AUTHOR=Zhu Mingyuan , Li Qiuxia , Zhang Yushi , Zhang Mingcai , Li Zhaohu TITLE=Glycine betaine increases salt tolerance in maize (Zea mays L.) by regulating Na+ homeostasis JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.978304 DOI=10.3389/fpls.2022.978304 ISSN=1664-462X ABSTRACT=
Improving crop salt tolerance is an adaptive measure to climate change for meeting future food demands. Previous studies have reported that glycine betaine (GB) plays critical roles as an osmolyte in enhancing plant salt resistance. However, the mechanism underlying the GB regulating plant Na+ homeostasis during response to salinity is poorly understood. In this study, hydroponically cultured maize with 125 mM NaCl for inducing salinity stress was treated with 100 μM GB. We found that treatment with GB improved the growth of maize plants under non-stressed (NS) and salinity-stressed (SS) conditions. Treatment with GB significantly maintained the properties of chlorophyll fluorescence, including Fv/Fm, ΦPSII, and ΦNPQ, and increased the activity of the antioxidant enzymes for mitigating salt-induced growth inhibition. Moreover, GB decreased the Na+/K+ ratio primarily by reducing the accumulation of Na+ in plants. The results of NMT tests further confirmed that GB increased Na+ efflux from roots under SS condition, and fluorescence imaging of cellular Na+ suggested that GB reduced the cellular allocation of Na+. GB additionally increased Na+ efflux in leaf protoplasts under SS condition, and treatment with sodium orthovanadate, a plasma membrane (PM) H+-ATPase inhibitor, significantly alleviated the positive effects of GB on Na+ efflux under salt stress. GB significantly improved the vacuolar activity of NHX but had no significant effects on the activity of V type H+-ATPases. In addition, GB significantly upregulated the expression of the PM H+-ATPase genes,