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Insects and animals are attracted to, and feed on ripe fruit, thereby promoting

seed dispersal. As a vital vitamin and nutrient source, fruit make up an

indispensable and enjoyable component of the human diet. Fruit ripening

involves a series of physiological and biochemical changes in, among others,

pigmentation, chlorophyll (Chl) degradation, texture, sugar accumulation,

and flavor. Growing evidence indicates that the coordinated and ordered

trait changes during fruit ripening depend on a complex regulatory network

consisting of transcription factors, co-regulators, hormonal signals, and

epigenetic modifications. As one of the predominant transcription factor

families in plants and a downstream component of ethylene signaling,

more and more studies are showing that APETALA2/ethylene responsive

factor (AP2/ERF) family transcription factors act as critical regulators in

fruit ripening. In this review, we focus on the regulatory mechanisms of

AP2/ERFs in fruit ripening, and in particular the recent results on their

target genes and co-regulators. We summarize and discuss the role of

AP2/ERFs in the formation of key fruit-ripening attributes, the enactment of

their regulatory mechanisms by interaction with other proteins, their role in

the orchestration of phytohormone-signaling networks, and the epigenetic

modifications associated with their gene expression. Our aim is to provide a

multidimensional perspective on the regulatory mechanisms of AP2/ERFs in

fruit ripening, and a reference for understanding and furthering research on

the roles of AP2/ERF in fruit ripening.
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Introduction

The fruit, which protects seeds and supports their
development, begins ripening once the seeds mature. Ripe fruit
encourages seed dispersal by attracting frugivorous animals,
or through drying and dehiscence mechanisms (Forlani et al.,
2019). As an essential source of sugars, vitamins, minerals,
and antioxidants, fruit are desirable in the human diet. Fruit
ripening is a complex process involving a series of physiological
and biochemical changes in pigmentation, chlorophyll (Chl)
degradation, texture, sugar accumulation, flavor formation, and
so on, affecting fruit quality, postharvest life, and economic
value (Chen et al., 2020).

Based on its ripening characteristics, fruit can be roughly
categorized into climacteric and non-climacteric types.
Climacteric fruit have concurrent peaks in respiration rate and
ethylene production during ripening. Examples include apple,
kiwi, tomato, banana, pear, peach, and mango. Non-climacteric
fruit, such as strawberry, cherry, orange, and grape, do not
display peaks in respiration rate or ethylene production during
ripening (Gao et al., 2020). Although fruit development is
co-regulated by a range of phytohormones, abscisic acid (ABA)
and ethylene are generally considered to be the most critical
ripening regulators. ABA can induce non-climacteric fruit
ripening. Ethylene is essential for promoting climacteric fruit
ripening (Chen et al., 2020).

Two ethylene-synthesis systems are found in fleshy fruit.
System I contributes to the basal level of ethylene synthesis,
and functions mainly during pre-ripening stages. System I
is autoinhibitory, i.e., the perception of ethylene inhibits
ethylene synthesis. In tomato (Solanum lycopersicum L.),
AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE
1A and 6 (SlACS1A and SlACS6) are involved in this process
(Liu et al., 2015). System II is responsible for the burst of
ethylene synthesis during climacteric fruit ripening and is
autostimulated by ethylene signals; in tomato, this depends on
SlACS1A, SlACS2, SlACS4, and 1-AMINOCYCLOPROPANE-1-
CARBOXYLIC ACID OXIDASE 1 and 4 (SlACO1 and SlACO4)
(Forlani et al., 2019). The intensity of the ethylene signal in
system II is closely related to the onset of ripening and the
achievement of full ripening in tomato (Huang et al., 2022).

Ethylene-signal transduction is conserved in climacteric
and non-climacteric fruit (Figure 1). The receptors identified
in Arabidopsis, including ETHYLENE RESPONSE 1/2
(ETR1/2), ETHYLENE RESPONSE SENSOR 1/2 (ERS1/2),
and ETHYLENE INSENSITIVE 4 (EIN4), are located on
the endoplasmic reticulum membrane. These receptors act
as negative regulators of ethylene signaling. The tomato
genome encodes more signal-transduction components than
Arabidopsis, including 7 SlETRs, 4 SlCTRs (CONSTITUTIVE
TRIPLE RESPONSE), 1 SlEIN2, 6 SlEILs (EIN3-Like), 4 SlEBFs
(EIN3-BINDING F-BOX). SlETR3, SlETR4, and SlETR7 are
the main receptor genes expressed during tomato ripening

(Liu et al., 2015). A single amino acid change in the N-terminal
ethylene-binding pocket of SlETR3 results in impaired fruit
ripening, known as the NEVER-RIPENING (NR) mutant
(Wilkinson et al., 1995). The function of ETR1 receptor
proteins has been reported to be regulated by GREEN-RIPE
(GR), a homolog of the negative ethylene-response regulator
REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) of
Arabidopsis, which can affect ethylene signaling in tomato
(Barry and Giovannoni, 2006). RESPONSE TO ANTAGONIST
1 (RAN1) plays a vital role in the delivery of copper to the
ethylene receptors, required for ethylene binding (Binder et al.,
2010). The protein TETRATRICOPEPTIDE REPEAT (SlTPR1)
interacts with the ethylene receptors NR and ETR1 to regulate
ethylene and auxin responses (Lin et al., 2008).

Sensing ethylene inhibits receptor function, and relieves the
inhibition of downstream pathways by the negative regulator
CTR. Interestingly, a quantitative trait locus (QTL) containing a
CTR1-Like gene and a putative DNA demethylase REPRESSOR
OF SILENCING 1 (ROS1) gene in melon triggers climacteric
ripening on a non-climacteric background. CRISPR/Cas9
knockout mutants of CTR1-Like on the climacteric genetic
background show significant advances in ethylene production
and ripening initiation but without affecting other important
traits, such as flesh firmness (Giordano et al., 2022). EIN2 is
the central positive regulator of ethylene signaling. Loss-of-
function mutants of SlEIN2 obtained by CRISPR/Cas9 gene
editing exhibit fully impaired ethylene signaling. Cessation
of ripening in slein2 is partially rescued by slebf1 (Huang
et al., 2022). In the presence of ethylene, the EIN2 C-terminal
domain is cleaved and translocated into the nucleus to activate
the transcription factor EIN3 and its homolog EIL, which in
turn induce the expression of downstream ethylene-responsive
genes and transcription factors APETALA2/ethylene-responsive
factor (AP2/ERF) (Ju and Chang, 2015).

The simplicity and conservation of ethylene signaling
cannot explain the diversity and specificity of the resultant
physiological responses. However, because AP2/ERFs act
downstream of the ethylene-signaling pathway, the various
ripening-related traits induced by ethylene can be explained by
the diversity of these transcription factors (Liu et al., 2015, 2016).

APETALA2/ethylene responsive
factor family, characteristic
domains and binding specificities

AP2/ERF is a large class of transcription factors that is
found mainly in plants, characterized by an AP2/ERF domain
involved in DNA binding. This domain is approximately
60–70 amino acids in length and consists of a three-
stranded β-sheet and one α-helix almost parallel to the
sheet; arginine and tryptophan are the pivotal residues in
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FIGURE 1

Model of ethylene signaling. CTR1 is a serine/threonine protein kinase that directly phosphorylates and inhibits EIN2 in the absence of ethylene.
EIN2 contains multiple transmembrane domains at its N terminus and a cytoplasmic C terminus. In the presence of ethylene, the EIN2
C-terminal domain is cleaved and translocated into the nucleus. ETHYLENE INSENSITIVE3 BINDING F-BOX (EBF) proteins are responsible for
targeting and degrading EIN3/EIL. EIN2 binds to and leads to the degradation of mRNAs encoding EBF1 and EBF2. In addition, EIN2 can regulate
EIN3-dependent transcription. The accumulation and stabilization of EIN3/EIL lead to numerous transcriptional changes. Arrows represent
activation, T-bars indicate repression.

the β-sheet for DNA binding (Allen et al., 1998). The AP2
domain was first identified in the Arabidopsis AP2 protein,
which functions in flower development (Jofuku et al., 1994).
AP2/ERF is generally considered plant-specific. However,
homologs of the AP2 domain have been identified in
the cyanobacterium Trichodesmium erythraeum, the ciliate
Tetrahymena thermophila, and the viruses Enterobacteria
phage Rb49 and Bacteriophage Felix 01, suggesting that plant
AP2/ERFs may originate from horizontal transfer of HNH-AP2
endonuclease from bacteria or viruses via transposition and
homing processes (Magnani et al., 2004).

Thanks to increasingly available genome data, hundreds
of AP2/ERF genes have been identified from different plants,
such as Arabidopsis thaliana (147, Nakano et al., 2006),
tomato (Solanum lycopersicum; 146, Pirrello et al., 2012), apple
(Malus × domestica; 259, Girardi et al., 2013), grapevine (Vitis
vinifera; 132, Zhuang et al., 2009), pineapple (Ananas comosus
L. Merr; 97, Zhang et al., 2021), longan (Dimocarpus longan
Lour.; 125, Zhang S. et al., 2020), peach (Prunus persica; 131,
Zhang et al., 2012), Chinese jujube (Ziziphus jujuba Mill.;
119, Zhang and Li, 2018), sweet orange (Citrus sinensis; 108,
Ito et al., 2014), and others. Systematic analyses indicate that

whole-genome duplication events, segmental duplication, and
tandem duplication have contributed to the expansion of
the AP2/ERF family in plants (Zhuang et al., 2009; Zhang
et al., 2021). Duplicated genes evolve overlapping or distinct
regulatory functions (Shoji and Yuan, 2021; Zhai et al., 2021),
and expansion of the AP2/ERF family has brought about
functional differentiation, leading to crucial roles for AP2/ERFs
in a wide range of biological and physiological processes such
as morphogenesis, defense responses, signal transduction, organ
senescence, and metabolite regulation (Feng et al., 2020; Gao
et al., 2020).

The Arabidopsis AP2/ERF superfamily is divided into four
main categories: ERF (first discovered in Ethylene-Responsive
Element-Binding proteins (EREBPs), AP2, Related to Abscisic
Acid Insensitive 3/Viviparous 1 (RAV), and soloists (a few
unclassified factors) (Nakano et al., 2006; Feng et al., 2020). The
AP2 family usually contains two repeated AP2/ERF domains.
In addition to one AP2/ERF domain, the RAV family also has
one B3 domain, a DNA-binding domain that is conserved in
other transcription factors, such as VP1/ABI3. The ERF family
contains a single AP2/ERF domain. According to the conserved
amino acid residues at positions 14 and 19 of this domain, the
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ERF family can be further divided into the ERF subfamily and
the C-Repeat/Dehydration-Responsive Element Binding factors
(CBF/DREB) subfamily (Sakuma et al., 2002). Based on the
phylogenetic relationship and conserved motif characteristics,
the ERF subfamily can be further divided into 12 phylogenetic
groups, namely I to X, VI-L, and Xb-L (Nakano et al., 2006).
In tomato, the ERF subfamily members are distributed into A–J
groups (Liu et al., 2016).

AP2/ERF proteins bind directly to cis-acting elements on
the target gene’s promoter, such as dehydration-responsive
element/C-repeat element (DRE/CRT) with core sequence
CCGAC, GCC box with core sequence AGCGCCC, and some
other GC-rich motifs. The divergent DNA-binding specificities
are associated with the amino acid residues of the AP2
domain, which affect the interaction of AP2/ERF proteins
with DNA bases and phosphate backbones (Shoji et al.,
2013). Furthermore, the AP2 and B3 domains of the RAV
subfamily specifically recognize CAACA and CACCTG motifs,
respectively (Kagaya et al., 1999). It has been reported that
some ERFs can bind the ATCTA motif (Welsch et al., 2007)
and vascular system-specific and wound-responsive cis-element
(VWRE) (Sasaki et al., 2007). Nucleotides flanking the cis-
element also enhance or weaken the binding affinity of AP2/ERF,
thereby conferring different AP2/ERF binding specificities to
target genes (Pirrello et al., 2012).

AP2/ERFs perform transcriptional activation or repression
functions, mainly depending on the functional domain other
than the DNA-binding domain. The hydrophobic amino acid-
containing ERF-Associated Amphiphilic Repression (EAR)
motif is the most dominant active repression domain identified
in plants. It is widely found in AP2/ERFs with transcriptional
repression function, and is mainly located in the C-terminal
region of the protein, with conserved sequences LxLxL or
DLNxxP (Ohta et al., 2001; Kagale et al., 2010). Moreover,
a B3 Repression Domain (BRD) was identified in the RAV
subfamily, containing the R/KLFGV conserved motif (Ikeda
and Ohme-Takagi, 2009). The activation domains usually
exhibit sequence divergence. The acidic amino acids are
thought to be involved in transcriptional activation (Liu
et al., 1999). An EDLL motif has been identified as a strong
activation domain in group IX of the ERF family, containing
several acidic amino acids spaced around hydrophobic leucines
(Tiwari et al., 2012).

An N-terminal conserved MCGGAII/L domain has
been identified in group VII of the ERF subfamily, involved
in oxygen-sensing and N-end rule pathway-dependent
protein degradation. Post-translational modifications of
this domain can affect the activity of the transcription
factors, thereby regulating the expression of core hypoxia
responsive genes (Gibbs et al., 2011; Licausi et al., 2011).
Group E members of ERF in tomato (corresponding to
group VII in Arabidopsis) exhibit tight ripening-related
expression and are thought to play a prominent role

in ethylene- and RIN (RIPENING-INHIBITOR)/NOR
(NON-RIPENING)-dependent ripening (Liu et al., 2016).

Role in fruit ripening

AP2/ERFs play critical roles in fruit ripening (Table 1). In
tomato, 55 ERF subfamily members showed ripening-related
expression patterns, 27 upregulated and 28 downregulated
(Liu et al., 2016). AP2/ERFs are involved in textural changes,
pigmentation, Chl degradation, and flavor formation via their
regulation of downstream ripening-related genes.

Cell wall modification

The remarkable change in fruit texture at ripening
is characterized by a process of remodeling cell
wall structure and composition, coordinated by
a series of cell wall-modifying enzymes. Among
them, POLYGALACTURONASE (PG), PECTIN
METHYLESTERASE (PME) and PECTATE LYASE (PL)
are related to the metabolism of pectin, and XYLOGLUCAN
ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) is related
to xyloglucan and hemicellulose metabolism (Tucker et al.,
2017). Recent studies have found that AP2/ERFs regulate
the transcription of several cell wall-modifying genes. In
persimmon (Diospyros kaki), DkERF8/16/19 bind to the
DRE/CRT element of DkXTH9’s promoter and activate its
transcription (Wang et al., 2017). DkERF8 and DkERF16 also
activate DkXTH11 and EXPANSIN 4 (DkEXP4), respectively,
via binding to their promoters (He et al., 2020).

In peach, PpeERF2 was found to bind directly to the PpePG1
promoter by yeast one-hybrid (Y1H) and electrophoretic
mobility shift assay (EMSA), and further found to repress
its expression by Agrobacterium infiltration (Wang et al.,
2019a). During banana (Musa acuminata) ripening, MaDEAR1
represses the expression of MaEXP1/3, MaPG1, MaXTH10,
MaPL3, and MaPME3 (Fan et al., 2016). In papaya (Carica
papaya L.), CpERF9 binds to the GCC box of the CpPME1/2
and CpPG5 promoters and represses their expression (Fu et al.,
2016, 2021). Notably, members of the F group characterized
by the EAR motif have been widely found to inhibit cell wall-
modifying gene expression. A recent study hypothesized that
the rate of fruit softening depends on the balance between the
ERF.F repressors and other activators. Another possibility is that
ERF.F is inhibited after ripening begins, subsequently releasing
the inhibition of cell wall-modification genes (Shi et al., 2022).

The G–C mutation in the EAR motif of apple MdERF4
impairs its transcriptional repression of MdERF3, thereby
promoting ethylene production and loss of fruit firmness (Hu
et al., 2020). Watermelon (Citrullus lanatus) ClERF4, associated
with variations in fruit peel firmness, was identified via a
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TABLE 1 AP2/ERF regulation of different ripening-related traits.

Regulated
traits

Species Gene name Target genes Interacting
cis-element

Function References

Softening Banana (Musa acuminata) MaDEAR1 MaEXP1/3, MaPG1,
MaXTH10, MaPL3,

MaPME3

DRE/CRT motif Repressor Fan et al., 2016

Papaya (Carica papaya L.) CpERF9 CpPME1/2, CpPG5 GCC box Repressor Fu et al., 2016

Apple (Malus× domestica) MdERF4 MdERF3 DRE/CRT motif Repressor Hu et al., 2020, 2022a

Persimmon (Diospyros kaki) DkERF8/16/19 DkXTH11, DkEXP4,
DkXTH9

GCC box, DRE/CRT
motif

Activator Wang et al., 2017; He
et al., 2020

Peach (Prunus persica) PpeERF2 PpePG1 DRE/CRT motif Repressor Wang et al., 2019a

Banana (Musa acuminata) MaERF11 MaEXP2, MaEXP7,
MaEXP8

GCC box Repressor Han et al., 2016

Tomato (Solanum
lycopersicum)

SlERF.F12 SlPG2a, SlPL GCC box, DRE/CRT
motif

Repressor Deng et al., 2022

Banana (Musa acuminata) MaERF9 MaEXP1/2/3/5,
MaXET7, MaPG1,
MaPME3, MaPL2

GCC box Activator Feng et al., 2016

Peach (Prunus persica) PpERF4 PpPG1 DRE/CRT motif Activator Wang et al., 2021

Banana (Musa acuminata) MaDREB2 MaEXP1, MaEXP3,
MaEXP5, MaXET3,

MaXET7

(A/G)CC(G/C)AC Repressor Kuang et al., 2017

Chlorophyll
degradation

Apple (Malus× domestica) MdERF17 MdPPH, MdNYC CACGGT, CACGTG Activator Han et al., 2018;
Wang et al., 2022

Citrus fruit (Citrus reticulata) CitERF6, CitERF13 CitNYC, CitPPH DRE/CRT motif Activator Li et al., 2019

Grape (Vitis vinifera) VvERF17 VvNOL, VvPPH,
VvPAO, VvRCCR

CAACA, CACGTG Activator Lu et al., 2022

Anthocyanin
and flavonoid
accumulation

Apple (Malus× domestica) MdAP2_1a MdMYB10 Not mentioned Activator Ding et al., 2022

Apple (Malus× domestica) MdERF109 MdCHS, MdUFGT,
MdbHLH3

GCC box Activator Ma et al., 2021

Apple (Malus× domestica) MdERF1B MdMYB9,
MdMYB11

RAA (CAACA) motif Activator Zhang J. et al., 2018

Pear (Pyrus spp.) PpERF105 PpMYB140 Not mentioned Activator Ni et al., 2021

Strawberry
(Fragaria× ananassa)

FaRAV1 FaMYB10, FaCHS,
FaF3H, FaDFR,

FaGT1

RAA (CAACA) motif Activator Zhang Z. et al., 2020

Citrus fruit (Citrus reticulata) CitERF32, CitERF33,
CitRAV1

CitCHIL1 CGCCGC Activator Zhao et al., 2021

Carotenoid
accumulation

Apple (Malus× domestica) MdAP2-34 MdPSY2-1 DRE/CRT motif Activator Dang et al., 2021

Citrus fruit (Citrus sinensis) CsERF061 LCYb2, PSY1, PDS,
CRTISO, LCYb1,

BCH, ZEP, NCED3,
CCD1, CCD4

ERE motif
(AATTCAAA),

DRE/CRT motif, GCC
box

Activator Zhu et al., 2021

Aroma
accumulation

Peach (Prunus persica) PpERF61 PpTPS1/3, PpbHLH1 DRE/CRT motif Activator Wei et al., 2022

Sweet orange (Citrus sinensis
Osbeck)

CitERF71 CitTPS16 ACCCGCC and
GGCGGG motifs

Activator Li X. et al., 2017

Sweet orange (Citrus sinensis) CitAP2.10 CsTPS1 Not mentioned Activator Shen et al., 2016

Banana (Musa acuminata) MaDREB2 MaADH1, MaPDC (A/G)CC(G/C)AC Repressor Kuang et al., 2017

Banana (Musa acuminata) MaERF9 MaCAT, MaPDC GCC box Activator Feng et al., 2016

combinatorial genetic map and bulk segregant analysis. An 11-
bp indel and the neighboring single-nucleotide polymorphism
in ClERF4 contributed to differences in rind hardness

and cracking resistance (Liao et al., 2020). These findings
suggest that ERF allelic mutations play an important role in
textural fruit traits.
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Cell wall modification contributes not only to softening but
also to tissue expansion and growth. XTH is thought to be
involved in maintaining the structural integrity of the cell wall
during fruit development, while contributing to softening at
the onset of ripening (Miedes and Lorences, 2009). This dual
role is related to the dual biochemical function of XTH, with
different members acting as xyloglucan endotransglucosylase
(XET) or xyloglucan endohydrolase (XEH) (Rose et al., 2002).
The expression and activity of several XTHs differ at different
developmental stages of the fruit and are regulated by ethylene
(Goulao et al., 2007; Tucker et al., 2017). It is assumed that
AP2/ERFs participate in the change in cell wall state from fruit
development through the onset of ripening to full ripeness by
differentially regulating cell wall-modifying enzymes.

Color

Fruit color development at ripening depends mainly on
the contents of flavonoids, carotenoids, and Chl (Wang et al.,
2022). AP2/ERFs participate in fruit degreening by regulating
Chl degradation. In citrus (Citrus reticulata), ethylene-
induced CitERF6 and CitERF13 trigger Chl degradation
by directly activating the expression of NON-YELLOW
COLORING (CitNYC) and PHEOPHYTINASE (CitPPH),
as identified by dual-luciferase and Y1H assay (Li et al.,
2019). In apple, mutations in the coding region of MdERF17
affect peel degreening. Different numbers of serine repeats
affect the transcription-regulatory activity of MdERF17
mutant alleles on Chl degradation-related genes, including
MdPPH and MdNYC, as observed in a dual-luciferase
reporter assay (Han et al., 2018). VvERF17 promotes Chl
degradation in grape berry by activating several Chl catabolic
genes, including CHLOROPHYLL-B-REDUCTASE (VvNOL),
VvPPH, PHEOPHORBIDEα OXYGENASE (VvPAO), and RED
CHLOROPHYLL CATABOLITE REDUCTASE (VvRCCR)
(Lu et al., 2022).

Ethylene has been reported to regulate anthocyanin
biosynthesis in many fruit (Ni et al., 2021). Ethylene treatment
accelerates apple peel coloration, during which MdEIL1
activates MdMYB1 transcription. MdMYB1 promotes
anthocyanin biosynthesis and activates the expression of
MdERF3 (a key regulator of ethylene synthesis), providing
positive feedback for ethylene signaling and fruit coloration
(An et al., 2018). MdERF1B contributes to apple coloration by
activating the transcription of MdMYB9 and MdMYB11 (Zhang
J. et al., 2018). In strawberry (Fragaria × ananassa), FaRAV1
activates the expression of FaMYB10, an essential gene for
anthocyanin biosynthesis, by binding to its promoter. FaRAV1
can also directly promote the transcription of CHALCONE
SYNTHASE (FaCHS), FLAVANONE 3-HYDROXYLASE
(FaF3H), DIHYDROFLAVONOL-4-REDUCTASE (FaDFR)
and 3-GLYCOSYLTRANSFERASE (FaGT1), and enhance

anthocyanin accumulation (Zhang Z. et al., 2020). Ethylene-
induced PpERF105 activates the transcription of PpMYB140,
which is a repressor of anthocyanin biosynthesis in pear (Pyrus
spp.) (Ni et al., 2021).

Carotenoids are another major pigment component. The
expression of MdAP2-34 promotes carotenoid accumulation
in apple callus and fruit. MdAP2-34 can directly activate the
expression of PHYTOENE SYNTHASE 2 (MdPSY2-1), which
is a key gene in carotenoid biosynthesis (Dang et al., 2021). In
citrus (C. sinensis) fruit, ethylene-induced CsERF061 activates
the expression of 10 carotenoid-related genes—LYCOPENEβ-
CYCLASE (LCYb2), PSY1, PHYTOENE DESATURASE (PDS),
CAROTENOID ISOMERASE (CRTISO), LCYb1, β-CAROTENE
HYDROXYLASE (BCH), ZEAXANTHIN EPOXIDASE (ZEP),
9-CIS-EPOXYCAROTENOID DIOXYGENASE (NCED3),
CAROTENOID CLEAVAGE DIOXYGENASE (CCD1), and
CCD4, thus enhancing carotenoid synthesis through multitarget
regulation (Zhu et al., 2021).

Aroma

Volatile esters are the main components of the aroma
of strawberry, apple, banana, and other fruit. Alcohol
acyltransferase (AAT) is considered the key gene in ester
biosynthesis and has a significant effect on aroma formation.
Ethylene is thought to affect ester biosynthesis in apple by
regulating AAT (Defilippi et al., 2005). Several ERF genes have
been shown to be associated with the expression of AAT in
strawberry via transcriptome analysis and weight co-expression
network analysis (WGCNA). Overexpression of FveERF indeed
activates AAT gene expression and ester accumulation in
strawberry (Fragaria vesca) fruit (Li et al., 2020). Ethylene
treatment increased volatile production in banana fruit,
consistent with upregulation of volatile biosynthetic genes at the
transcriptional level, including PYRUVATE DECARBOXYLASE
(PDC) and ALCOHOL DEHYDROGENASE (ADH) (Yang et al.,
2011). Chromatin immunoprecipitation (ChIP)-qPCR and
EMSA revealed that banana MaDREB2 binds directly to the
promoters of MaADH1 and MaPDC (Kuang et al., 2017).

The monoterpene E-geraniol and sesquiterpene (+)-
valencene are important volatile compounds for flavor
formation in sweet orange. CitERF71 binds directly to the
promoter of TERPENE SYNTHASE 16 (CitTPS16) and activates
its expression to regulate E-geraniol biosynthesis in citrus
fruit (Li X. et al., 2017). Dual-luciferase assays indicated that
ethylene-induced CitAP2.10 transactivates CsTPS1, regulating
(+)-valencene biosynthesis (Shen et al., 2016). Transcriptome
and biochemical analyses of AP2/ERF PaWRI1-2 revealed
functions associated with fatty acid accumulation in avocado
fruit (Persea americana Mill.), affecting fruit quality and
nutritional value (Ge et al., 2021). In apple pericarp, MdERF3
binds to the DRE motif of α-FARNESENE SYNTHASE
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(MdAFS) and activates its expression to promote biosynthesis
of α-farnesene, which is related to insect attraction and plant
defense (Wang et al., 2020). In banana, the transcriptional
activator MaERF9 interacts physically with the transcriptional
repressor DNA BINDING WITH ONE FINGER 23 (MaDOF23)
to antagonistically regulate the expression of two aroma-related
genes, BRANCHED-CHAIN AMINO ACID TRANSAMINASE
(MaCAT) and PYRUVATE DECARBOXYLASE (MaPDC) (Feng
et al., 2016). These findings suggest that AP2/ERFs play a vital
role in regulating fruit ripening-related aroma development.

APETALA2/ethylene responsive
factor interacts with other proteins
in regulating fruit ripening

Transcription factors can interact with many different
proteins, including other transcription factors, co-regulators,
and components of basal transcription complexes, resulting
in effects on transcription factor cell localization, protein
stability, protein–protein interactions, and DNA binding
(Whitmarsh and Davis, 2000). Physical interactions between
AP2/ERFs and other proteins have been widely reported,
involving processes such as cell wall modification, anthocyanin
synthesis, and flavor accumulation. In persimmon, DkERF8 and
DkERF16, previously mentioned as direct regulators of cell wall
modifications, interact with the DkNAC9 protein. Moreover,
DkNAC9 binds directly to the promoter of ENDO-1,4-β-D-
GLUCANASE (DkEGase1) and activates its expression, revealing
a synergistic role for ERF and NAC in cell wall remodeling
(Wu et al., 2020).

In apple, MdERF1B interacts with MdMYB9, MdMYB1,
and MdMYB11 (all related to apple anthocyanin biosynthesis)
proteins in yeast two-hybrid (Y2H), pull-down, and bimolecular
fluorescence complementation (BiFC) assays, and binds to
their promoters (Zhang J. et al., 2018). MdERF38 interacts
with MdMYB1, which enhances the binding of MdMYB1
to the promoters of anthocyanin-biosynthesis genes (An
et al., 2020). PyERF3 affects anthocyanin accumulation
in pear by interacting with PyMYB114 (Yao et al., 2017).
Pp4ERF24 and Pp12ERF96 interact with PpMYB114 and
enhance PpMYB114-mediated UDP GLUCOSE:FLAVONOID
3-O-GLUCOSYLTRANSFERASE (PpUFGT) expression (Ni
et al., 2019). CitRAV1 interacts with CitERF33 in citrus,
enhancing the transcriptional activation of CHALCONE
ISOMERASE (CitCHIL1) by CitERF33 and promoting flavonoid
accumulation (Zhao et al., 2021). These findings provide
insight into how ethylene regulates anthocyanin synthesis.
In strawberry, FaERF#9 indirectly activates the expression
of QUINONE OXIDOREDUCTASE (FaQR) by forming an
ERF–MYB complex with FaMYB98, thus promoting the
biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone and
flavor accumulation (Zhang Y. et al., 2018).

AP2/ERFs with the EAR motif respond to various biotic
and abiotic stresses in plants, including salinity, wounding, low
temperature, drought and pathogens (Dong and Liu, 2010; Lu
et al., 2011; Dong et al., 2012, 2015). EAR is the most common
transcriptional-repression motif identified in plants. A total of
219 candidate transcriptional regulators with EAR motifs were
identified inArabidopsis, belonging to 21 different transcription-
regulator families. The LxLxL type accounted for most of them
(72%) (Kagale et al., 2010). EAR motif-mediated transcriptional
repression is one of the principal mechanisms of gene regulation
in plants, mainly through physical interactions with other co-
repressors, including SWITCH INDEPENDENT 3 (SIN3, Song
et al., 2005), SIN3 ASSOCIATED POLYPEPTIDE 18 (SAP18,
Hill et al., 2008), TOPLESS/TOPLESS-RELATED (TPL/TPR),
and histone deacetylases (Deng et al., 2022).

In apple, MdTPL4 and HISTONE DEACETYLASE 19
(MdHDA19) are recruited by the EAR motif-containing
MdERF4, and the protein complex inhibits MdACSa expression,
thereby affecting ethylene synthesis and fruit ripening (Hu et al.,
2022a). In tomato, SlERF.F12 (with both types of EAR motifs)
represses the expression of multiple ethylene-synthesis and cell
wall-degradation genes by recruiting TPL2 and HDA1/HDA3
(Deng et al., 2022). In banana, MaERF11, with the EAR motif,
recruits MaHDA1 and represses the expression of a range of
ripening-related genes through histone deacetylation (Han et al.,
2016). The EAR motif works in conjunction with both TPL and
histone deacetylase, supporting a model in which it mediates
transcriptional repression by recruiting chromatin remodelers.
Moreover, conserved residues adjacent and integral to the EAR
motif are involved in the post-translational regulation (Kagale
et al., 2010). For example, serine and threonine residues within
and around the EAR motifs are regulated by phosphorylation
(Kagale and Rozwadowski, 2010).

Post-translational modifications are essential regulatory
mechanisms in plants that respond to extracellular signaling
molecules and environmental changes, resulting in rapid
changes in protein status and transcriptional activity
(Whitmarsh and Davis, 2000). In apple, MdERF17 interacts with
and is phosphorylated by MAP KINASE4 (MdMPK4-14G).
MdERF17 mutants with different numbers of serine repeats
display diverse phosphorylation profiles. Phosphorylation
of MdERF17 by MdMPK4-14G is necessary to regulate
peel Chl degradation (Wang et al., 2022). Moreover, BTB
AND TAZ DOMAIN PROTEIN MdBT2, with ubiquitinase
activity, accelerates MdERF38 protein degradation and reduces
MdERF38-promoted anthocyanin biosynthesis in apple
coloration (An et al., 2020).

APETALA2/ethylene responsive
factor in plant hormone signaling

A complex network of hormonal crosstalk coordinates fruit
ripening. Early research on ripening-related hormones focused
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on ethylene, especially in climacteric fruits. Ethylene treatment
promotes a climacteric rise in banana, and upregulation of
MaERF9 and downregulation of MaERF11 are thought to
contribute to fruit-ripening regulation (Xiao et al., 2013). In
fig (Ficus carica L.), exogenous ethephon treatment results
in accelerated fruit ripening; downregulation of the high
expression of AP2/ERFs was found in ethephon-treated fruit 2
and 4 days after the treatment except for two genes, and the
ethephon-induced AP2/ERF repression generally ended 6 days
after the application (Cui et al., 2021).

AP2/ERFs are not only regulated by ethylene; they also
regulate ethylene synthesis (Table 2). In pear, ERF24 binds
directly to the promoter of ACO54 and activates its expression,
while overexpression of ACO54 also increases the expression
of ERF24 (Hao et al., 2018). In apple, MdERF2 binds
to the promoter of MdERF3 and represses its expression,
thereby reducing MdERF3-promoted transcription of MdACS1.
Moreover, MdERF2 binds directly to the promoter of MdACS1
and represses its transcription, resulting in inhibition of
ethylene biosynthesis (Li et al., 2016). MdMYB1 can promote
the expression of MdERF3, revealing a synergistic regulation
mechanism (An et al., 2018). In banana, MaERF11 binds to
the promoters of MaACS1 and MaACO1 and represses their
expression, whereas MaERF9 activates MaACO1 transcription
(Xiao et al., 2013). In peach, ethylene-induced PpERF.A16
enhances ethylene biosynthesis by directly activating the
expression of PpACS1 and PpACO1. At the same time,
PpERF.A16 is transcriptionally regulated by PpNAC.A59
(Guo et al., 2021).

Several ERFs regulate ethylene synthesis and fruit ripening
in tomato. SlERF6 silencing by RNAi increases ethylene
levels and carotenoid content during fruit ripening (Lee
et al., 2012). APETALA2a (AP2a) negatively regulates fruit
ripening. RNAi repression of SlAP2a results in overproduction
of ethylene and altered carotenoid accumulation (Chung
et al., 2010). Overexpression of SlERF.B3-SRDX (a chimeric
dominant repressor version) shows contrasting effects on
fruit ripening, resulting in delayed ripening onset, enhanced
ethylene production and fruit softening, and reduced carotenoid
biosynthesis. Consistent with the phenotypes, the expression
of ripening-related genes is highly induced, such as ethylene-
synthesis genes ACS2, ACS4 and ACO1, softening gene PG2A,
developmental regulators RIN, NOR and CNR, and a set of ERF
genes (Liu et al., 2013, 2014).

The regulatory role of ethylene in fruit ripening is affected
by the signaling network formed by interactions with other
hormones and transcription factors (Kou et al., 2021), the latter
serving as correlated connectors for the crosstalk (Li et al.,
2022). In tomato, the ethylene-responsive factor SlPti4 regulates
fruit ripening by affecting ABA metabolism and signaling,
and silencing SlPti4 results in increased ABA accumulation
and decreased ethylene release (Sun et al., 2018). In peach,
PpeERF2 binds to and represses the transcription of two
ABA-biosynthesis genes, PpeNCED2/3 (Wang et al., 2019a). In
contrast, PpERF3 transactivates PpNCED2/3, thereby increasing
ABA biosynthesis (Wang et al., 2019b).

Crosstalk between auxin and ethylene is necessary
for fruit development and ripening. Downregulation of

TABLE 2 AP2/ERF regulation of hormone signaling.

Species Gene name Target genes Interacting
cis-element

Function References

Apple (Malus× domestica) MdERF2, MdERF3 MdERF3, MdACS1,
MdACS3a

DRE/CRT motif Activator and
repressor

Li et al., 2016; Yue
et al., 2020

Banana (Musa acuminata) MaERF9, MaERF11 MaACS1, MaACO1 Not mentioned Activator and
repressor

Xiao et al., 2013

Peach (Prunus persica) PpERF.A16 PpACS1, PpACO1 GCCGCC, GGCGTC Activator Guo et al., 2021

Pear (Pyrus spp.) ERF24 ACO54 Not mentioned Activator Hao et al., 2018

Persimmon (Diospyros kaki) DkERF18 DkACS2 DRE/CRT motif Activator He et al., 2020

Banana (Musa acuminata) MaERF11 MaACO1 GCC box Repressor Han et al., 2016

Tomato (Solanum lycopersicum) SlERF.F12 SlACS2, SlACS4 GCC box, DRE/CRT
motif

Repressor Deng et al., 2022

Peach (Prunus persica) PpERF3 PpNCED2/3 DRE/CRT motif Activator Wang et al., 2019b

Peach (Prunus persica) PpeERF2 PpeNCED2,
PpeNCED3

DRE/CRT motif Repressor Wang et al., 2019a

Peach (Prunus persica) PpERF4 PpIAA1, PpACO1,
PpNCED2,
PpNCED3

GCC box, DRE/CRT
motif

Activator Wang et al., 2021

Pear (Pyrus ussuriensis) PuERF2 PuGH3.1 DRE/CRT motif Activator Yue et al., 2019

Tomato (Solanum lycopersicum) SlERF.B3 SlIAA27, SlETR6,
SlERF.C3, SlERF.D2,
SlERF.F5, SlERF.F4

GCC box, DRE/CRT
motif

Activator Liu et al., 2013, 2018
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AUXIN-RESPONSIVE FACTOR 2 (ARF2) in tomato, a
downstream factor in auxin signaling, results in ripening defects,
reduced climacteric ethylene synthesis and delayed ripening.
SlARF2-RNAi lines showed significant downregulation of
ethylene receptor genes ETR3 and ETR4, and 12 and 5
AP2/ERFs were found downregulated and upregulated,
respectively, in the tomato fruit (Hao et al., 2015). In apple,
4 mM auxin naphthaleneacetic acid treatment before the
commercial harvest stage induced ethylene synthesis and fruit
ripening; MdARF5 activated the transcription of MdERF2,
two MdACSs and MdACO1 by directly binding to their
promoters (Yue et al., 2020). Ethephon treatment reduced
free indole acetic acid (IAA) content in pear; during this
process, PuERF2 activated the transcription of GRETCHEN
HAGEN 3 (PuGH3.1), and PuGH3.1 conjugated free IAA to
inactive IAA-amide (Yue et al., 2019). In tomato, SlERF.B3
integrates ethylene and auxin signaling by directly binding to
the promoter of SlIAA27; ectopic expression of SlERF.B3 results
in phenotypes similar to those of SlIAA27-downregulated lines,
such as elongated primary root and remarkably increased lateral
root formation (Liu et al., 2018). A positive feedback loop of
ripening regulation was revealed in peach: PpIAA1, which
can be upregulated by both ethylene and auxin, promoted the
expression of PpACS1 and PpNCED2/3. PpERF4 activated the
transcription of PpIAA1 and physically interacted with PpIAA1
protein, thereby enhancing the latter’s transcription-activation
ability (Wang et al., 2021).

Although most studies on jasmonate (JA) have focused
on responses to biotic and abiotic stresses, recent studies
have revealed its involvement in fruit-ripening regulation.
In apple, the transcription factor MYELOCYTOMATOSIS-
RELATED PROTEINS 2 (MdMYC2), involved in JA signaling,
binds directly to the promoters of MdERF3, MdACS1, and
MdACO1 and activates their expression. MdMYC2 also
physically interacts with MdERF2, thereby reducing the latter’s
transcriptional repression of MdERF3 and MdACS1, and
increasing ethylene production (Li T. et al., 2017). MdERF4
physically interacts with JASMONATE ZIM-DOMAIN (JAZ) to
form a repressor complex that acts as a molecular link between
ethylene and JA signaling (Hu et al., 2022b).

Regulation of APETALA2/ethylene
responsive factor expression by
epigenetic mechanisms

Epigenetic modifications affect mainly DNA methylation,
as well as the methylation, acetylation, phosphorylation,
and ubiquitination status of histones (Giovannoni et al.,
2017). Examination of the role of DNA methylation during
ripening in several fruit crops has revealed the occurrence of
global epigenome reprogramming. For example, 5-azacytidine,

a general inhibitor of DNA (cytosine-5) methyltransferase,
promotes early ripening of immature tomatoes. Using whole-
genome bisulfite sequencing, 52,095 differentially methylated
regions (DMRs) were identified, representing 1% of the genome.
During tomato fruit ripening, DNA methylation levels at the
5′ end of genes generally declined across the genome. The
demethylation events promoted binding of a master ripening-
related regulator, RIN, to promoters of a series of ripening genes,
including several AP2/ERFs (Zhong et al., 2013).

Overall loss of DNA methylation was also found
during strawberry ripening. A total of 2766 DMRs were
identified, of which 466 were hypermethylated and 2,300 were
hypomethylated (Cheng et al., 2018). In contrast, a global
increase in DNA methylation was found during orange fruit
ripening, which led to the repression or activation of hundreds
of genes. The application of DNA-methylation inhibitor
interfered with orange fruit ripening, indicating that DNA
hypermethylation is essential for proper ripening (Huang et al.,
2019). Increased methylation activity during fruit ripening has
also been found in apple (El-Sharkawy et al., 2015).

The activator PpERF61 promotes volatile linalool synthesis
in peach fruit by directly binding to DRE/CRT elements
on the promoters of PpTPS1/3. Ripening-induced expression
of PpERF61 was associated with DNA demethylation of
its promoter (Wei et al., 2022). AP2/ERFs are sensitive to
methylation at their binding sites (O’Malley et al., 2016) but
overall, the role of DNA methylation in AP2/ERF regulation
remains poorly understood. Considering the prevalence of
changes in DNA methylation during fruit ripening and the
extensive regulation by AP2/ERF of ripening genes, it is
reasonable to assume that DNA methylation plays a vital
role in the AP2/ERF regulation mechanism, but further
study is required.

Post-translational modifications of histones, including
methylation, acetylation, phosphorylation and ubiquitination,
regulate gene expression by affecting chromatin conformation.
Increasing evidence suggests that histone modifications play
an important role in fruit-ripening regulation (Li et al.,
2022). Studies of several fruit crops have found that histone
modifiers are preferentially or specifically expressed in fruit and
perform phasic differences, suggesting that they are involved
in the regulation of fruit development (Aiese Cigliano et al.,
2013; Xu et al., 2015; Gallusci et al., 2016). The acetylation
status of histones has been best studied. This is a reversible
mark regulated by histone acetyltransferases and histone
deacetylases, usually related to genes’ transcriptional activity
(Shen et al., 2015).

In tomato fruit, inhibition of SlHDA3 or SlHDA1 expression
causes significant upregulation of several ethylene-biosynthesis
genes and cell wall-modification genes, resulting in accelerated
ripening and reduced storability (Guo et al., 2017b, 2018).
However, inhibition of SlHDT3, which belongs to the
HD2 family of histone deacetylases, has the opposite effect
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(Guo et al., 2017a). Recent studies have found that histone
modifiers, such as histone deacetylases, are recruited by
AP2/ERFs in fruit-ripening regulation. In apple, MdHDA19
is recruited to the MdERF4–MdTPL4 complex and inhibits
fruit ripening by reducing the expression of MdACSa (Hu
et al., 2022a). In tomato, the SlERF.F12–TPL2–HDA1/HDA3
protein complex represses the expression of ripening-related
genes, including ACS2, ACS4, PG2a, and PL. These examples
of transcriptional repression rely on reduced levels of histone
acetylation marks H3K9Ac and H3K27Ac in the promoter
regions of the target genes (Deng et al., 2022). In banana,
MaERF11 recruits MaHDA1 to repress the expression of
ethylene-biosynthesis and cell wall-degradation genes (Han
et al., 2016). As already noted, histone deacetylases play
an essential role in the EAR motif-mediated mechanism of
transcriptional repression.

MicroRNAs (miRNAs) are an important class of
endogenous small RNAs in plants; they target mRNA
through complementary base pairing and induce gene
silencing by inhibiting translation or initiating mRNA
degradation. The miRNAs are essential regulators, at the
post-transcriptional level, of various biological processes in
plants, such as development and stress responses (He et al.,
2022). Mature miRNAs are usually 20–24 nucleotides in length,

and differences in length lead to distinct functions (Manavella
et al., 2012). MiR172–AP2 is a conserved miRNA-target
module in plants. A previous study in Arabidopsis found
that miR172 specifically targets the mRNA of AP2 (Chen,
2004). There is increasing evidence that this module plays a
crucial role in fruit ripening. In tomato, miR172 specifically
targets SlAP2a. Overexpression of miR172 represses SlAP2a
expression, resulting in enhanced ethylene biosynthesis
and coloration (Chung et al., 2020). In apple, MdAP2_1a,
targeted by miR172, transactivates MdMYB10 and positively
regulates anthocyanin biosynthesis. Overexpression of miR172
represses the expression of MdAP2_1a, thereby inhibiting
anthocyanin accumulation (Ding et al., 2022). A study
on an apple breeding population revealed a transposon
insertional allele of miR172 with reduced miR172 expression
which was associated with large fruit. Overexpression of
miR172 negatively affected fruit development and fruit size
(Yao et al., 2015). Moreover, in Arabidopsis, AP2 positively
regulated miR156 but negatively regulated miR172, and both
miRNAs influenced AP2 expression, indicating that AP2
and miRNAs have complex direct feedback loops in plants
(Yant et al., 2010).

Plant genomes encode a considerable number of long non-
coding RNAs (lncRNAs)—usually over 200 nucleotides in length

FIGURE 2

The AP2/ERF superfamily acts as a critical regulator in fruit ripening. Target genes are in rectangles. Protein–protein interactions or
co-regulators are in ovals. Red arrows represent expression regulation by AP2/ERF.
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with no discernable coding potential—which play an important
role in essential biological processes (Chekanova, 2015). The
lncRNAs affect all elements of genes, such as promoters,
untranslated regions, exons, introns, and terminators, and
control gene expression at the levels of chromatin accessibility,
transcription, splicing, and translation (Wierzbicki et al.,
2021). In apple, the lncRNA MdLNC499, located near
MdERF109, was identified as a cis-regulator of MdERF109
expression by Promoter:β-glucuronidase reporter analysis and
Hi-C sequencing. Promoter cis-element analysis found the
presence of a W-box element in MdLNC499 promoter, which
is regulated by MdWRKY1. The MdWRKY1–MdLNC499–
MdERF109 transcriptional cascade was reconstructed in
apple fruit and callus by transient expression and stable
transformation. MdERF109 promotes coloration by directly
binding to anthocyanin-related gene promoters, including
MdCHS, MdUFGT, and BASIC HELIX–LOOP–HELIX 3
(MdbHLH3) (Ma et al., 2021).

Conclusion and perspective

The AP2/ERF superfamily is a large class of transcription
factors in plants that exhibit coordinated changes in expression
during fruit ripening. AP2/ERFs play critical regulatory roles
in intrinsic and extrinsic quality development during fruit
ripening (Figure 2). However, our understanding of the
molecular mechanisms of AP2/ERF is still limited, especially
with respect to the identification of co-regulators, and the
influence of post-translational and epigenetic modifications.
With the application of modern molecular biology and
high-throughput sequencing technology, such as chromatin
immunoprecipitation, DNA affinity purification sequencing,
immunoprecipitation coupled with mass spectrometry analysis,
next-generation sequencing, genome-wide association studies,
the new gene-editing system CRISPR/Cas9, and so on, future
dissection and exploration of the AP2/ERF regulatory network
will broaden our understanding of quality formation during
fruit ripening. In the 1990s, great effort was made to improve

tomato storability by deciphering key genes in ethylene
synthesis. Today, functional analyses of many ripening-related
AP2/ERFs has allowed us to regulate the formation and
maintenance of specific quality traits more precisely, while
avoiding the interference of other, unexpected quality traits.
In the future, altering the function and expression of specific
AP2/ERF family members through synthetic biology techniques
will provide new approaches to improving internal and external
fruit quality and storability.
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