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Phenotypic variation in plants is attributed to genotype (G), environment (E),

and genotype-by-environment interaction (GEI). Although the main e�ects of

G and E are typically larger and easier to model, the GEI interaction e�ects are

important and a critical factor when considering such issues as to why some

genotypes perform consistently well across a range of environments. In plant

breeding, a major challenge is limited information, including a single genotype

is tested in only a small subset of all possible test environments. The two-way

table of phenotype responseswill therefore commonly containmissing data. In

this paper, we propose a new model of GEI e�ects that only requires an input

of a two-way table of phenotype observations, with genotypes as rows and

environments as columns that do not assume the completeness of data. Our

analysis can deal with this scenario as it utilizes a novel biclustering algorithm

that can handle missing values, resulting in an output of homogeneous cells

with no interactions between G and E. In other words, we identify subsets of

genotypes and environments where phenotype can be modeled simply. Based

on this, we fit no-interaction models to predict phenotypes of a given crop

and draw insights into how a particular cultivar will perform in the unused

test environments. Our new methodology is validated on data from di�erent

plant species and phenotypes and shows superior performance compared to

well-studied statistical approaches.

KEYWORDS

linear model, no-interaction model, missing data, unsupervised learning, machine

learning

1. Introduction

Plant phenotypes, such as flowering time or yield, depend on a plant’s genotype

and the environment where it is grown. However, a plant’s phenotype is typically

not well-explained by simple main effects of genotype (G) and environment (E), as

there is often important genotype-by-environment interaction (GEI) effects that explain

a considerable portion of the observed phenotype variation. Understanding the GEI

effects, and accounting for such effects in any predictive model, is therefore of great
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interest to plant breeders and agronomists who aim to develop

new genotypes that have a favorable phenotypic trait and/or

performance across diverse environments (Ahakpaz et al., 2021;

Ligarreto-Moreno and Pimentel-Ladino, 2022).

Numerous predictive models of phenotype have been

proposed in the literature (Asseng et al., 1998; Chuine et al.,

1999; Lobell and Burke, 2010; Zhou et al., 2012). Most

recent models improve predictions by incorporating various

environmental and genetic information (Montesinos-López

et al., 2019; Arya et al., 2022; Nguyen et al., 2022), but in some

applications only phenotype data may be available, and a model

must be built exclusively on this data. For our analysis, we

assume that this is the case, including that the only available

data are phenotypes observed for a set of genotypes in a set

of environments. A model must therefore be built on a simple

two-way table of phenotype where rows represent genotype

and columns represent environments. Furthermore, phenotypes

may have only been observed in relatively few environments

for each genotype, leading to a two-way table where many

of the values are missing. This is common in commercial

plant breeding where it is either impractical or impossible to

observe the genotype except in a few environments. Thus, the

majority of the potential phenotype observations are missing.

Furthermore, since the tested environments depend on such

factors as decisions of plant breeders, observations are missing

not-at-random in an unknown fashion. This scenario is the

motivation for our new methodology, which aims to model

phenotype based on a two-way table of observed phenotypes

with the potential for most of the values in the table to bemissing

according to some unknown non-random mechanism.

Simple approaches for modeling phenotype are taken to

either ignore the GEI effects or incorporate all interaction terms

directly into a linearmodel for the phenotype. The first approach

completely missed practically important interactions. The latter

approach produced unique estimates (and clear interactions)

for all main effects and interactions only when no values

are missing. When values are missing, a model containing

all interactions is equivalent to a “cell means model” and

provides no way to predict missing values from data in hand.

Both extreme modeling solutions are typically unsatisfactory,

which has motivated the development of several alternative

models that aim to both have fewer parameters and provide

modeling for GEI effects. Malosetti et al. (2013) surveyed the

state-of-the-art for such models where only a two-way tables

of means were given including that each model attempted to

replace the GEI term with some combination of genotype and

environmental parameters.

In this paper, we propose a novel approach to modeling

and explaining GEI effects by identifying useful subsets of the

genotypes and environments via an approach called biclustering.

Biclustering simultaneously clusters rows (which here represent

different plant genomes) and columns (which here represent

different planting environments). By choosing an appropriate

response function, the biclustering can produce homogeneous

blocks of genotypes and environments where each genotype

interacts in the same manner with the environments. This

implies (locally) that, within each such block there are in fact no

GEI interaction effects and a linear model employing only main

effects (G and E) provides an appropriate fit for the phenotype.

While our analysis only uses phenotypes as responses, further

information about the genotypes and/or the environments in a

block can be used after the fact to explain and provide insights

into commonalities of genetics and of environments.

Although similar biclustering approaches have been utilized

to explain interactions in a two-way table in various domains,

these methods assume complete data, that is, no missing values

(Schepers et al., 2017). Moreover, in regards to understanding

GEI interactions, Corsten and Denis (1990) performed a study

by applying agglomerative hierarchical clustering to a two-way

table to analyze the interaction between rows (genotypes) and

columns (environments). However, one limitation of their work

is their assumption on having complete data. For an academic

trial, the assumption of complete data may hold, but for a

commercial large scale breeding organization, missing data is

the norm. Missing values pose a major obstacle for standard

biclustering methods. Partially motivated by this problem, Li

et al. (2020) proposed a new biclustering method that performs

well even for highly incomplete datasets (where many values

are missing). For our purposes, since we want a methodology

that works for phenotype data with missing values, we use the

biclustering method of Li et al. (2020). Specifically, our work

contributes to the literature as follow.

• We apply a novel biclustering approach to models G

and E. This is the first paper to consider modeling crop

phenotypes with this methodology.

• Our approach is effective in the case of missing

data whereas other studies either impute or remove

missing observations.

After presenting the details of the new methodology, we

apply our approach to three phenotype datasets. We analyze

data on three different crops (sorghum, maize, and rice) and

two phenotypes (flowering time and yield). Each of these cases

illustrates different aspects of our new methodology, and we

compare its performance to that of existing methods. Moreover,

we utilize these datasets as an opportunity to display more

detailed workings of our methodology with respect to the

interpretation of visualizations and numerical results.

2. Methodology

In this section, we describe the details of the new

methodology. We first describe the main idea of using

a set of no interaction models to model phenotype, and
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then present a specific method for obtaining those sets

via biclustering.

2.1. Modeling interactions

As noted in the introduction, we model plant

response or phenotype (µij) for a set of genotypes

i ∈ I in environments j ∈ J. Without using further

explanatory variables to describe either the genotype or

the environment, we could model phenotype with a simple no

interaction model

µij = µ + Gi + Ej + ǫij

where µ, Gi for i ∈ I, and Ej for j ∈ J are unknown constants,

and ǫij is an independent normal error. Here, genetics and

environment are not interacting with respect to determiningµij.

This is typically unrealistic for I and J of any size and/or widely

varying genotypes or environments. Full generality would then

require modeling of the form

µij = µ + Gi + Ej + GEIij + ǫij,

for additionally unknown constants GEIij for i ∈ I and j ∈ J.

Even though not all GEI effects may be important, one can

imagine that in some cases there are subsets of genotypes that

interact in the same manner with a subset of environments.

We let I0 ⊂ I and J0 ⊂ J denote such subsets. In such

a case,

GEIi1j = GEIi2j,∀i1, i2 ∈ I0, j ∈ J0

and we will use the notationGEI0j for the value ofGEIij common

across i ∈ I0. Then, for Ẽ
0
j = Ej+GEI0j (a “block” environmental

main effect)

µij = µ + Gi + Ẽ0j + ǫij,

for i ∈ I0 and j ∈ J0. In other words, within the scope of I0 and

J0, a linear no interaction model is appropriate.

Expanding on this idea, suppose we can partition I and J

into non-overlapping subsets, I = I1 ∪ I2 ∪ ... ∪ In and J =

J1 ∪ J2 ∪ ... ∪ Jm where GEIi1j = GEIi2j,∀i1, i2 ∈ Ip, j ∈ Jl, p =

1, .., n; l = 1, ...,m and that within every block {(ij)|i ∈ Ip, j ∈ Jl}

the GEIij depends only upon j. Then for GEI
p
j , the value of

GEIij common across values of i ∈ Ip and Ẽ
p
j = Ej + GEI

p
J ,

one has

µij = µ + Gi + Ẽ
p
j + ǫij

for all i ∈ Ip and j ∈ Jl. That is, inside of each one of

n×m blocks of genotypes/rows by environments/columns, there

is an additive (“no-interaction”) structure. If such structure

exists and can be identified, then there is the possibility

of fitting n × m no-interaction models within blocks and

having sensible ways to predict missing values without making

the overly stringent global additivity in a linear model for

phenotype. We proceed to introduce the methodology for

searching a large (and potentially sparse) two-way table of mean

responses for such “no-interactions within blocks” structure

based on biclustering.

2.2. Biclustering

Biclustering is a statistical learning methodology that

clusters both rows and columns in a two-way data tables

simultaneously (This is in contrast to traditional one-way

clustering methods, such as complete-link hierarchical

clustering and k−means clustering which partitions only

rows.). Since we need partitions of both genotypes and

environments, the type of partitioning that we need is

biclustering. In Figure 1, we provide a visual of the objective

of a general biclustering algorithm. For our purposes, one can

consider biclustering where the rows, i, represent genotypes

and columns, j, represent environments. The color in each

cell (in a heat map manner) can be interpreted as some

phenotypeµij or a transformation of phenotype, for a genotype-

environment pair, and the standard objective of biclustering

is to make homogeneous biclusters (in terms of values in the

two-way dataset).

Basic biclustering aims to produce blocks of cells with

homogeneous responses. This is not obviously is directly

aligned with our ultimate modeling objective. But appropriate

pre-processing (before biclustering) of phenotype responses

can produce what is ultimately needed. We, therefore,

consider biclustering four different possible responses, the

phenotype directly (as reference) and three transformations

that all normalize the phenotype response as shown in

responses (1)–(4).

1. µij − µ Difference from overall average (direct response)

2. µij−µi−µj+µDifference from genotype and environment

averages

3. µij − µi Difference from genotype i average

4. µij − µj Difference from environment j average

The results of biclustering response (1) are most easily

interpreted as a direct representation of phenotype. While

possible that this results in the desired biclusters, there is no

guarantee that this will happen. However, applying biclustering

to responses (2)–(4) can in all cases result in the identification

of blocks of genotypes and environments with approximately

the same GEI effects. To see this, we examine those response

functions in more detail. The second response is in fact an

expression for the GEI effects directly, as can be shown from a
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FIGURE 1

Biclustering creates row clusters (genotypes) and column clusters (environments) with homogeneous phenotype in a checkerboard pattern.

Raw matrix (left) and “checkerboard-like” biclustering (right).

few steps of algebra:

yij = µij − µi − µj + µ

= µ + Gi + Ej + GEIij + ǫij − µi − µj + µ

= µ + (µi − µ)+ (µj − µ)+ GEIij + ǫij − µi − µj + µ

= GEIij + ǫij

It is therefore immediately clear that clustering the second

response should result in cells where the varieties have the same

GEI effects and additivity within each cell.

The third response, that is, the deviation from genotype

average, is not a direct measure of GEI effects but can be

simplified as follows:

yij = µij − µi

= µ + Gi + Ej + GEIij + ǫij − µi

= µ + (µi − µ)+ (µj − µ)+ GEIij + ǫij − µi

= (µj − µ)+ GEIij + ǫij

This is a sum of the deviation from the environment average

and the GEI effects. Clustering and obtaining a perfectly

homogeneous cell would thus result in placing genotypes

together if this sum is constant. Since this must then be enforced

across all column clusters (clusters of environments), it follows

that the GEI effects must in fact be constant within each cell.

By symmetry of the two-by-two matrix, it is clear that for the

fourth response

yij = (µj − µ)+ GEIij + ǫij

and the same conclusion holds. While any of the three responses

will in principle work, it is not clear which will be most useful in

practice. This will be examined empirically later through a series

of case studies.

The quality (for our purposes) of a biclustering can be

measured in three ways. First, we can consider how well

the algorithm performs with its assigned task, namely how

homogeneous the response biclustered is within each cell. This

will be numerically different for each transformation of the

phenotype. Second, we can measure how well it succeeds in

finding cells that are homogeneous with respect to estimated

(“whole dataset”) GEI effects, which is the desired input for

the phenotype model. We note that this is equivalent to the

second response being homogeneous. All four transformations

(response functions) can be reasonably compared with this

approach. Third, we can evaluate the quality of the fit of a no-

interaction model within each cell, that is, the output of our

modeling approach. The ultimate goal is to obtain a set of cells

that result in a no-interaction model being a good fit within each

cell, thus this is the most sensible measure of the biclustering

quality in our present context.

Due to the complexity of searching through all possible

row and column partitionings, biclustering is known to be NP-

hard. Because of this, biclustering algorithms generally take a

heuristic approach that converges to a local optimal solution.

There are numerous biclustering algorithms motivated by gene

expression data. For example, Kluger et al. (2003) proposed a

method called spectral biclustering which attempts to rearrange

a raw data matrix into a “checkerboard-like” structure, such as in

Figure 1. Another common biclustering algorithm is by Cheng

and Church (2000) which, unlike spectral biclustering, utilizes a

node-deletion algorithm to find submatrices already hidden in a

two-way data table. However, a limitation to most biclustering

algorithms is an inability to effectively handle missing values,
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especially when there is substantial percentages of missing values

that are not missing at random. Instead, most applications

of biclustering which involve missing data are handled by an

imputation approach (Veroneze et al., 2011; Cheng et al., 2012;

Chattopadhyay et al., 2016).

This is critical for our purposes because commercial

phenotype data often has a large percentage of the data missing

not-at-random, and imputation methods will not be effective in

handling such high percentages of missing data. In fact, as noted

in the introduction, the initial motivation for our methodology

comes from commercial plant breeding, where numerous plant

varieties (in the case of soybeans) are selected for advancement,

that is, planted at least one more year based on experimental

field data. However, each variety is only tested in a small number

of environments. This is both due to cost considerations and

the suitability of the variety to the environment (e.g., a soybean

variety will not be planted in environments that are significant

mismatches to it’s relative maturity). Thus, the majority of

the data is missing not-at-random but based on the year the

variety starts trials, relative maturity of the variety, and breeder

decisions. Motivated by this and other similar problems, we

propose the utilization of a recently discovered biclustering

algorithm. This approach to modeling phenotypes makes no

assumption about the structure of the data and is still effective

with missing data (Li et al., 2020). With this methodology, we

are now able to effectively bicluster a two-way table of means

where data is missing, and we no longer need to impute values

that can bias our data and results. It is therefore Li et al. (2020)’s

biclustering algorithm that will be applied in all of the case

studies. In this paper, the biclustering algorithm and associated

visualizations are created in R using the biclustermd package

(Reisner et al., 2019, a companion to Li et al., 2020).

3. Results

We apply the proposed methodology to several case studies

involving data representing a variety of crops and phenotypes,

including data from both university studies and commercial

plant breeders (see Table 1).

For each of the cases, we apply our phenotype model,

interpret the results, and compare results to those from other

methods that have been proposed in the literature (see Table 2).

We limit ourselves to other models that required the same

TABLE 1 Case study characteristics.

Crop Phenotype Genotypes Environments Missing values

Sorghum Flowering time 237 7 3.0%

Maize Yield 211 8 0%

Rice Flowering time 176 9 2.8%

input, that is, a simple two-way table of means for the observed

phenotype. Models that take advantage of other explanatory

variables are not considered. Models that incorporate such

additional information include the factorial regression models

(Denis, 1988) and van Eeuwijk et al. (1996) that explicitly

incorporate environmental variables and a large number of

more recent models that incorporate genotypic information

(Pantazi et al., 2016; Chlingaryan et al., 2018; Vitor et al.,

2019). In applications where such additional information is

available, one of those models is likely to explain more

of the GEI effects than a model that uses a simple table

of means (Malosetti et al., 2013). Although the maize data

do not contain missing values, we included them in our

study for completeness. Indeed, we show that even in cases

without missing data, our biclustering approach still obtains

superior performance.

Moreover, we do not emphasize the percentage of missing

values as different field trials may result in varying amounts of

missingness. Li et al. (2020) demonstrate that their biclustering

algorithm is effective in cases with 75%+ missing values, and

we direct the interested reader to their study. Data imputation

constructs a complete dataset that enables analysis through

traditional linear models, however, it has its limitations. The

state at which the data is missing may lead to biased imputed

results, that is, data may be missing at random or because of

some unknown mechanism. By imputing these results, we are

essentially making a claim that we can accurately estimate the

phenotype given the variety and environment. For this study, we

want to avoid any such claims. Therefore, we do not perform

any imputation for comparison. This is the reason we include

the maize dataset in our work.

Before we begin our analysis, we note that models (1) and

(2), in Table 2, can be seen as special extreme cases of our

approach. At one extreme, if we set the number of column and

row clusters both equal to one then our model is the same as

(1). At the other extreme, if we set the number of row clusters

equal to the number of genotypes and the number of column

clusters equal to the number of environments, then our model is

the same as (2).

TABLE 2 Benchmark models for genotype-by-environment

interaction (GEI) using a two-way table of phenotype means data.

Model type Model

1. Additive Model (no-interaction) µij = µ + Gi + Ej + ǫij

3. Regression on the Mean µij = µ + Gi + Ej + biEj + ǫij

(see Finlay and Wilkinson, 1963)

4. Additive Main Effects and

Multiplicative Interactions

µij = µ + Gi + Ej +
∑K

k=1 bikzjk + ǫij

(AMMI) (see Gollob, 1968)
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FIGURE 2

Comparison of biclusterings plots for sorghum. The homogeneity of the cells indicates that the biclustering algorithm was able to successfully

group the response variables in distinct clusterings. Top left—response (1); Top right—response (2); bottom left—response (3), and bottom

right—response (4).

3.1. Sorghum flowering time data

The first of our cases involve trials studying the flowering

time (in growing degree days) of sorghum (sorghum bicolor)

(Li et al., 2018). The trials were conducted in seven locations

(three in Puerto Rico, two in Iowa, and two in Kansas)

using 150 recombination inbred lines (RILs) from two inbred

parent varieties. In their analysis, the authors use one-

dimensional hierarchical clustering to separately cluster varieties

and environments and find that by dividing the varieties into two

row clusters and environments into three column clusters, the

response becomes much more predictable.

3.1.1. Selecting response to biclustering

Determining the number of row and column clusters can

be done via experimentation as will be described later, but

the original study concludes that the environment should be

clustered into three clusters, and the genotypes should be

clustered into two clusters with the three environmental clusters

being {KS11, KS12}, {IA14, PR11, PR12}, and {PR14S, IA13}.

Following that conclusion, we start with two-row clusters and

three-column clusters. This allows us to move directly into

choosing a response function, and we use each of the four

response functions described in Equations (1)–(4), with the

final biclusters for each of the four response functions is shown

in Figure 2. For this dataset, it appears that biclustering every

response results in very similar results with respect to creating

cells where no-interaction models provide good fits. We believe

this to be partially coincidental for the following reason. The

environments that show the greatest degree of near additivity,

that is, lack of GEI interactions also happen to have similar

flowering times when compared to the other environments.

This can be seen by the homogeneity of the distinct coloring
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of cells. For example, locations {IA14, PR11, and PR12} show

the absence of GEI interactions and also have fewer days until

flowering than the other four locations. While such correlations

between the mean response and plasticity may well exist, the

fact that we obtain such good biclusters simply by clustering

the mean response itself cannot be expected to generalize to

more complex datasets with more varieties and environments.

As a point of validation, using two genotype clusters and three

environment clusters for our biclustering algorithm, we arrive at

the same conclusion as Li et al. (2018) with the environmental

and genotype clusters coinciding with our biclustering results.

We summarize the performance of each of the biclusters

obtained with the measurement being the final within the

block sum of squared errors summed across all cells,

which we henceforth denote as SSEbc . It should be noted

that the biclustering algorithm has a random initialization

(the biclustering algorithm randomly assigns genotypes and

environments to clusters in the first iteration). Furthermore,

the algorithm can converge to a local optimum because of this,

successive runs of the algorithm may obtain different results.

Using the results from 30 trials, we obtained the smallest SSEbc
to be approximately 27× 106, 36× 106, 46× 106 for responses

(2), (3), and (4), respectively. Since in practice one would utilize

the biclustering algorithm until the best results are obtained, it is

reasonable to only report the smallest value acquired.

If we consider the SSEbc as our metric for judging cell

homogeneity, we observe that clustering response (2) (GEI

directly) obtains themost homogeneous cells, which is the intent

of this biclustering algorithm. Whereas, clustering the response

directly, response (1), results in the least desirable grouping of

varieties and environments. In fact, Li et al. (2018) note that

the prediction accuracy depends on first transforming the data

from the actual raw number of days until flowering to a modified

response that accounts for the amount of solar radiation received

in the different locations. Without this transformation and

the knowledge that is behind the transformation, the direct

hierarchical clustering fails which can be understood by the

biclustering response (1). Moreover, we do not include response

(1) in these comparisons of “SSE”. The “constant-within-a-

cell” SSE is of necessarily bigger than the other responses, and

clustering for homogeneous values in a cell has a different

objective than the other responses.

3.1.2. Determining number of clusters

In the preceding experiments, we followed the conclusions

of Li et al. (2018) and used two-row (genotype) clusters and

three-column (environment) clusters. We now examine the

ways to determine good numbers of column/row clusters based

on the biclustering itself. We do this by considering the two

evaluation measures.

a. The response within each cell, that is, SSEbc.

b. The fit of a no-interaction model within each cell of the final

bicluster, that is, SSEni.

As previouslymentioned, the goal of applying biclustering to

data such as this is to identify subsets of genotypes and subsets

of environments where no-interaction models are appropriate.

Once identified, we can fit a no-interactionmodelµij = µ+Gi+

Ẽ
p
j + ǫij for the phenotype within each cell, and then aggregate

the sums of squares of each individual model as the measure of

performance. From Li et al. (2018), we know that there are two

genotype and three environment clusters, respectively, resulting

in six cells. Constructing a linear model on the bicluster result,

we obtain six linear models with six associated SSE. If we take the

sum of the six SSEs, we obtain the final error of our biclustering

no-interaction model which we denote as SSEni.

Figure 3 displays the two measures where the cell value is

the average SSEbc and SSEni of the (G, E)-pair (i.e., the pair of

row and column clusters) over 30 trials. We first notice that as

the number of clusters approaches the number of varieties and

environments, each observation is placed in its own cell and

all of the measures converge to zero, but this is expected since

capturing all the GEI interactions will result in zero SSEbc and

SSEni . In practice, one would want to avoid cluster pairs on the

top right of each figure. If we choose a (G, E)-pair which is slowly

transitioning from bottom left (yellow) to top right (green), we

can safely choose a combination of row and column clusters

while still preserving the information gained from biclustering.

Verifying the results of Li et al. (2018), it appears as though

two genotype clusters and three environmental clusters are

indeed reasonable.

3.1.3. Comparison with other models

We finally compare our modeling approach with the other

approaches that only use a two-way table ofmeans for phenotype

as input (see Table 2). Namely, we consider linear models

1–4 in Table 2, as our benchmark for the results obtained

from biclustering.

The error degrees of freedom and SSE is what is

being compared between the linear and biclustering models.

Degrees of freedom being equal, a smaller SSE indicates that

more error is accounted for within the model. If sums of

squares are equal, a higher error degree of freedom would

indicate that the model obtains the same quality of fit with

less complexity.

Table 3 displays the degrees of freedom and sum of squares

for each main effect and other terms. For the no-interaction

model in Table 3, we see that there is a large error term due

to the variation in the G and E term not being able to capture

enough information. However, in the all-interaction model in

Table 3, we have no error since all the empirical information

is represented by the GEI term. Although this leads to zero

SSE in the all interactions model, a linear model with this
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FIGURE 3

Comparison of the number of row and column clusters for SSEbc (left) and SSEni (right) as the number of column and row clusters approach the

dataset dimensions, the SSE decreases toward zero.

structure is not useful in our context since this does not provide

a straightforward way of separating the GEI from the error.

Allowing for interactions at every combination of G and E is not

a useful approach to understanding the GEI terms.

As a compromise to including all possible GEIij’s in

modeling, the all-interaction model and the regression on the

mean model attempt to separate the contribution of GEI terms

from the error. The strength of the regression on the mean

model is in its ability to describe the GEI effect in terms

of environmental effects, including through understanding the

means of each environment. Next, the AMMI model uses

principal components to remove the contribution of GEI

from the error. Although only two principal components

are represented here, more can be added to represent more

possible complexity in interactions. However, if too many

principal components are included, the error will approach

zero and we are left with modeling that is equivalent to the

all-interaction model. Unlike the all-interaction model, these

models can be used to predict the performance of genotypes in

untested environments.

The smallest SSEni acquired from our fitting no-interaction

models on the final biclusters over 30 trials are 7,425,947,

9,602,964, and 7,405,088 for responses (2), (3), and (4),

respectively. We can interpret this to mean that in terms of

flowering time for sorghum, a linear model which captures

TABLE 3 Summary of degrees of freedom and sum of squares for the

sorghum dataset.

Term Degrees of freedom Sum of squares

No-interaction model

G 236 53,020,738

E 6 199,593,392

Error 1367 67,635,610

All-interaction model

G 236 53,020,738

E 6 199,593,392

GEI 1367 67,635,610

Error 0 0

Regression on mean model

G 236 53,020,738

E 6 199,593,392

GEI Ind 236 52,422,217

Error 1131 15,213,393

AMMImodel

G 236 53,020,738

E 6 199,593,392

PC1 241 54,483,854

PC2 239 5,581,472

Error 887 7,570,284
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the GEI and GEI + genotype average is more easily estimated

than the other responses. Lastly, we are able to account for

more GEI interaction than the regression on the mean and

the AMMI models. Since we obtain smaller SSE and have the

same main effects as the other four models, we can say that

biclustering is able to simultaneously account for important

interaction effects compared to the regression on the mean and

the AMMI models.

3.2. Maize yield data

The next case was originally published in Ribaut et al.

(1996) and Ribaut et al. (1997) and is used by Malosetti et al.

(2013) to illustrate different models for phenotype predictions.

The original authors crossed drought-tolerant and drought-

susceptible parents, resulting in 211 maize (Zea mays) lines that

were then subjected to stress trials over three separate years.

This included managed water stress trials with no stress (1992),

intermediate stress (1992 and 1994), several types of stress (1992

and 1994), and nitrogen stress trial with low and high nitrogen

(1996), with a repeat of the low nitrogen stress trial in the same

year, for a total of eight environments. The phenotypic response

being considered is yield. In this section, and the following,

we focus our discussion on the comparison of our biclustering

model to the other linear models.

We immediately notice from Table 4 that the AMMI model

with two principal components provides the model with the

smallest error excluding the all-interaction model. Unlike the

sorghum study, this data does not have appropriate numbers

of genotype or environment clusters known in advance. Hence,

we test multiple combinations of genotype and environment

clusters. The results are found in Table 5. In summary, we see

that by choosing three to four genotype clusters and three

to four environmental clusters, we are able to account for

more of the GEI effect. These clusters both provide smaller

errors than the AMMI model and is a reasonable way to

partition 211 genotypes and 7 environments due to the size of

each cluster.

In Figure 4, we provide a visualization of the biclustering

object with four genotypes and four environment clusters. The

graphic on the left is the random initialization whereas the

graphic on the right is the final bicluster result. We see that our

methodology can indeed identify homogeneous blocks where

useful interpretations can be made.

3.3. Rice flowering time data

The next case will be to consider a rice (Oryza sativa) dataset

containing 176 lines and 9 environments. For each pair of

lines and environments, we have two phenotypic measures for

flowering time, FTgdd, and FTdap. FTgdd is the accumulated

TABLE 4 Summary of degrees of freedom and sum of squares for the

maize dataset.

Term Degrees of freedom Sum of squares

No-interaction model

G 210 614

E 7 5,679

Error 1,470 813

All-interaction model

G 210 614

E 7 5,679

GEI 1,470 813

Error 0 0

Regression on mean model

G 210 614

E 7 5,679

GEI Ind 210 230

Error 1,260 583

AMMImodel

G 210 614

E 7 5,679

PC1 216 242

PC2 214 173

Error 1,040 398

growing degree units for each line in an environment across

the length of time the line was in that specific environment.

Whereas, FTdap is day length for the line during its growth

stage. Much like the previous section, we focus our discussion

on the comparison of our biclustering model vs. the other linear

model. Again since a study has not been performed on the

optimal number of genotype and environment clusters, we aim

to explore multiple combinations.

3.3.1. Phenotype response FTgdd

The summary of our numerical results is displayed in

Tables 6, 7. Similarly to our previous examples, the AMMImodel

is still superior to the no-interaction and regression on the mean

models in being able to capture more GEI effects. In Table 7, we

display the best results of our experimentation from 30 trials for

various pairs of G and E with the metric being the SSE from

fitting the no-interaction model after biclustering.

From Table 7, we see that we are able to obtain better

numerical results than compared to the AMMI while still being

able to cluster a reasonable number of lines and environments

together. If seven row clusters are obtained, then in theory,

each cluster would, on average, contain approximately 25 lines

while sharing 2–3 environments. Consistently, responses 2 and

4 are able to obtain a lower SSEni than compared to other

responses. Specifically, the interaction between the lines and
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FIGURE 4

Biclustering illustration of response (4) with initialization (left) and final bicluster (right) for four row and column clusters (maize data). The

homogeneity of the cells indicates that the biclustering algorithm was able to successfully group the response variables in distinct clusterings.

TABLE 5 Biclustering results with the smallest SSE values obtained

from fitting no-interaction models on each bicluster for raw responses

(30 trials - maize data).

Response

(G, E) - Pair 2 3 4

(2, 2) 604 580 639

(2, 3) 418 463 446

(2, 4) 333 352 350

(3, 2) 579 595 524

(3, 3) 431 456 460

(3, 4) 300 339 314

(4, 2) 589 576 557

(4, 3) 434 454 402

(4, 4) 296 334 296

environment is more easily identifiable than that of GEI +

environmental average.

Figure 5 displays the biclustering result of the initialization

and final bicluster with eight lines and four environment

clusters. We, again, notice the homogeneity of the blocks and

the ability of our algorithm to identify meaningful groupings.

3.3.2. Phenotype response FTdap

The numerical results for FTdap are similar to FTgdd

which can be seen in Tables 8, 9. That is, we are still able

to account for more information than the regression on the

mean and the AMMI model, given the correct combination.

However, the most interesting observation is that Responses

2 and 4 are still consistently better than Responses 1 and 3.

This is in line with the results shown for the Sorghum dataset.

One possible explanation for this can be that the flowering

time as a phenotypic trait is more easily identifiable with

these responses. Recall that Response 2 is a direct expression

for GEI and Response 4 is an expression for GEI + variety

average. Figure 6 provides an illustration of the initial and

final biclustering.

4. Discussion

Recall that the primary goal of our biclustering is to obtain

sets of varieties and environments where the GEI interaction

effects are constant or equivalently zero within the frame of

reference of each cell. If within a particular cell the GEI

interaction effects are exactly the same for all of the varieties and

all of the environments that define the cell, then no interaction

effects are in fact observed within the cell. In other words, the

phenotype of each variety in each environment can be predicted
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TABLE 6 Summary of degrees of freedom and sum of squares for the

rice dataset—FTgdd.

Term Degrees of freedom Sum of squares

No-interaction model FTgdd

G 175 132,865,164

E 8 19,169,848

Error 1355 59,620,672

All-interaction model FTgdd

G 175 132,865,164

E 8 19,169,848

GEI 1355 59,620,672

Error 0 0

Regression on mean model FTgdd

G 175 132,865,164

E 8 19,169,848

GEI Ind 175 23,653,430

Error 1180 35,967,242

AMMImodel FTgdd

G 175 132,865,164

E 8 19,169,848

PC1 182 50,094,094

PC2 180 3,362,842

Error 993 6,163,736

TABLE 7 Biclustering results with the smallest SSE values obtained

from fitting no-interaction models on each bicluster for raw responses

(30 trials—rice data FTgdd).

Phenotypic response

(G, E) - Pair 2 3 4

(7, 3) 4,605,916 4,692,904 4,606,188

(7, 4) 3,417,453 3,962,718 3,368,339

(8, 3) 4,604,048 4,653,856 4,503,244

(8, 4) 3,374,006 3,971,685 3,306,126

(9, 3) 4,577,429 4,385,709 4,460,673

(9, 4) 3,293,641 3,910,443 3,531,670

in terms of the main effects (genotypes and environment) only.

Thus, for a perfect set of biclusters, the observations in each cell

would follow such a no-interaction model. In light of this, we

notice that indeed, our biclustering approach to modeling GEI

interactions is indeed a valuable and novel approach.

For each of our three sample crops, we notice that

a no-interaction model built from biclustering provides an

appropriate fit, and in each case, we are able to account for

more GEI than either the regression on the mean and the AMMI

model from all four responses. Malosetti et al. (2013) provided

the initial study on different approaches to modeling phenotypes

given only genetics and environmental information. Our work

FIGURE 5

Biclustering illustration of response (4) with initialization (left) and final bicluster (right) for eight rows and four column clusters (rice data). The

homogeneity of the cells indicates that the biclustering algorithm was able to successfully group the response variables in distinct clusterings.
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TABLE 8 Summary of degrees of freedom and sum of squares for the

rice dataset—FTdap.

Term Degrees of freedom Sum of squares

No-interaction model FTdap

G 175 134,189

E 8 485,135

error 1355 58,071

All-interaction model FTdap

G 175 134,189

E 8 485,135

GEI 1355 58,071

Error 0 0

Regression on mean model FTdap

G 175 134,189

E 8 485,135

GEI Ind 175 41,697

Error 1180 16,374

AMMImodel FTdap

G 175 134,405

E 8 484,918

PC1 182 47,971

PC2 180 4,272

Error 993 5,828

TABLE 9 Biclustering results with the smallest SSE values obtained

from fitting no-interaction models on each bicluster for raw responses

(30 trials—rice data FTdap).

Phenotypic response

(G, E) - Pair 2 3 4

(7, 3) 4,339 4,303 4,419

(7, 4) 3,535 3,511 3,362

(8, 3) 4,283 4,325 4,391

(8, 4) 3,471 3,502 3,505

(9, 3) 4,229 4,277 4,302

(9, 4) 3,406 3,467 3,252

has expanded upon their findings and results. Namely, we have

shown an extension of their work by considering a successful

biclustering technique to main effects modeling.

Admittedly, one limitation of this approach is the

identification of the number of clusterings for the genetics and

environment. Computationally, the number of clusterings can

simply equal the dimensions of the dataset. However, in that

case, we have a complete all-interaction model. Conversely,

if we only have one genetic cluster and one environment

cluster, we have a standard additive model. The difficulty lies

in determining the optimal number of clusterings for each

FIGURE 6

Biclustering illustration of response (4) with initialization (left) and final bicluster (right) for eight rows and four column clusters (rice data). The

homogeneity of the cells indicates that the biclustering algorithm was able to successfully group the response variables in distinct clusterings.
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factor. Numerically, we have shown approaches to help aid in

determining the number of clusterings while still maintaining

strong interpretability. By incrementally increasing the number

of clusterings along each factor, we can see the trade-off

between complexity and SSE. Although still ambiguous, as

the case with unsupervised machine learning, our biclustering

approach provides a novel methodology to modeling genetics

and environment data.

5. Conclusion

In this paper, we described a novel approach to modeling

phenotypic data using a no-interaction model, that is, only

incorporating the main effects of genotype (G) and environment

(E). To accomplish this task, we made use of a biclustering

algorithm to identify subsets of genotypes and subsets of

environments where in this cell there exist no interaction

effects. Because of the potential for phenotypic observations

to be of missing, traditional statistical modeling methods

cannot be used without imputing missing values which can

bias data and results. Partially motivated by this, we utilized

a novel biclustering algorithm that makes no assumptions on

the completeness of data. This new algorithm enabled us to

bicluster phenotypic observations when data is missing no-at-

random which is similar to how most real-world plant breeding

programs operate.

Our results showed that this approach is highly effective

and out-performs the state-of-the-art linear models which only

use phenotypic data as presented in Malosetti et al. (2013).

In particular, we are able to obtain better performance than

the regression on the mean and the additive main effects

and multiplicative interactions model while still being able to

interpret our findings. Along the way, we explained how to

obtain a reasonable amount of clusters for the rows and columns

and also explained the importance of first transforming the

phenotypic response. This papers now aims to be the state-of-

the-art when it comes to predicting phenotypic performance

using only a two-way table of means consisting only of genotype

and environment information.
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