technology, especially to control low expressed endogenous

genes (Marcianò et al., 2021; Nerva et al., 2022). There is still a

substantial work to determine whether the technology is suitable

enough to apply i) to the set of plant gene(s) associated with

traits and ii) to induce a systemic and extended response in the
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plants, which would limit the production costs not only of the

dsRNA but also of the nanocarrier. In conclusion, to achieve a

successful Spray Gene Induced Silencing with a foliar application

of RNA, several significant milestones need to be completed in

conjunction with a solid knowledge of the target crop system to

optimize the delivery methods and the potential addition of a

nanocarrier (Figure 2).
Discussion and perspectives

The availability of the foundational knowledge related to gene

(s)-to-trait associations is a prerequisite for fully translating RNAi

and gene editing technologies into sustainable and transformative

tools for improved fruit tree production. Like other plant models,

this information is mainly generated through genetic engineering

studies which still are scarce in fruit trees. As the lag created by the

lack of robust and tractable systems for genetic studies tends to

abate, the adoption of multiplexing tools through both gene

silencing and gene editing for fruit trees studies would help

accelerate the acquisition of this foundational information A

good example is the development of the microvine model of

grapevine, which has been extensively used for reverse genetic and

physiological studies (Chaïb et al., 2010; Pellegrino et al., 2019;

Torregrosa et al., 2019). Major research programs developed to

generate mutant collections that exist in monocots need to expand

in fruit trees (Salomé, 2020; Liu et al., 2020a). Loss-of-function

studies using RNAi gene silencing remain a popular tool for

functional genomic purposes even with the emergence of

advanced and versatile gene-editing tools. The recent

development of novel RNA-targeting CRISPR/Cas effectors, like

Cas13, which could take over RNAi-based silencing tools, is

promising. However, collateral cleavage events of non-target

RNAs with RNA-targeting Cas effectors are often observed. Its
FIGURE 2

Significant milestones achieved for RNA-based ectopic application. [1, 2]: Wang et al., 2014; Schwartz et al., 2020, [3-5]: Mitter et al., 2017,
Zhang et al., 2019a, Demirer et al., 2020, [6-8]: Ahmed et al., 2020, Bennett et al., 2020, Sciabola et al., 2021, [9]: Delgado-Martıń et al., 2022.
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broad application remains uncertain, leaving room and time for

developing more efficient RNAi-based silencing tools (Aman

et al., 2018; Ai et al., 2022). Repurposing current gene-editing

tools to non-editing applications like transcriptional regulation

(CRISPR interference and CRISPR activation) and other aspects

of epigenetic regulations is an exciting research avenue for

generating mutants. Implementing such tools with new

synthetic and inducible promoter systems may also offer

alternate routes to prevent the hurdle of lethal mutants and

provide more accurate gene-to-trait information in a spatial and

temporal context. The NGS technology has enabled the

generation of a massive amount of “OMICS” data in fruit trees

that can increase the catalog of critical genes and their roles in

primary performance traits. If the translational tools discussed in

this review reach a certain level of effectiveness along with an effort

to communicate the advantages stressing the non-GMO nature of

these technologies, they are likely to be better accepted by

the public.

Unlike RNA-based ectopic application, RNP delivery still

faces major constraints, such as the clonal propagation nature of

fruit trees and their recalcitrance to plant regeneration, which

renders this approach a challenging alternate avenue. Efforts to

develop i) protoplast regeneration protocols and ii) RNP delivery

to intact regenerable tissues should be major priorities because

they can significantly bolster transgene-free gene editing in fruit

tree models. Nanocarriers and CPPs used in animal models must

be extensively exploited in plant models for improved RNP

delivery through walled regenerable tissues like the isolated

examples of biolistic delivery in banana and CPP-mediated

delivery in wheat microspores (Bilichak et al., 2020; Awasthi

et al., 2022). Even where gene editing is performed through a

transient transformation in apple (Chen et al., 2018a) and RNP-

delivery in bananas (Awasthi et al., 2022), it is technically

challenging to identify mutant cells. Once these milestones are

achieved, the selection of edited mutants will remain tedious

unless the editing efficiency rate of CRISPR/Cas is dramatically

improved, making the regeneration of edited material effortless

and rapid.

Pests and pathogens have conserved virulence mechanisms

across host species, and the interaction mechanisms with

multiple host plants often share commonalities. The

knowledge from RNAi studies, such as targeting the fungal

effector and RNAi fungal machinery of Botrytis cinerea (Wang

et al., 2016; Wang et al., 2017b), the tubulin ofDrosophila suzukii

(Taning et al., 2016) and host plant’s housekeeping genes in

wheat against powdery mildew fungus (Schaefer et al., 2020)

should be adopted in fruit trees. Botrytis and powdery mildew

are significant pathogens in many fruit trees, such as cherry,

apple, and grapevine. The orthologous fungal effectors or host

plant genes could be targeted through RNAi application.

Though the implementation of this technology remains an
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issue in fruit tree orchards, a universal delivery method for all

the major crops is unlikely to be developed because every crop

has its plant architecture with different leaf shapes, which could

be problematic for efficient delivery. The current estimates place

the price-per-hectare of RNAi-based biopesticide in the range of

$20-120, which relies on the cost of dsRNA synthesis and the

crop production system. This corresponds to nearly 50% of the

average expenses related to purchasing chemical-based products

for treating the same area. Then, the broader use of this

technology in the field would reduce the production cost.

Future improvements in the design and the silencing efficacy

of dsRNA molecules, along with the use of new carrier

molecules, will favor the uptake and decrease the cost of

synthesis of the active ingredients needed. Unlike gene-edited

products where yield penalty can be associated with the

disruption of the target genes, the RNAi technology applied to

the field may offer more opportunities to manipulate traits of

interest in a spatial and temporal context with lesser side effects.

This technology could strengthen the confidence between

producers and consumers if accepted. Overall, due to the

increasing need to comply with a set of restrictive but

necessary food biosafety rules, the application of biopesticides

like RNAi-based products may result in better public acceptance

than conventional chemical treatments. Also, by targeting traits

related to yield and secondary metabolites, increased production

of more nutritional food per square foot could be achieved.
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Carbonell, A., López, C., and Daròs, J.-A. (2019). Fast-forward identification of
highly effective artificial small RNAs against different tomato spotted wilt virus isolates.
Mol. Plant Microbe Interact. 32, 142–156. doi: 10.1094/MPMI-05-18-0117-TA
Carbonell, A., Takeda, A., Fahlgren, N., Johnson, S. C., Cuperus, J. T., and
Carrington, J. C. (2014). New generation of artificial MicroRNA and synthetic
trans-acting small interfering RNA vectors for efficient gene silencing in
arabidopsis. Plant Physiol. 165, 15–29. doi: 10.1104/pp.113.234989

Chaïb, J., Torregrosa, L., Mackenzie, D., Corena, P., Bouquet, A., and Thomas,
M. R. (2010). The grape microvine - a model system for rapid forward and reverse
genetics of grapevines. Plant J. 62, 1083–1092. doi: 10.1111/j.1365-
313X.2010.04219.x

Charrier, A., Vergne, E., Dousset, N., Richer, A., Petiteau, A., and Chevreau, E.
(2019a). Efficient targeted mutagenesis in apple and first time edition of pear using
the CRISPR-Cas9 system. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00040

Charrier, A., Vergne, E., Joffrion, C., Richer, A., Dousset, N., and Chevreau, E.
(2019b). An artificial miRNA as a new tool to silence and explore gene functions in
apple. Transgenic Res. 28, 611–626. doi: 10.1007/s11248-019-00170-1

Chen, G., Abdeen, A. A., Wang, Y., Shahi, P. K., Robertson, S., Xie, R., et al.
(2019). A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex
for in vivo genome editing. Nat. Nanotechnol. 14, 974–980. doi: 10.1038/s41565-
019-0539-2

Chen, L., Li, W., Katin-Grazzini, L., Ding, J., Gu, X., Li, Y., et al. (2018a). A
method for the production and expedient screening of CRISPR/Cas9-mediated
non-transgenic mutant plants. Hortic. Res. 5, 13. doi: 10.1038/s41438-018-0023-4

Chen, W., Zhang, X., Fan, Y., Li, B., Ryabov, E., Shi, N., et al. (2018b). A genetic
network for systemic RNA silencing in Plants1[OPEN]. Plant Physiol. 176, 2700–
2719. doi: 10.1104/pp.17.01828

Cisneros, A. E., and Carbonell, A. (2020). Artificial small RNA-based silencing
tools for antiviral resistance in plants. Plants 9, 669. doi: 10.3390/plants9060669

Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., and Landry, M. P.
(2018). Nanoparticle-mediated delivery towards advancing plant genetic
engineering. Trends Biotechnol. 36, 882–897. doi: 10.1016/j.tibtech.2018.03.009

Dalakouras, A., Jarausch, W., Buchholz, G., Bassler, A., Braun, M., Manthey, T.,
et al. (2018). Delivery of hairpin RNAs and small RNAs into woody and herbaceous
plants by trunk injection and petiole absorption. Frontiers in Plant Science 9

Dalakouras, A., Wassenegger, M., McMillan, J. N., Cardoza, V., Maegele, I.,
Dadami, E., et al. (2016). Induction of silencing in plants by high-pressure spraying
of In vitro-synthesized small RNAs. Front. Plant Sci. 7. doi: 10.3389/
fpls.2016.01327
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