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Chaenomelis Fructus is a widely used traditional Chinese medicine with a 

long history in China. The total content of oleanolic acid (OA) and ursolic acid 

(UA) is taken as an important quality marker of Chaenomelis Fructus. In this 

study, quantitative models for the prediction total content of OA and UA in 

Chaenomelis Fructus were explored based on near-infrared spectroscopy 

(NIRS). The content of OA and UA in each sample was determined using 

high-performance liquid chromatography (HPLC), and the data was used 

as a reference. In the partial least squares (PLS) model, both leave one out 

cross validation (LOOCV) of the calibration set and external validation of the 

validation set were used to screen spectrum preprocessing methods, and 

finally the multiplicative scatter correction (MSC) was chosen as the optimal 

pretreatment method. The modeling spectrum bands and ranks were optimized 

using PLS regression, and the characteristic spectrum range was determined 

as 7,500–4,250 cm−1, with 14 optimal ranks. In the back propagation artificial 

neural network (BP-ANN) model, the scoring data of 14 ranks obtained from 

PLS regression analysis were taken as input variables, and the total content 

of OA and UA reference values were taken as output values. The number of 

hidden layer nodes of BP-ANN was screened by full-cross validation (Full-CV) 

of the calibration set and external validation of the validation set. The result 

shows that both PLS model and PLS-BP-ANN model have strong prediction 

ability. In order to evaluate and compare the performance and prediction 

ability of models, the total content of OA and UA in each sample of the test 

set were detected under the same HPLC conditions, the NIRS data of the test 

set were input, respectively, to the optimized PLS model and PLS-BP-ANN 

model. By comparing the root-mean-square error (RMSEP) and determination 

coefficient (R2) of the test set and ratio of performance to deviation (RPD), the 

PLS-BP-ANN model was found to have better performance with RMSEP of 

0.59 mg·g−1, R2 of 95.10%, RPD of 4.53 and bias of 0.0387 mg·g−1. The results 

indicated that NIRS can be used for the rapid quality control of Chaenomelis 

Fructus.
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Introduction

Chaenomelis Fructus, the dried fruit of Chaenomeles speciosa 
(Sweet) Nakai (Rosaceae), has high application value of food 
nutrition and medical health care (Hamauzu et al., 2005). The 
main chemical compositions of Chaenomelis Fructus include 
flavonoids, triterpenes, phenylpropanoids, organic acids, and 
tannins (Du et al., 2013; Lyu et al., 2021). According to Chinese 
Pharmacopoeia 2020 (ChP 2020), the total content of oleanolic 
acid (OA, C30H48O3) and ursolic acid (UA, C30H48O3) in 
Chaenomelis Fructus determined by high-performance liquid 
chromatography (HPLC) shall be no less than 0.50% (5 mg·g−1; 
Chinese Pharmacopoeia Commission, 2020). HPLC is a mature 
method widely used in Chinese herb content detection but 
requires cumbersome pretreatment and large amounts of reagents, 
it is time-consuming, and produces chemical waste (Lu et al., 
2022). Therefore, it is vital to develop a rapid, nondestructive, 
inexpensive, and effective analytical method for the determination 
of the total content of OA and UA in Chaenomelis Fructus.

Near-infrared spectroscopy (NIRS) is based on the 
absorption of organic molecules in the spectral region of 
780–2,500 nm. This absorption consists largely of combinations 
and overtones of C-H, O-H, and N-H fundamental frequencies 
(Zhang et al., 2017). Thus, NIR spectra can reflect the abundant 
chemical molecular structure information of Chinese herb 
medicines. At present, NIRS has attracted much attention 
because of its advantages of fast detection speed, environmental 
protection, and nondestructive analysis. It can directly analyze 
solid or powder samples without extraction or purification 
(Zhang et al., 2019). With the advent of some portable near-
infrared spectrometers, NIRS combined with nondestructive 
acquisition methods like optic fiber probes can realize on-site, 
real-time, and online measurements in industrial production 
(Yang et al., 2022). Based on the above advantages, NIRS has 
been widely used in agriculture, food, medicine, and other 
research fields (Xue et  al., 2011; Silalahi et  al., 2016; Kang 
et al., 2019).

Due to the nature of NIR (overtones and combination bands 
of vibrational energy levels), it is difficult to directly obtain 
relevant and useful information from the raw NIR spectra 
(Luypaert et al., 2007; Zhang et al., 2022). Thus, chemometrics 
methods are required to mine the information of NIR spectra 
to extract relevant information and reduce irrelevant 
information, and establish correction models for qualitative or 
quantitative analysis (Chen et al., 2019). Partial least squares 
(PLS) regression is a commonly used quantitative modeling 

algorithm, which integrates the advantages of principal 
component analysis, canonical correlation analysis, and 
multiple linear regression analysis (Chang et al., 2020). It has 
the advantages of simple modeling, stable performance, and 
mature application (Bázár et al., 2016). Artificial neural network 
(ANN) is a popular intelligent chemometric method. It has 
many abilities including self-learning, self-organizing, strongly 
fault-tolerating and adapting high non-linear computing (Wang 
et  al., 2007). Back propagation artificial neural network 
(BP-ANN), the most widely used neural network, is a type of 
multilayer feedforward neural network trained according to the 
error back propagation algorithm. It has been applied in various 
fields combined with NIRS (Liu et al., 2013; Zhang et al., 2017; 
Bin et al., 2021).

In this study, a rapid quantitative model of the total content 
of OA and UA in Chaenomelis Fructus was established using 
NIRS based on the PLS and BP-ANN algorithms, which was 
expected to provide a rapid and nondestructive technical 
reference for quality control and market management of 
Chaenomelis Fructus.

Materials and methods

Instruments and software

The content of OA and UA was determined with the HPLC 
system DIONEX Ultra 3000 and analytical laboratory 
DIONEX CHROMELEON (Thermo Fisher, America). A 
Thermo Hypersil BDS C18 (5 μm, 4.6 mm × 250 mm) column 
was applied. NIR spectra were collected with an MPA FT-NIR 
spectrometer (Bruker Optics Co., Ltd., Germany) equipped 
with an Integrating Sphere Module and InGaAs detector, and 
a tungsten halogen lamp as the light source. The spectra were 
analyzed using the OPUS 7.5 spectrum analysis software 
(Bruker), MATLAB R2014a data analysis software (Math-
Works, Inc., United States).

Samples and reagents

A total of 122 batches of samples were collected from Hubei, 
Anhui, Chongqing province in China. All samples were identified 
by Professor Keli Chen (College of pharmacy, Hubei University of 
Chinese Medicine). Each sample was smashed into powder and 
passed through a 60-mesh sieve. In order to reduce the effect of 
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water content, all samples were dried at 60°C for 24 h. A total of 
90 batches of samples (No. 1~90) were randomly selected for the 
establishment and validation of quantitative model. The remaining 
32 batches of samples were used as test set (No. 90~122) to 
evaluate the model performance and prediction ability.

Standards of oleanolic acid and ursolic acid (Batch No. 
110709-201206 and 110742-201421, respectively; purity > 98% for 
both) were provided by the National Institutes for Food and Drug 
Control (Beijing, China). Methanol of HPLC grade and pure water 
were purchased from TEDIA (United States) and WAHAHA 
(Hangzhou, China). All other solvents and reagents were of 
analytical grade unless otherwise noted.

Spectra acquisition

NIR spectra were collected with an integrating sphere diffuse 
reflection module using the MPA FT-NIR spectrometer equipped 
with an InGaAs detector, and a tungsten halogen lamp as the light 
source. OPUS 7.5 spectrum analysis software was used in NIRS 
data acquisition. The spectral data were recorded as the average of 
64 scans in the spectral range of 12,500–4,000 cm−1 with 0.2 ms per 
scan, and the spectra were collected at a spectral resolution of 
8 cm−1, with air absorbance as the reference standard at room 
temperature (25°C). The spectra of each sample were recorded in 
triplicate and the average spectrum was used for subsequent 
analysis. The scanning time of each sample was approximately 
38 s. The spectra diagram is shown in Figure 1. It can be seen that 
the main characteristic peaks are distributed in 9,000–4,000 cm−1, 
so this spectral range is selected as the initial spectral range 
for modeling.

Content determination

The content measurement of OA and UA was conducted by 
HPLC according to ChP  2020 (Chinese Pharmacopoeia 
Commission, 2020). A quantity of 0.5 g of the sample powder was 
precisely weighed and extracted in ultrasonic bath with 25 ml of 
methanol for 20 min. After cooling, the mixture was weighed 
again, and the lost weight was made up of methanol. The extracted 
solution was filtered, and the filtrate was used for HPLC analysis. 
Each sample was repeated twice in parallel according to the above 
operation, and each extract was injected three times. The average 
value was taken as the actual content of the samples. Appropriate 
amounts of oleanolic acid and ursolic acid were precisely weighed, 
and then methanol was added. The standard solution was prepared 
to contain 0.1 mg of oleanolic acid and 0.1 mg of ursolic acid in 
each 1 ml of the solution.

HPLC conditions were as follows: injection volume, 20 μl; 
column, Thermo Hypersil BDS C18 (250 mm × 4.6 mm, 5 μm); 
mobile phase, methanol/water/acetic acid/triethy lamine 
(265:35:0.1:0.05); determination wavelength, 210 nm; flow rate, 
1 ml/min; column temperature, 18°C.

Spectral pretreatment method

Usually, the raw spectrum includes a lot of irrelevant 
information or noise, which would lead to baseline drift and 
instability. Therefore, it is very necessary to conduct suitable 
spectrum pretreatment to eliminate the systematic errors that 
could be  caused by various factors and help increase model 
performance. In this study, methods such as Savitzky–Golay 
smoothing (SG), vector normalization (VN), first derivative 
(FD), second derivative (SD), multiple scattering correction 
(MSC) and combined pretreatment methods were employed by 
OPUS to optimize model performance. The Savitzky–Golay 
smoothing is an averaging algorithm that fits a polynomial 
equation to the data points. It can improve the smoothness of 
the spectra and reduce the interference of noise (Chen et al., 
2012). The VN is used to normalize a spectrum by an initial 
calculation of the average intensity value and subsequent 
subtraction of this value from the spectrum. Then, the addition 
of the squared intensities is calculated, and the spectrum is 
divided by the square root of this addition. The MSC performs 
a linear transformation of each spectrum for it to best match the 
mean spectrum of the whole set. It mainly eliminates the 
scattering effect caused by uneven sample size and particle size 
(Lu et  al., 2022). First and second derivatives are used to 
emphasize pronounced but small features over a broad 
background. It can effectively eliminate baseline and other 
background interference (Galvez et al., 2013).

PLS method

The spectral data processed using different pretreatment 
methods was associated with the content obtained by HPLC 
(reference value) and the PLS model was established using the 
QUANT-2 module of OPUS. In order to improve model 
prediction capacity and robustness, it is often necessary to screen 
the NIRS characteristic spectrum and eliminate the interferential 
variables (Lei et  al., 2017). In this study, a common method 
termed synergy interval partial least squares (SiPLS) is used to 
screen the characteristic spectral bands. The spectra are split into 
a variety of intervals, the combinations of which are used to 
develop PLS models. By comparing the performance of the 
regression model established by each interval or interval 
combination, the optimal spectrum range can be screened out 
(Kang et al., 2015).

The PLS models were validated and evaluated using the 
internal cross-validation and external validation method. During 
the process of modeling, the calibration set was used for internal 
cross-validation to validate model performance. The internal 
cross-validation adopted leave-one-out cross validation 
(LOOCV), and the root mean square error of internal cross-
validation (RMSECV) and coefficient of determination (R2) were 
taken to guide the model optimization process. The validation set 
was used for external validation to evaluate the model, with the 
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root mean square error of prediction (RMSEP), R2, and residual 
predictive deviation (RPD) taken as indexes to evaluate prediction 
ability. Generally, the smaller the RMSECV and the larger the R2 
are, the better the model performance would be; the smaller the 
RMSEP and the greater the R2 and RPD are, the stronger the 
model prediction ability is (Magalhaes et al., 2016). RPD was the 
ratio of SD of the calibration set to RMSEP. The higher the RPD 
value, the better the prediction performance of the model. In 
addition, the optimal rank is also one of main evaluation indexes 
for the PLS model. An insufficient lower rank will lead to failure 
in explaining the change of spectrum component concentration 
and under-fitting of the model. However, excessive rank will lead 
to decreased model specificity upon component and over-fitting 
of the model (Zhou et al., 2014). Therefore, rank was screened in 
the meantime of spectrum screening. The optimal rank value can 
be  obtained when the values of RMSECV and RMSEP are 
the lowest.

BP-ANN method

Artificial neural networks are systems simulating the human 
brain for processing information like new data and knowledge. A 
complex network connected by a large number of simple 
processing units is used to simulate the structure and functions of 
human brain neural networks to process information. They have 
been widely used in various fields with self-organization, self-
learning, robustness, fault tolerance, and non-linear information 
processing function (Watanabe et al., 2014). The most commonly 
used BP-ANN is a multilayer feed-forward neural network 
containing input, hidden and output layers, featuring the forward 
propagation of signals and backward propagation of errors with 
strong non-linear modeling ability, which is suitable for solving 
complex mapping problems (Khan, 2015).

It is difficult to build ANN models using NIRS data directly 
due to the large amount of spectra data, high data dimensionality, 

FIGURE 1

NIR spectra of samples.
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multicollinearity and noise among the data, all of which lead to 
poor model stability (Sun et al., 2017). Therefore, dimensionality 
reduction is needed. The PLS dimensionality reduction method 
was combined with BP-ANN modeling algorithm to construct a 
PLS-BP-ANN model by using the principal factor data obtained 
from optimizing the optimal PLS model as the input variables, and 
the total content determined by HPLC as the output variables of 
BP-ANN for better model performance. Through internal cross-
validation and external validation, the predictive ability of model 
is evaluated. In terms of the internal cross-validation, root mean 
square error of prediction (RMSEPc) and coefficient of 
determination (R2

c) of the calibration set are taken as indexes to 
guide model optimization process. While in external validation, 
root mean square error of prediction (RMSEPv), R2

v and RPD of 
the validation set are taken as indexes to further evaluate the 
model prediction ability. In addition, to ensure that the optimized 
models are reliable, the bias between the predicted and reference 
data was also considered.

Results and discussion

Determination of OA and UA contents

The HPLC results of 90 samples for modeling are shown in 
Supplementary Table 1. The OA content was between 1.9 and 
13.4 mg·g−1, the UA content was between 0.2 and 5.0 mg·g−1, the 
total content of OA and UA was between 4.2 and 15.3 mg·g−1. The 
samples are representative with a broad content range. 7 samples 
with the total content of OA and UA below 5 mg·g−1 is unqualified, 
accounting for 7.8% of all samples. A total of 90 samples were 
randomly divided into calibration set and prediction set in a 
proportion of 2:1. The variation range, mean, standard deviation 
(SD) and coefficient of variation (CV) of measured values are 
shown in Table 1.

NIR spectral characteristics

NIR characteristic peaks of samples are shown in Figure 1. In 
the figure, the chemical bonds or groups of OA and UA are 
matched with their possible characteristic absorption peaks. The 
peak 5,177 cm−1 is induced by the C=O stretch of carboxylic acid 
and around 7,230 cm−1 and 5,784 cm−1 can be attributed to the 
combination absorbance of C-H antisymmetric stretching and 

C-H bending in -CH3. Among other characteristic absorbance 
peaks are the combination of O-H (4,712 cm−1) and C-H (4,400, 
4,329, and 4,260 cm−1). These results were consistent with other 
researches (Ma et al., 2019). However, these signals can be caused 
by ingredients like flavonoids, organic acids, and some other 
compounds in Chaenomelis Fructus, too. The absorption bands 
can be attributed to the contributions of multicomponents and the 
shifts and distortions that result from their interactions. Therefore, 
the spectral pretreatment and chemometric methods are required 
to highlight and extract the useful information that is mainly 
correlated with OA and UA.

Development of the PLS model

Selection of modeling target
The initial modeling spectra of samples were matched with the 

OA, UA content and the total of both, respectively, to build PLS 
models. The model validation results are shown in Table 2. The 
performance and predictive ability of the NIRS quantitative model 
of OA (M1) and UA (M2) were poor, while that of the model of 
the total content (M3) were better. It might be  unsuitable to 
consider OA or UA as one single component in modeling since 
both are pentacyclic triterpenoids with similar chemical 
structures, their NIRS characteristics interfering with each other. 
Moreover, the total content of them have been used as a quality 
control marker of Chaenomelis Fructus, as documented in 
ChP 2020. Therefore, the total content of OA and UA was selected 
as modeling target. Subsequent models and optimizations were 
developed for the total content of OA and UA.

Optimization of pretreatment
Different pretreatment methods include SG, MSC, FD, SD and 

combined pretreatment methods were compared to investigate the 
influences on the performance of PLS model. The optimization 
results are shown in Table 3. Model M7 has a good modeling effect 
and the strongest prediction capacity. Thus, MSC was finally 
selected as the optimal pretreatment method.

Selection of NIR characteristic spectral bands
The SET function in the QUANT-2 module of OPUS 7.5 

software was used for the automatic division of the MSC-treated 
9,000–4,000 cm−1 spectrum into five characteristic intervals 
(shown in Figure 2A). The combinatorial screening of the intervals 
determined the optimal modeling spectrum of 7,500–4,250 cm−1. 

TABLE 1 Statistic results of the calibration set and validation set.

Set Samples OA (mg·g−1) UA (mg·g−1) Total content of OA and UA 
(mg·g−1)

Range Mean SD CV Range Mean SD CV Range Mean SD CV

Calibration set 60 1.9–13.4 7.7 2.6 0.34 0.2–5 1.5 1 0.67 4.2–15.3 9.2 2.6 0.28

Validation set 30 2.1–13.2 7.8 2.6 0.33 0.3–3.2 1.5 0.9 0.60 4.4–14.5 9.3 2.7 0.29
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The correlation between the RMSECV, RMSEP values and the 
number of principal factors of the PLS model are shown in 
Figure 2B. The optimal rank was determined as 14 and then the 
optimal PLS model (M10) was established.

The internal cross-validation and external validation results of 
model M10 are shown in Figure 3. The modeling effect of model 
M10 was improved than model M7 with RMSECV of 0.87 mg·g−1 
and R2 of 88.65% in internal cross-validation and RMSEP of 
0.61 mg·g−1, R2 of 94.55%, RPD of 4.28 and bias of 0.0164 mg·g−1 
in external validation.

PLS-BP-ANN model

In the PLS modeling process, NIRS data was optimized and 
a strong linear correlation between the 14 principal factors 
extracted from the optimal PLS model and the content data of 
Chaenomelis Fructus was demonstrated. Therefore, the score 
data of the 14 principal factors was used as the input variables 
of the ANN model, the total OA and UA content determined by 
HPLC as the output variables, and a 3-layer BP-ANN established 
by the nntool toolbox of MATLAB software. The transfer 
functions from the input layer to the hidden layer and from the 
hidden layer to the output layer were set to be  logarithmic 
S-type (logsig) function and linear (purelin) function. The 
learning function was the BP learning rules (learngd) and 
training function quantified conjugate gradient method 
(trainscg). The number of network training steps was set to 
1,000; the goal error of the network was set to 0.001; the training 
speed of the network was set to 0.1.

The hidden layer is the layer between the input layer and 
output layer. In the structure of BP-ANN, the number of nodes in 
the hidden layer affects the calculation results of the model to a 
great extent. It is necessary to choose the best number of hidden 
nodes. Six ANN models were built with different numbers of 
neurons set in the hidden layer, 2, 3, 4, 6, 8, and 10. Models were 
evaluated by internal cross validation and external validation. The 
optimization results are shown in Figure 4. Figure 4A shows that 
RMSEPv was significantly greater than RMSEPc and the model was 
over-fitted with poor predictive ability when the number of 
neurons was above 3; RMSEPc and RMSEPv were very close and 
smaller with better modeling performance when the number of 
neurons was 2 or 3. For model simplification, the optimal number 
of neurons in the hidden layer was determined as 2 with the 
optimal PLS-BP-ANN model obtained by training. Figure  4B 
shows the prediction results of internal across validation and 
external validation of the optimal model (M11). The model was 
excellent with RMSEPc of 0.58 mg·g−1 and Rc

2 of 95.06% in internal 
cross validation and RMSEPv of 0.58 mg·g−1, Rv

2 of 95.29%, RPD 
of 4.66, and bias of −0.0624 mg·g−1 in external validation.

Comparison and evaluation of models

The optimal PLS model (M10) in this paper was built through 
screening spectral pretreatment methods, characteristic spectrum, 
and the number of principal factors. On this basis, the score data 
of the first 14 principal factors was extracted as the input variables 
of BP-ANN with the number of neurons in the hidden layer set to 
2 and the optimal PLS-BP-ANN model (M11) obtained by 

TABLE 2 Modeling results based on different compound.

Model number Compound LOOCV External validation Rank

RMSECV 
(mg·g−1)

R2 (%) RMSEP 
(mg·g−1)

R2 (%) RPD

M1 OA 1.76 52.00 1.3 72.89 1.97 20

M2 UA 0.92 6.34 0.81 14.05 1.09 6

M3 OA+UA 1.14 80.50 0.73 92.17 3.58 18

TABLE 3 Optimization results of spectra pretreatment in calibration models.

Model number Pretreatment LOOCV External validation Rank

RMSECV 
(mg·g−1)

R2 (%) RMSEP 
(mg·g−1)

R2 (%) RPD

M4 VN 1.02 84.46 0.71 92.74 3.72 20

M5 FD+SG (17 points) 1.00 85.13 0.84 89.66 3.11 15

M6 SD+SG (17 points) 1.26 76.23 1.03 84.50 2.54 18

M7 MSC 1.02 84.6 0.66 93.67 3.98 19

M8 FD+VN+SG (17 points) 0.99 85.34 0.76 91.60 3.46 14

M9 FD+MSC+SG (17 points) 1.07 82.85 0.71 92.56 3.67 12
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training. Compared to M10, M11 had smaller RMSEPv, greater Rv
2 

and RPD, and significantly better validation effects with 
acceptable bias.

To further determine the predictive ability and applicability of 
M10 and M11, practical application test was conducted using 32 
batches of the test set samples that were not involved in modeling 
process. Specifically, the total OA and UA content of test set 
samples determined under the same HPLC conditions was used 
as reference value, and the NIR spectra of the test set samples were 
collected under the same conditions as modeling samples. The 
total content of OA and UA in the test set ranged from 4.4 to 
14.9 mg·g−1, with an average of 9.5 mg·g−1 and a standard deviation 
of 2.7 mg·g−1, indicating that the test set was typical and within the 
application scope of modeled samples. The total OA and UA 
content of each test set sample was predicted by M10 and M11, 
respectively. The prediction results of the test set samples are 

shown in Figure 5 and Table 4. Both model M10 and M11 had 
strong predictive ability, in which M11 was significantly better 
than M10. Both the average relative deviation (ARD) and bias of 
M11 were smaller than those of M10, which indicates that model 
M11 had higher prediction accuracy and reliability. Model M11 
was finally considered the optimal quantitative model for the total 
content of OA and UA in Chaenomelis Fructus.

The comparison between M10 and M11 indicated that the 
performance and predictive ability of the BP-ANN model were 
significantly better than that of the PLS model with the same 
spectral pretreatment, spectral waveband, and dimension 
reduction conditions. The practical application of the two 
models to the test set samples also proved that the BP-ANN 
algorithm basing on non-linear fitting has better modeling 
ability and higher prediction accuracy and precision than the 
linear regression algorithm.

A B

FIGURE 2

The characteristic interval division (A) and correlation curve between number of principal factors and RMSE in the PLS model (B).

A B

FIGURE 3

The results of model M10 for the total content of OA and UA. (A) Internal cross-validation and (B) external validation.

https://doi.org/10.3389/fpls.2022.978937
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ming et al. 10.3389/fpls.2022.978937

Frontiers in Plant Science 08 frontiersin.org

Conclusion

NIRS mainly reflects the absorption of overtone and 
combination peaks containing hydrogen bonds of C-H, O-H, 
and N-H. To reveal the relevant information embedded in the 
raw spectral data, the application of chemometric methods to 
build calibration models is the key to achieving qualitative or 
quantitative analysis. In this paper, the PLS method was first 

adopted to establish the NIRS quantitative model of the total 
content of OA and UA in Chaenomelis Fructus. The scoring 
value of 14 ranks obtained by PLS dimension reduction was 
taken as input variables of BP-ANN model, and then 
PLS-BP-ANN model was established. The model showed 
excellent performance and strong prediction capacity. This 
study indicated that NIRS combined with chemometric 
algorithms could be successfully used for rapid determination 

A B

FIGURE 4

The optimization of neurons number in hidden layer (A) and prediction results of internal across validation and external validation of model 
M11 (B).

A B

FIGURE 5

Prediction results for the total content of OA and UA of test set samples by model M10 (A) and M11 (B).

https://doi.org/10.3389/fpls.2022.978937
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ming et al. 10.3389/fpls.2022.978937

Frontiers in Plant Science 09 frontiersin.org

of the total content of OA and UA in Chaenomelis Fructus, 
which is of great help to the rapid quality evaluation and control 
of Chaenomelis Fructus. Compared to HPLC, the NIRS method 
has the advantages of simple pretreatment, fast analytical speed, 
high multisample processing capacity, no chemical wastes, 
which is more environmentally friendly. In the future, further 
studies should be carried out with the help of nondestructive 
acquisition methods like optic fiber probes to realize real-time 
and online measurements in industrial production. This 
research can be used as a reference for the rapid quality control 
of Chaenomelis Fructus and other Chinese medicinal materials 
during planting, processing and production.
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