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Plant disease evaluation is crucial to pathogen management and plant

breeding. Human field scouting has been widely used to monitor disease

progress and provide qualitative and quantitative evaluation, which is costly,

laborious, subjective, and often imprecise. To improve disease evaluation

accuracy, throughput, and objectiveness, an image-based approach with a

deep learning-based analysis pipeline was developed to calculate infection

severity of grape foliar diseases. The image-based approach used a ground

imaging system for field data acquisition, consisting of a custom stereo

camera with strobe light for consistent illumination and real time kinematic

(RTK) GPS for accurate localization. The deep learning-based pipeline used

the hierarchical multiscale attention semantic segmentation (HMASS) model

for disease infection segmentation, color filtering for grapevine canopy

segmentation, and depth and location information for e�ective region

masking. The resultant infection, canopy, and e�ective region masks were

used to calculate the severity rate of disease infections in an image sequence

collected in a given unit (e.g., grapevine panel). Fungicide trials for grape downy

mildew (DM) and powdery mildew (PM) were used as case studies to evaluate

the developed approach and pipeline. Experimental results showed that the

HMASS model achieved acceptable to good segmentation accuracy of DM

(mIoU > 0.84) and PM (mIoU > 0.74) infections in testing images, demonstrating

the model capability for symptomatic disease segmentation. With the

consistent image quality and multimodal metadata provided by the imaging

system, the color filter and overlapping region removal could accurately and

reliably segment grapevine canopies and identify repeatedly imaged regions

between consecutive image frames, leading to critical information for infection

severity calculation. Image-derived severity rates were highly correlated (r >

0.95) with human-assessed values, and had comparable statistical power in

di�erentiating fungicide treatment e�cacy in both case studies. Therefore, the
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developed approach and pipeline can be used as an e�ective and e�cient

tool to quantify the severity of foliar disease infections, enabling objective,

high-throughput disease evaluation for fungicide trial evaluation, genetic

mapping, and breeding programs.

KEYWORDS

computer vision, plant disease, downy mildew, powdery mildew, machine learning,

proximal sensing, vineyard management

1. Introduction

Disease management is critical to vineyard production.

Among all grape diseases, downy mildew (DM) and powdery

mildew (PM) cause considerable crop damages and economic

losses annually. Both DM (Plasmopara viticola) and PM

(Erysiphe necator) can infect grape leaves, canes, and clusters

at nearly all stages, impacting the vineyard for multiple

seasons (Pearson and Goheen, 1988; Thind et al., 2004). If not

treated properly, DM infection can result in severe economic

losses due to grapevine damages and vineyard replanting. PM

infection also severely degrades grape quality and subsequent

crop values, especially for the grape wine industry where

nearly all wine grape varieties (Vitis vinifera) have very limited

resistance to both diseases (Pearson and Goheen, 1988; Boso

et al., 2019). As a result, fungicides have been widely used

for grape DM and PM control (Gisi and Sierotzki, 2008),

and in some cases, the usage can be overwhelming for

potential risk assuage. Such excessive applications have been

linked to adverse influences on human health (Kang et al.,

2021), environment (Zubrod et al., 2019), and grower financial

status. For example, fungicide applications to control powdery

mildew can represent upwards of 70% of a vineyard’s annual

management expense. Additionally, intensive fungicide uses

could lead to the increase of pathogen fungicide resistance

and then disease control difficulty. Therefore, precision disease

management is urgently needed to secure the productivity,

profitability, and sustainability of the wine grape industry.

Efforts have been made to provide effective vineyard disease

management and control strategies. The most straightforward

strategy is to optimize fungicide application schedule based

on disease occurrence to be detected and/or predicted at

asymptomatic to very early stages. As disease infection and

development are highly dependent on environmental factors,

many studies have investigated the use of meteorological data to

establish disease prediction models to assist in fungicide spray

scheduling (Orlandini et al., 1993; Vercesi et al., 2000; Rossi

et al., 2008; Chen et al., 2020; Sanghavi et al., 2021). While these

models have shown some success and stakeholder adoption,

they have two primary limitations. These models are usually

site-specific and require onsite calibration to achieve reliable

prediction accuracy. Sometimes, stakeholders may have not

necessary resources (e.g., labor and instrumentation) to conduct

the calibration, and therefore cannot readily adopt the models.

More importantly, meteorological data are likely obtained at a

very coarse scale (e.g., regional level) that cannot provide spatial

details for disease evaluation in individual vineyards and/or

research projects. While there are ongoing efforts in using

other sensing technologies (e.g., optical sensing), asymptomatic

or early disease detection is still a challenging task because

diseases usually initiate from areas (e.g., lower and inner canopy)

invisible to sensors for detection (Singh et al., 2020).

Fungicide trial evaluation and breeding of disease-resistant

cultivars are alternative solutions that can provide long-term

benefits for precision disease management. Fungicide trial

evaluation aims to continuously monitor and evaluate the

efficacy of potential fungicide treatments for a given region

and crop, so that optimal treatments can be recommended to

maximize the efficiency of fungicide applications and minimize

adverse impacts such as the increase of pathogen fungicide

resistance (Warneke et al., 2020; Campbell et al., 2021). Breeding

disease resistant cultivars can provide natural protection to

crops, which would dramatically reduce the need of intensive

fungicide applications for risk assuage (Poland and Nelson,

2011; Di Gaspero et al., 2012). Both solutions require accurate

disease infection evaluation in the field (Poland and Nelson,

2011; Di Gaspero et al., 2012; Chen et al., 2020; Warneke

et al., 2020). It should be noted that the trial evaluation and

breeding programs accept symptomatic disease detection and

quantification because they focus on the difference of disease

infection severity caused by either fungicides or genotypes.

Since most grape diseases appear firstly in grapevine

canopies, foliar disease identification is a logical target to

effectively characterize grape diseases with visible symptoms,

such as grape DM and PM. Prior to leaf necrosis, DM infections

typically look as yellow to brown “oil-spot” regions on the upper

leaf surface, often with white fluffy sporulation on the lower

leaf surface. PM infections usually appear as white, powder-

like spots. Currently, human field scouting is the primary way

to evaluate grape DM and PM infection. To guide human

scouting, the Horsfall-Barratt scale has been proposed and

adopted for disease severity assessments (Horsfall and Barratt,
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1945), and the European and Mediterranean Plant Protection

Organization (EPPO) standard has been widely adapted for

fungicide efficacy evaluation (Buonassisi et al., 2017). However,

field disease scouting is not only subjective (e.g., leaf sampling

and visual inspection) but also requires skilled plant pathologists

or experienced workforce who are often in low availability with

high hiring cost. This has become a bottleneck for fungicide trial

evaluation, research projects, and breeding programs related to

disease resistance.

To overcome these issues, with the recent advances in

optical sensing (particularly imaging techniques), researchers

have developed proximal and remote sensing tools for

disease identification and quantification. An intuitive method

is to identify diseases of sampled leaves using handheld

sensing devices (e.g., fluorescent signals) rather than human,

subjective evaluation (Ghozlen et al., 2010; Lejealle et al., 2012;

Latouche et al., 2015). In this way, knowledge and experience

requirements of disease inspection can be dramatically reduced,

so that common workforce with proper instrument operation

training are able to conduct field disease scouting. However,

active leaf sampling is still needed and can considerably affect

evaluation performance. Furthermore, these handheld devices

must be operated by human operators in the field, having

limited scanning throughput and are thus not capable of

passive disease monitoring. An alternative method is to assess

diseases of whole crop canopies using autonomous sensing

systems to avoid the leaf sampling process and improve

scanning throughput. Commonly used systems include ground

robots, unmanned aircraft systems (UAVs), manned aircraft,

and satellites. While the aerial systems ranging from UAVs to

Earth observations are capable of accurately measuring disease

infections at scale (Barbedo, 2019; de Castro et al., 2021; Gold,

2021), they are constrained by the measurement resolution and

sensing angles that are crucial to grape disease sensing. For

instance, grape DM and PMfirstly occur at the lower canopy and

become mostly visible from the side canopy. Therefore, ground

systems (e.g., robots) are considered more suitable options.

Nonetheless, identifying disease infections in collected images is

paramount to achieve accurate and rapid disease evaluation in

the vineyard (Singh et al., 2018).

Image-based plant disease analysis has been intensively

studied. Based on the core techniques used, studies can be

classified into three categories: conventional image processing

(IP)-based methods (Singh et al., 2020), conventional machine

learning (ML)-based methods (Singh et al., 2016), and deep

learning (DL)-based methods (Singh et al., 2018; Jiang and

Li, 2020). Conventional IP-based methods have focused on

the use of color, spectral, and texture information and filters

to differentiate disease infections from healthy leaves and

canopies. These methods have achieved good performance

with advanced imaging modalities such as multispectral,

hyperspectral (Bendel et al., 2020; Nguyen et al., 2021), and

fluorescent imaging (Latouche et al., 2015). These methods

are usually computationally efficient and provide pixel-level

infection masks for infection severity calculation, but they need

to be used concurrently with costly sensors and have limited

generalizability to unseen datasets, presenting challenges of

the model deployment in real world applications. ML-based

methods can leverage features extracted using IP methods and

learn decision rules (rather than predefined ones) for image

classification and segmentation (Jian and Wei, 2010; Kaur

et al., 2018; Mahmud et al., 2020). This addresses the model

generalizability issue to a certain extent, but image feature

designing and extraction are largely manually crafted (namely

feature engineering), which could be suboptimal for unseen

datasets. Many recent studies have reported DL-based methods

for improved accuracy and robustness of analyzing plant disease

images without feature engineering (Singh et al., 2018; Jiang

and Li, 2020; Benos et al., 2021). The DL-based methods

learn features through training datasets and have achieved

state-of-the-art performance in image classification, detection,

and segmentation. Semantic segmentation is preferred, because

resultant segmentation masks contain both location and

quantity information of disease infections at the pixel level,

enabling accurate localization for treatment application and

quantification of infection severity.

Specifically for grape DM and PM, Oberti et al. (2014)

conducted the first experiment to thoroughly study the optimal

viewing angles of sensing grape PM on leaves, and concluded

that acute angles (30 to 50 degrees) from the leaf surface provide

ample information for grape PM detection. Abdelghafour

et al. (2020) developed an imaging system with strobe light

illumination for vineyard image acquisition, and a traditional

probability based method for feature extraction and grouping

to segment grape DM infections in collected images. While

the method was reliable on the reported dataset, it required

manual tuning of model parameters (e.g., seed size in the

seed growth segmentation) to achieve desired performance on

images collected using different camera systems and/or from

different vineyards. This has been themajor limiting factor of the

method for practical applications. Most research that used DL-

based methods investigated deep convolutional neural networks

(CNNs) for disease image classification and achieved high

classification accuracy (over 97%) of grape DM and PM (Liu

et al., 2020; Wang et al., 2021; Suo et al., 2022). A study also

reported the use of object detection (e.g., YOLO variants) to

detect grape DM infections with a mean average precision

(mAP) of 89.55% at an intersection over union (IoU) of 0.5

and processing speed of 58.82 frames per second (FPS) (Zhang

et al., 2022). With both high detection accuracy and efficiency,

the reported model could be integrated with ground robots for

realtime grape DM detection and treatment. From these studies,

various attention mechanisms (Niu et al., 2021) and multiscale

feature fusion were the two important components contributing

to the high model accuracy and generalizability, which should

be retained in the future. To the best of our knowledge, our
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previous study was the only one to examine the use of deep

semantic segmentation models for grape DM evaluation in the

vineyard (Liu et al., 2021). While the hierarchical multi-scale

attention for semantic segmentation (HMASS) model (Tao et al.,

2020) was used and evaluated, the performance was obtained

only on small training and validation datasets without a separate

testing dataset. Furthermore, the entire image-based approach to

disease infection quantification should be fully introduced and

thoroughly evaluated for both grape DM and PM.

The overarching goal of this study was to develop and

evaluate an image-based approach for the quantification of grape

foliar disease infection in the vineyard. Grape DM and PM were

used as example diseases in this study. Specific objectives were

to (1) train and analyze a deep learning model for semantic

segmentation of grape DM and PM infections; (2) develop a

deep learning-based processing pipeline for disease infection

quantification; and (3) evaluate the performance of disease

severity quantification by comparing the pipeline-derived and

human-assessed measurements.

2. Materials and methods

2.1. Data acquisition system

A data acquisition system (DAQ) was designed to collect

color images of grapevines in the vineyard (Figure 1A). The

system consisted of a utility task vehicle (UTV) as a mobile

platform, a custom stereo camera, a real-time kinematics GPS

(RTK-GPS) receiver, and a power generator as power supply for

the camera and GPS. The custom camera contained a stereo

camera and strobe light illumination units (Figure 1B). The

strobe lights were synchronized with the stereo camera shutter,

so images were acquired using a fast exposure time (100µs)

under a strong flash illumination (Mueller-Sim et al., 2017). This

allowed the suppression of irrelevant background information

collected in images. The stereo system was configured vertically,

so a typical left-right stereo image pair was referred as a top-

bottom pair in this study. Image acquisition frequency was set

as five frames per second (FPS). During the data collection in a

grapevine row, the UTV was driven by cruise control at a speed

of approximately 1 m/s for movement consistency. Raw images

were stored in portable gray map (PGM) format. A custom

program was developed to convert the images to JPG format

for processing.

2.2. Deep learning-based quantification
of grape foliar disease infection

A deep learning-based processing pipeline was developed to

quantify the severity of grape foliar disease infection using a

sequence of stereo images (Figure 2). The processing pipeline

consisted of four modules: disease infection segmentation,

canopy segmentation, image overlap removal, and infection

severity estimation. The first three modules were to process

individual image pairs in an image sequence, and the last module

was for the a given sequence as a whole.

2.2.1. Disease infection segmentation

A deep semantic segmentation model was trained and used

for the identification of disease infected regions in images. Foliar

disease infections varied dramatically in their sizes because of

infection time and progress differences, requiring the multiscale

analysis capability of a segmentation model. In this study, the

hierarchical multi-scale attention for semantic segmentation

(HMASS) network (Tao et al., 2020) was selected because of its

flexibility of the network configuration for multiscale analysis

at the inference stage without model retraining. The HMASS

network learned model weights between two adjacent image

scales (e.g., 0.5× and 1× images) during the training phase, and

chained the learned weights to combine multiple scales (e.g.,

adding 0.25× with 0.5× and 2× with 1×) for analysis during

the inference phase. Generally, if the ratio between two training

scales is r, all scales (sk) can be combined for inference if they

fulfill the criterion sk = rk, k ∈ Z.

HMASS models were initialized with weights pretrained on

the Microsoft Common Objects in Context dataset (Lin et al.,

2014) and fine-tuned on the collected grapevine image datasets

for disease segmentation. To avoid potential sacrifice of image

details caused by image resizing, each original grapevine image

(2,704 × 3,376 pixels) was split into 6 subimages (1,352 × 1,125

pixels) as input for processing. Based on our prelimineary tests,

image scales of 0.5× and 1× were used for model training,

and scales of 0.5×, 1×, and 2× were selected for inference. In

addition to common data augmentation practices, class uniform

sampling was used to select image regions with balanced class

ratios (e.g., ideally the same number of pixels belonging to each

class) for model training (Zhu et al., 2019). To ensure full model

convergence, the Adam optimizer with an initial learning rate

of 5 × 10−3 and a batch size of 4 was used to optimize models

for 500 epochs. Training, validation, and inference programs

were implemented using PyTorch (v1.7.0) and conducted on

a server computer with two GPU cards (RTX A6000, Nvidia

Corp, Santa Clara, CA). The training environment, parameters,

and strategies were the same for all the disease datasets used in

this study.

2.2.2. Canopy segmentation

The canopy segmentation module generated grapevine

canopy masks in images. The active illumination with a

fast camera shutter provided stable lighting intensity of

images, enabling the use of simple color filtering for canopy

segmentation. An input image was converted from the red,
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FIGURE 1

Data collection system used in this study. (A) The imaging and illumination module highlighted in the orange box could be flexibly mounted on

the ATV. (B) A reference detailed design of stereo camera and strobe light system (Silwal et al., 2021).

green, blue (RGB) color space into the hue, saturation, value

(HSV) space where illumination effects on color appearance

could be further isolated. The color filter was designed to identify

grapevine canopies and remove irrelevant background such as

grass and wooden poles (Equation 1). The filtering thresholds

were carefully tuned and verified on representative images in

the datasets.















Hp ∈ [12, 22) ∪ (28, 30) ∪ (45, 255]

Sp ∈ [73, 153)

Vp ∈ [23, 33) ∪ (94, 254]

(1)

where [Hp, Sp,Vp] are the HSV values for each pixel. A pixel

was classified as canopy only if that pixel’s HSV values satisfied

all three conditions. After the color filtering, an open-close

operation was applied to fill holes and remove small noise areas

in the final canopy mask.

2.2.3. Overlapping area removal

To avoid repeated counts of both grapevine canopy areas

and disease infections, the overlapping area removal module

used the depth and GPS information to identify and remove

repeated regions between consecutive images (Figure 3). The

depth information of individual stereo images was obtained

using the stereo semi-global block matching (StereoSGBM)

method (Hirschmuller, 2007). The custom stereo camera was

calibrated to rectify the two images of a stereo pair. Based

on preliminary tests, key parameters of the StereoSGBM

were set as minimum disparity of 180 pixels, maximum

disparity of 356 pixels, and matching window size of 9

pixels. To smooth generated disparity maps, a Gaussian blur

operation was applied with a kernel size of 11 x 11 pixels.

The resultant disparity maps were converted to depth maps

for the projection of 2D image pixels to 3D coordinates

(Equations 2–4).

zw =
fx ∗ b

d
(2)

xw =
xi ∗ zw

fx
(3)

yw =
yi ∗ zw

fy
(4)

where xi, yi were the coordinates of a pixel (p) in

an image and xw, yw, zw were the corresponding 3D

coordinates of that pixel, b was the baseline between

the two cameras of a stereo system, d was the disparity

of p, and fx, fy were the horizontal and vertical

focal lengths.

For two consecutive stereo images (i.e., image frames t

and t + 1), the distance difference between their acquisition

locations was calculated using their GPS records. As the two

images were acquired within a short period of time, the

camera could be considered to move primarily along the

platform moving direction (the grapevine row direction) with

negligible displacement in other directions such as up-and-down

movement along y-axis and far-and-close movement along z-

axis (across grapevine row). Thus, the overlap region calculation

could be simplified using the horizontal (x-axis) camera field of

view (FOV). Given the camera angular field of view (AFOV)

and depth information, repeatedly imaged regions between the

consecutive images were identified using Equation (5).

θ0 ≤ θ ⇒
π − AFOV

2
≤ arctan(

ztw

distgps − xtw
) (5)

where the θ0 was the complementary angle of the maximal

camera viewing angle, θ was the complementary angle of a given

point (pt) projected from an image pixel, distgps was the distance

between the two imaging locations, and xtw and ztw were the

3D x- and z-coordinates of pt at the frame t. By substituting
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FIGURE 2

The processing pipeline for disease severity quantification. For each frame, the stereo image pair and GPS location were used to generate

pixel-level disease classifications (masks). These masks were combined to provide panel severity rates. Hierarchical Multi-scale Attention for

Semantic Segmentation (HMASS) network is a deep convolutional neural network for semantic segmentation.

(Equations 2–5) was reformulated as Equation (6).

fx ∗ fy ∗ b

distgps ∗ fx ∗ D− b ∗ fy ∗ Xi
− tan(

π − AFOV

2
) > 0 (6)

where Xi, D were matrices (xi ∈ Xc and d ∈ D) with dimensions

identical to image size. During programming, this criterion was

transformed to take matrices of associated parameters for all

pixels in the image as input and evaluated the repetitiveness at

once. As a result, the computational cost was largely reduced. All

pixels in the current frame fell into the criterion were marked as

repetitive pixels and were not considered in the calculation of

infection severity to avoid potential “double-counting” issue.
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FIGURE 3

Illustration of the repetitive pixel criterion. θ and θ0 were point

positioning angle and minimum visible angle. AoV is the angle of

view of the camera. xw and zw were point horizontal and

in-depth locations in the world coordinate frame. d was the

distance between the adjacent frames. The point would have

been marked as repetitive in frame t since it falls into the angle

of view of camera at frame t+ 1.

2.2.4. Infection severity quantification

The severity of disease infections was quantified using the

ratio of infected and canopy areas in non-repeated image regions

(or effective regions in this study). For each image, the infection

and canopy masks in the effective regions were calculated

by excluding pixels in the overlapping areas from the masks

(Equations 7 and 8).

Mi
inf ,eff = Mi

inf −Mi
inf ∩Mi

rep (7)

Mi
canopy,eff = Mi

canopy −Mi
canopy ∩Mi

rep (8)

where Mi
inf

, Mi
canopy, M

i
rep represented infection mask, canopy

mask, and overlapping area mask of the ith image frame,

respectively, and Mi
inf ,eff

, Mi
canopy,eff

represented effective

infection and canopy masks of the ith image frame, respectively.

Grapevines were trained with a trellis system, so the

grapevine canopies would be largely on the same plane. The

infection severity could be estimated using image pixels rather

than the physical areas in the 3D space. Therefore, for a

given grapevine unit (e.g., a panel containing four grapevines),

the infection severity (szone) was calculated by dividing the

total effective infection areas (in pixels) by the total effective

canopy areas (in pixels) in the image sequence collected in that

grapevine unit (Equation 9).

szone =

∑N
i=0

∑

Mi
inf ,eff

∑N
i=0

∑

Mi
canopy,eff

(9)

2.3. Case study demonstration and
evaluation

We evaluated the performance of the developed processing

pipeline in two case studies on grape DM and PM fungicide

efficacy. The two studies were performed at the Cornell

Pathology Vineyards of Cornell AgriTech in Geneva, NY in

2019. In the vineyard, grapevine rows 1 to 3 were used for the

DM fungicide trials, and rows 6 to 13 were used for the PM

fungicide trials.

2.3.1. Downy mildew fungicide e�cacy trial

The DM fungicide efficacy study was conducted involving

3 rows of 33-year-old chardonnay vines located on the edge

of the field, with each being split into 16 panels of 4 vines

each. Two adjacent panels were combined as one spray

unit, resulting in a total of 24 spray units. Six treatments

were applied to the spray units arranged in a randomized

complete block design (RCBD) with 4 replicates per treatment

(Supplementary Table S1). A hooded boom sprayer operating

at 100 PSI was used to disperse treatments at a volume of 50

gallon per acre (GPA) pre-bloom and 100 GPA post bloom. To

perform DM fungicide trials on these rows, additional chemical

applications were made to control other grape diseases such as

PM and pests.

Field data collection was conducted using the DAQ

system on 29 August 2019, and the collected dataset

contained 2072 stereo image pairs and their associated

GPS locations. The images were segregated into individual

panels based on the image content and GPS information.

Human field scouting was conducted right after the data

collection to provide reference measurements. A human

expert sampled and evaluated 20 leaves for each spray

unit (i.e., two adjacent panels with the same treatment).

DM infection severity was graded as the ratio between

infected and total leaf area for each leaf sample based on

the Horsfall-Barratt scale (Horsfall and Barratt, 1945). All

leaf grades from a spray unit were averaged to calculate

the unit DM infection severity, resulting in a total of 24

reference measurements.

To use the developed processing pipeline, an HMASS

model was trained using the collected dataset. Two panels

that showed considerable infections (treatment 3 and control

groups) were randomly selected to provide a total 224

annotated subimages (1,352 × 1,125 pixels) for model training

and validation (Table 1). For rigorous model evaluation,

additional 463 subimages were selected from a different

grapevine row, including panels from treatment 3,4,5, and

the control group (Table 1). The testing subimages were

processed and annotated in the same way as the training-

validation ones.
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TABLE 1 Datasets for the segmentation of downy mildew infections.

Dataset Number of tiles Treatmenta Panelb

Training 183 3 and control 03–10 and 02–16

Validation 41 3 and control 03–10 and 02–16

Testing 103 3 01–15

118 4 01–03

114 5 01–13

128 Control 01–05

aSee Supplementary Table S1 for treatment details.
bPanels are formatted as xx-yy where xx is the row number and yy is the panel number.

2.3.2. Powdery mildew fungicide e�cacy trial

The PM fungicide efficacy study included 7 rows of 33-year-

old chardonnay vines with the identical layout to the DM trials.

The PM fungicide trial rows were 3 rows apart from the DM

fungicide trial rows. A total of 18 treatments were applied in

the RCBD arrangement with 4 replicates per treatment using the

same sprayer system (Supplementary Table S2). To perform PM

fungicide trials on these rows, additional chemical applications

were made to control other grape diseases including grape DM.

Field image collection was conducted using the same DAQ

system on 29 August 2019, followed by human field assessment

of PM infection using the Horsfall-Barratt scale and leaf

sampling and analysis procedures. Compared with the DM

dataset, the PM dataset presented considerable challenges even

for experienced human experts to identify PM infections in

images. As a result, images collected from only control groups

(the most infections) were included in annotation. The dataset

contains 132 training tiles, 27 validation tiles, and 16 testing tiles

from the PM control group located at panel 13 and 14 of row 10.

2.4. Evaluation methods

Performance evaluation was conducted for both individual

pipeline components and the full processing pipeline. For the

disease segmentation model, visual inspection of representative

results and model training and validation curves were used for

qualitative evaluation, and the mean intersection over union

(mIoU) was used as the metric for quantitative evaluation.

The quality of overlapping area removal was also assessed by

visual inspection of representative cases because of challenges in

ground-truth annotations.

Disease infection severity calculated using the developed

pipeline was evaluated in terms of the measurement accuracy

and effectiveness in differentiation of treatments. Pearson

correlation analyses were conducted between infection severity

rates measured by the pipeline and human field assessment. The

correlation coefficient (r) was used as a metric to evaluate the

goodness of the image-derived measurements. ANOVA analyses

with post-hoc Tukey test were performed to differentiate the

disease control efficacy among treatments using severity rates

calculated by the pipeline and human field assessment. For

each measurement method, the severity rates were normalized

against the highest measurement value to avoid potential

artifacts of ANOVA tests due to value range differences. All

analyses and tests were performed using the stats package

(v4.0.5) in R, and the significance level of 0.05 was used for the

tests unless stated otherwise in the results.

3. Result

3.1. Downy mildew fungicide e�cacy trial

3.1.1. Performance of grape DM segmentation

For grape DM segmentation, while a relatively small dataset

was used, the HMASS model showed satisfactory training and

validation accuracy (Figure 4). During the training process,

the model quickly converged in the first 50 epochs and

stabilized after 200 epochs, achieving mIoUs of 0.8 and 0.88

for the training and validation datasets, respectively. The high

performance was due primarily to two reasons. First, the active

illumination of the imaging system minimized the variation

among collected images caused by ambient light changes,

resulting in a relatively consistent data distribution that would

require less training samples for robust performance. This has

been investigated as the key for agricultural applications (Silwal

et al., 2021). Second, in addition to common data augmentation,

the use of class uniform sampling selected image regions with

approximately balanced class ratio, enhancing the presence of

underrepresented classes (e.g., DM infected areas) for model

training. Compared with common image-level augmentation

methods, the class uniform sampling augmented at the class level

and facilitated the learning of important features for segmenting

all classes (Zhu et al., 2019; Tao et al., 2020). Furthermore,

the HMASS model achieved an overall mIoU of 0.84 on the

testing dataset consisting of more (2.5 and 10 times larger

than the training and validation datasets) and unseen (from

different grape panels and treatments) images, confirming the

high performance during model training and validation.

Since the testing dataset contained images from various

treatments, the trained HMASS model was also evaluated using

images from individual treatments, and the results showed a

performance difference among treatments (Table 2). Severely

infected treatments (i.e., treatment 3 and control group) had

a relatively higher accuracy than mildly infected treatments

(e.g., treatments 4 and 5). This was because the images had

different size patterns of DM infected regions among the

treatments (Figure 5). Based on human annotation statistics,

images collected in severely infected treatments had many

large connected infected regions that were typically larger than

1 × 105 pixels, whereas images collected in mildly infected
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FIGURE 4

HMASS training and validation process for DM infection segmentation dataset. Parameters were evaluated after each epoch. (A) Represents the

cross-entropy loss evaluated on the training dataset. (B) Represents the cross-entropy loss evaluated on the validation dataset. (C) Represents

the mIoU evaluated on the training dataset. (D) Represents the mIoU evaluated on the validation dataset.

TABLE 2 Per-treatment downy mildew infection segmentation test.

Treatmenta Severity levelb mIoU

Control a 0.87

3 b 0.82

4 bc 0.73

5 c 0.76

aTreatments were sorted in top-down order of the expected severity rate frommost severe

to mild.
bThe severity level were evaluated using human scouting data elaborated in Figure 9.

treatments largely contained spotted and small-sized infections,

resulting in a common challenge in semantic segmentation

of small objects and thus lower segmentation accuracy (Yang

et al., 2020). In particular, compared with common objects

(e.g., cars) that have shape features, disease infections usually

had unpredictable spatial patterns, posing additional difficulties

in accurate semantic segmentation. It should be noted that to

eliminate potential influence due to training dataset selection, an

HMASS model was trained using images of treatments 4 and 5

and tested on images of treatment 3 and control group in the

testing dataset. Comparable segmentation accuracy (mIoU of

0.81 and 0.86 for treatment 3 and control group) was achieved,

confirming that the infection size difference would be the major

factor yielding the performance gap among treatments.

The model performance was also confirmed by manually

checking representative segmentation results (Figure 6). In most

cases, the trained HMASS model successfully differentiated

healthy and infected (brown regions) canopies and accurately

segmented the infected regions with various sizes, which

agreed with the high mIoU on the testing dataset (see

healthy, mild, moderate, and severe cases in Figure 6). It was

noteworthy that compared with the ground truth (human

annotation), the model-generated masks might not perfectly

detail spotted infections, especially their boundaries and

sizes, yielding lower IoU values due to the IoU sensitivity

to subtle differences. This would not lead to considerable

degradation in disease identification and segmentation. There

were some occasions that the trained HMASS model missed or

misidentified the DM infections. Some grape leaves presented

symptoms that looked similar to grape DM but were caused

by other stresses, and the trained HMASS model was not

able to correctly identify them (see the red circle in other

stresses in Figure 6). In addition, as with all optical systems,

the active illumination of the imaging system used in this

study had a vignetting effect causing a lower illumination

intensity at image corners. Sometimes, the low illumination

intensity on an early DM infection (slight leaf discoloration)

could reduce the clarity of that infection and miss the

segmentation (see the yellow circles in poor illumination

in Figure 6).

Although it could not fully address all possible cases,

the trained HMASS model generally achieved a satisfactory

accuracy of segmenting grape DM and robustly generalized

to unseen images. Therefore, it should be sufficiently accurate

and robust for grape DM infection identification and therefore

quantification in successive steps.
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FIGURE 5

Distribution of manually labeled ground truth mask size in DM testing datasets from treatment 3,4,5 and the control group, with severity rating

of of “b”, “bc”, “c”, “a”, in Table 2 respectively.

3.1.2. Performance of overlapping region
removal

The overlapping area removal module successfully identified

regions that were repeatedly captured between consecutive

image frames and provided effective areas for canopy and

disease infection quantification (Figure 7). The selected case

demonstrated the process for an image sequence collected

from an entire grapevine row. At time t0, the imaging system

stopped at the starting point and collected images of the same

scene, so the repetitive masks were all white, meaning that all

pixels in the current image frame were recaptured in the next

image frame and would not be used as an effective area for

canopy and infection quantification. From time t1 to t2, the

imaging system started and accelerated to a preset cruising speed

(approximately 1 m/s). During this period, the overlapping

areas between consecutive images were reduced, and the non-

overlapping areas were identified effective for the quantification

and canopy and infection areas. When the imaging system

moved at the preset cruising speed (after time t2), collected

image frames showed a relatively constant overlapping region

and thus effective area for the quantification. When the imaging

system stopped at the ending point (time t3), the last image

frame was considered having no overlapping region and fully

used for processing.

Generally, the generated repetitive masks and effective areas

were reasonable based on human visual inspection and matched

with the imaging system movement patterns (e.g., parked at a

point, acceleration, and movement at a constant speed). The

effective area in each image frame enabled accurate counting

of grapevine canopy and disease infection pixels to avoid the

"double-counting" issue. It should be noted that the developed

overlapping area removal module was based on the depth and

GPS informationwithout the consideration of image features. As

a result, complex object geometry might lead to some errors of

overlapping region identification, especially near the separation

line between overlapped and non-overlapped areas. Also, if

the field terrain was considerably uneven (e.g., big bumps and

ditches), the imaging system could not be considered moving

only along the row direction (i.e., x-axis of the camera), causing

additional errors in the generated repetitive masks and effective

areas. However, these error sources were either trivial (only a

small portion of pixels) or occasional (few big bumps in the

field), and therefore, the generated repetitive masks and effective

areas were sufficient to resolve potential “double-counting”

issues that would considerably affect the accuracy of canopy and

disease infection quantification.

3.1.3. Severity rate estimation evaluation

For grape DM infection quantification, there was a strong

Pearson’s correlation (r = 0.96) between image-derived and

human-assessed infection severity rates, indicating the high

accuracy of disease infection quantification using the developed

processing pipeline (Figure 8). While the theoretical range of

image-derived and human-assessed measurements was from 0

(not infected) to 1 (fully infected), severity rates calculated by the

two methods showed different magnitudes because of sampling

object difference. The human assessment was for individual leaf
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FIGURE 6

Examples of Downy Mildew (DM) infection segmentation mask generated by HMASS. Images are selected from testing dataset. Ground truth are

manually labeled. Red circle indicates region of non-DM damage confused by the inference model. Yellow circles are false negative detections

due to insu�cient lighting condition.

samples where full infection could occur, whereas the image-

based method evaluated the whole grapevine in a specific unit

(e.g., a panel) that would not be fully infected in practice. To

avoid potential artifacts in successive statistical analyses, the

image-derived severity rates were normalized to have the least

infection of 0 and the most infection of 1.

Generally, the image-derived and human-assessed severity

rates showed similar statistical patterns to differentiate grape

DM fungicide treatments (Figure 9). When the grape panel

was used as the unit, the image-derived severity rates

demonstrated an identical statistical pattern as the human-

assessed measurements, presenting the effectiveness of using the
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FIGURE 7

Example masks for repetitive region removal. Data collection vehicle started from stop at t0 and gradually accelerated from frame t1 to frame

t1 + 2. The vehicle then moved with constant speed from frame t2 to t2 + 2. The vehicle moved out of the data collection region at frame t3.

Canopies areas where the information was kept were labeled in red in e�ective area images. Infected regions within the e�ective areas were

labeled in blue. The severity rate was determined by the sum of blue areas in the e�ective area images divided by the sum of red areas in the

e�ective area images.

FIGURE 8

Pearson’s correlation result of normalized severity rates of DM

fungicide e�cacy test calculated using the imaging-based

pipeline and human field assessment.

image-based method to quantify disease infection and evaluate

fungicide efficacy. Also, the image-derived measurements

showed smaller within treatment variance than the human

assessments because of the objective, full panel evaluation

over the subjective sampling-based evaluation. When the

spray unit (two grape panels) was used, the image-derived

severity rates were only capable of distinguishing treatments

with considerable differences such as severely infected (e.g.,

control) and well-controlled groups (e.g., treatment 1). No

statistical difference was found between well-controlled to

mildly infected treatments. This occurred primarily because

of the replication size reduction. The human field scouting

collected 20 leaf samples in each spray unit, resulting in

80 (20 × 4 spray units per treatment) replications per

treatment. In contrast, the image-based method used each

spray unit as a replication and only had 4 replications per

treatment. The considerable replication decrease would lead to

the substantial reduction of statistical power to differentiate

treatments irrespective of the measurement accuracy. In this

study, a minimum of 8 replications would be needed, or replicate

panel images would need to be split into subsampled images.

The optimal replication size requires more investigations in

future studies.

3.2. Powdery mildew case study

3.2.1. Performance of grape PM segmentation

For grape PM segmentation, the HMASS model also

converged successfully and showed an acceptable segmentation
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FIGURE 9

Box plots of severity rates for the six treatments together with the control group for DM fungicide e�cacy test in this study: (A) represents the

imaging-derived severity rates at the panel level, (B) represents the imaging-derived severity rates at the spray unit level, and (C) represents the

severity rates evaluated by human experts. Di�erent letters indicate statistical significance between groups. Treatments within the same group

are assigned the same color. The numbers with bars indicate di�erences of mean values between adjacent treatments.

FIGURE 10

HMASS training and validation process for PM infection segmentation dataset. Parameters were evaluated after each epoch. (A) Represents the

cross-entropy loss evaluated on the training dataset. (B) Represents the cross-entropy loss evaluated on the validation dataset. (C) Represents

the mIoU evaluated on the training dataset. (D) Represents the mIoU evaluated on the validation dataset.

performance on the training and validation datasets (Figure 10).

Compared with the grape DMmodel, the grape PM model used

more epochs (300 epochs vs. 200 epochs) to converge with a

relatively lower segmentation accuracy (mIoU of 0.76 for both

training and validation datasets). This was mainly because it

was more challenging to segment grape PM infections than

grape DM infections. Grape DM infections had an obvious

discoloration (yellowish to brownish color) that was well

captured by the imaging system, whereas grape PM infections

only showed the white to gray powdery appearance when

they were imaged or viewed from acute angles (optimally

30 to 50 degrees from the leaf surface Oberti et al., 2014),

presenting difficulties to not only the model for segmentation

but also human experts for annotation. In terms of the

model generalizability, the grape PM model demonstrated

a good performance (mIoU of 0.73) on the testing dataset

containing unseen images. Considering these factors, the

trained HMASS model also provided acceptable accuracy for

Frontiers in Plant Science 13 frontiersin.org

https://doi.org/10.3389/fpls.2022.978761
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.978761

FIGURE 11

Examples of Powdery Mildew (PM) infection segmentation mask generated by HMASS. Images are selected from testing dataset. Ground truth

are manually labeled. White circles are regions where boundaries of infections are not correctly detected. Yellow circles are false negative

detections due to insu�cient lighting condition. Red circles are false negative detection due to variant unobvious appearance of PM damage.

grape PM identification and segmentation to be used for

infection quantification.

The visual inspection of segmentation results of testing

images confirmed the training performance evaluation

(Figure 11). In most cases, the trained HMASS model

successfully identified and segmented PM infections with

varying sizes and infection severity, showing the model

effectiveness and generalizability (see healthy to severe cases in

Figure 11). Similarly to the grape DM segmentation, spotted

and small-sized infections were the challenging cases and

showed imperfect segmentation details (e.g., some spotted

infections might be missed). A major challenge to the PM
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segmentation was the inadequate capability of sensing all PM

infections with complex leaf geometry and orientation. If a

leaf was imaged with its surface parallel with the imaging

system, the leaf surface details were considerably reduced,

resulting in the lack of texture and color features to delineate

PM infections. As a result, the HMASS model could not reliably

segment the infection boundary (see white circles in the unclear

boundary case in Figure 11). The visibility of PM infections

also substantially decreased in some cases where leaves were

underlit (see yellow circles in the poor illumination case in

Figure 11) and/or totally perpendicular to the camera (see

the red circle in the poor illumination case in Figure 11),

leading to the false negative identification of those regions (i.e.,

miss the infections). Since these extreme cases represented

a small portion of all possible leaf orientation and geometry

and limitations were mainly from the sensing system, the

trained HMASS model performance was sufficiently accurate

to identify and segment PM infections with clear symptoms for

successive analyses.

3.2.2. Severity rate estimation evaluation

A strong Pearson’s correlation (r = 0.95) was also found

between the image-derived and human-assessed severity rates

for grape PM infection (Figure 12). Similarly to the grape DM

case study, the image-based method evaluated the entire grape

panel or spray unit rather than individual leaf samples, so

measurements of the two methods were in different magnitudes.

The image-derived severity rate theoretically had the range

from 0 (not infected) to 1 (fully infected). Although the

overall correlation was strong, many data points representing

mildly infected panels showed certain deviations between the

image-derived and human-assessed measurements (see the red

circles in Figure 12). This was very likely due to the sensing

system incapable of resolving mild PM infections in images.

Consequently, these infections could be missed by the trained

model, introducing errors in the calculation of infection severity

rate. As the mildly infected panels had a relatively low absolute

severity rate, such errors (mostly underestimation) presented

more evident relative effects.

ANOVA followed by Tukey test results showed that the

control group was statistically different from all PM fungicide

treatment groups using the severity rates calculated by the

image-based method and human field assessment (Figure 13).

Although the mean value of treatment 17 was higher than

other fungicide treatments, the image-derived severity rates were

not able to statistically differentiate treatment 17 from other

treatments irrespective of replication unit used (either panel or

spray unit), which was the major difference in statistical power

than the human-assessed values. Possible reasons causing this

were complex. On one hand, the imaging system for entire panel

evaluation without subjective leaf sampling should be objective

and yield improved severity rate calculation than human field

FIGURE 12

Pearson’s correlation result of normalized severity rates of PM

fungicide e�cacy test calculated using the imaging-based

pipeline and human field assessment. Red circles represent

outliers in the mildly infected cases.

scouting. On the other hand, human field scouting was able to

check leaf samples from all possible viewing angles to not miss

even mild PM infections, which should be more accurate for

disease identification. Thus, it is worthy of further investigations

in the future to reveal details. Nonetheless, the objective, full

panel evaluation through the image-based method still provided

smaller variations within treatment, which would be desired for

statistical analyses with limited replications.

4. Discussion

The developed image-based approach has demonstrated

a high accuracy of the quantification of grape DM and PM

infection in the vineyard, enabling high throughput plant

disease sensing for fungicide or biocontrol efficacy trials, genetic

mapping of disease resistance, and resistance breeding and

selection. The high accuracy has been achieved because of

both sensing and analytics improvements. From the sensing

perspective, the strobe light-enhanced imaging system provides

an active and stable illumination to minimize image quality

variations caused by ambient light changes, especially in the

field. The improved consistency of image quality (mostly

illumination-related) allows the use of simple image features

(e.g., color) and operations (e.g., filtering) for reliable analyses

such as canopy segmentation. Meanwhile, such improved

image consistency simplifies the training requirements (e.g., the

number of annotated training samples) of modern deep neural

networks for downstream tasks such as grape DM and PM

segmentation, which agrees with previous studies (Silwal et al.,

2021).

From the analytical perspective, the experimental results

have agreed with previous studies: modern deep learning
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FIGURE 13

Box plots of severity rates for the 17 treatments together with the control group for PM fungicide e�cacy test in this study: (A) represents the

imaging-derived severity rates at the panel level, (B) represents the imaging-derived severity rates at the spray unit level, and (C) represents the

severity rates evaluated by human experts. Di�erent letters indicate statistical significance between groups. Treatments within the same group

are assigned the same color. The numbers with bars indicate di�erences of mean values between adjacent severity groups.

models designed for general computer vision tasks can be

effectively used for plant stress identification and segmentation

with limited training datasets (Singh et al., 2018; Jiang and

Li, 2020). These deep learning models provide accurate and

implementable solutions to the core needs of plant disease (or

stress in general) phenotyping. In addition to this, the developed

pipeline has shown the advantage of combining multimodal

sensing data for disease quantification. By combining the

color, depth (retrieved via stereo camera), and localization

information, the developed pipeline is capable of not only

segmenting grape disease infections in a single image but also

quantifying infection severity in an image sequence without

“double-counting” concerns. This can provide a more accurate

evaluation of disease infection severity in the field, especially

production systems. Since the developed approach and pipeline

showed high accuracy of diseases with different symptoms,

the approach and pipeline could be potentially expanded

to general foliar diseases with visible symptoms, which is

substantially beneficial for grape disease research, breeding,

and management.

Several key technical limitations have been identified in

this study as well. First, the sensing system is the fundamental

limiting factor for plant disease detection and quantification.

When disease symptoms could not be fully and/or consistently

sensed, there might not be too much to improve from data

analytics. In this study, even the same deep learning model

was used, the mIoU of segmenting grape DM and PM could

vary up to 0.11, which is a considerable performance difference.

Additionally, although DM and PM cause infections on both

sides of the leaf surface and the symptoms on lower leaf surface

are usually more obvious, the current imaging system only

primarily sense the upper leaf surface due to occlusions. To

solve this, one option is to use advanced sensing modalities (e.g.,

thermal, multispectral or hyperspectral imaging and advanced

sensor mounting system), and another option is to optimize

sensing systems for specific disease or stress of interest. For

instance, the optimal imaging angle of grape PM is from

30 to 50 degrees with the leaf surface, which can guide the

design of new optical sensors. Second, plant disease datasets

can have some unique challenges to current computer vision
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(CV) algorithms and models. For instance, both grape DM

and PM images have small and scattered infections, especially

for mild infection cases. Segmenting these small objects has

been widely acknowledged as a challenge even by the CV

community (Yang et al., 2020). Plus, compared with common

CV datasets, these small disease infections have unpredictable

shapes, presenting additional difficulties. In some cases, the

infection area may appear non-typical and can look similar to

other leaf stresses. Due to the dataset and model limitation,

the current method was only developed for typical infections

seen in the field of experiments and labeled by human expertise

and would not be directly applied for infections of significantly

different appearances without further calibration. It requires

interdisciplinary efforts on developing new CV models and

incorporating domain knowledge to lift the constraints of model

and dataset and further improve the data analysis accuracy.

Third, experiments conducted in this study were well designed

and controlled to allow either DM or PM (not both) to occur

in the vineyard, so the collected datasets and trained models

were not for the differentiation betweenmultiple diseases. While

the presence of a specific disease (or plant stress in general)

could be well controlled in research and breeding, production

vineyards usually showmultiple diseases (even a combination of

abiotic and biotic stresses) at the same time. Stress differentiation

was not the objective of the present study, but it should be

further investigated in the future to maximize the use of digital

tools for production systems. Last, the developed pipeline is

for offline analysis, which cannot be directly integrated with

robots and other machinery for realtime disease quantification.

This limits the potential of using the developed technology

for vineyard management such as precision spraying. The

most time-consuming module is the HMASS-based disease

segmentation, so it is necessary to explore options to replace the

HMASSmodel with light-weight ones or to optimize (e.g., model

pruning) the HMASS model for online processing.

Conclusion

An image-based approach was developed for the

quantification of grape foliar disease in the vineyard, and

evaluated using grape DM and PM fungicide trials. For both

diseases, the image-derived infection severity was highly

correlated (r > 0.95) with human field assessment, and showed

effective statistical power in differentiating the efficacy of

fungicide treatments. Therefore, the developed approach can

be used as an effective tool for grape DM and PM evaluation in

research projects and production management. Future studies

will be focusing on (1) exploring various sensing modalities for

grape PM identification to improve the quantification accuracy

and (2) investigating light-weight deep learning models for

online disease segmentation and quantification.
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