
fpls-13-975888 September 10, 2022 Time: 15:14 # 1

TYPE Original Research
PUBLISHED 15 September 2022
DOI 10.3389/fpls.2022.975888

OPEN ACCESS

EDITED BY

Volkan Cevik,
University of Bath, United Kingdom

REVIEWED BY

Sung Un Huh,
Kunsan National University,
South Korea
Eui-Hwan Chung,
Korea University, South Korea

*CORRESPONDENCE

Andrei-José Petrescu
andrei.petrescu@biochim.ro

SPECIALTY SECTION

This article was submitted to
Plant Pathogen Interactions,
a section of the journal
Frontiers in Plant Science

RECEIVED 22 June 2022
ACCEPTED 19 August 2022
PUBLISHED 15 September 2022

CITATION

Martin EC, Spiridon L, Goverse A and
Petrescu A-J (2022) NLRexpress—A
bundle of machine learning motif
predictors—Reveals motif stability
underlying plant Nod-like receptors
diversity.
Front. Plant Sci. 13:975888.
doi: 10.3389/fpls.2022.975888

COPYRIGHT

© 2022 Martin, Spiridon, Goverse and
Petrescu. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

NLRexpress—A bundle of
machine learning motif
predictors—Reveals motif
stability underlying plant
Nod-like receptors diversity
Eliza C. Martin1, Laurentiu Spiridon1, Aska Goverse2 and
Andrei-José Petrescu1*
1Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the
Romanian Academy, Bucharest, Romania, 2Laboratory of Nematology, Department of Plant
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Examination of a collection of over 80,000 Plant Nod-like receptors (NLRs)

revealed an overwhelming sequence diversity underlying functional specificity

of pathogen detection, signaling and cooperativity. The NLR canonical

building blocks—CC/TIR/RPW8, NBS and LRR—contain, however, a number

of conserved sequence motifs showing a significant degree of invariance

amongst different NLR groups. To identify these motifs we developed

NLRexpress—a bundle of 17 machine learning (ML)-based predictors, able to

swiftly and precisely detect CC, TIR, NBS, and LRR motifs while minimizing

computing time without accuracy losses—aimed as an instrument scalable

for screening overall proteomes, transcriptomes or genomes for identifying

integral NLRs and discriminating them against incomplete sequences lacking

key motifs. These predictors were further used to screen a subset of ∼34,000

regular plant NLR sequences. Motifs were analyzed using unsupervised ML

techniques to assess the structural correlations hidden underneath pattern

variabilities. Both the NB-ARC switch domain which admittedly is the most

conserved region of NLRs and the highly diverse LRR domain with its

vastly variable lengths and repeat irregularities—show well-defined relations

between motif subclasses, highlighting the importance of structural invariance

in shaping NLR sequence diversity. The online NLRexpress webserver can be

accessed at https://nlrexpress.biochim.ro.
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Introduction

The extensive repertoire of NOD-like receptors (NLR) in
plants, which often encode for so-called resistance (R) proteins,
have a pivotal role in the plant’s innate immune system to
counteract a wide range of invading pathogens and pests. The
co-evolutionary dynamics between pathogen and host led to a
vast expansion of NLR interaction networks and operational
mechanisms performed by this class of proteins sharing a
more or less similar structural organization (Jones et al., 2016;
Schreiber et al., 2016; Shao et al., 2016; Sukarta et al., 2016;
Baggs et al., 2017; Wu et al., 2017; Cesari, 2018; Maruta et al.,
2022). Canonical NLRs consist of a variable N-terminal domain,
a central nucleotide-binding NBS domain and a leucine-rich
repeat LRR domain (Sukarta et al., 2016). However, extensions
up- and down-stream of this core region are often present
and variable domains are even integrated between these core
subunits to provide functional specificity to the protein (van der
Hoorn and Kamoun, 2008; Cesari et al., 2014; Wu et al., 2015;
Khan et al., 2016; Kroj et al., 2016; Andolfo et al., 2019).

Sequence variability of these proteins in the N-ter region led
to a broadly accepted classification into several NLR groups. The
largest of these are the TNL and CNL classes displaying toward
their N-ter end either a toll/interleukin-1 receptor (TIR) or a
coiled-coil (CC) domain, respectively. TIR domains are well-
conserved structures spanning across the entire tree of life which
display the so-called Rossman fold also known as the “ADP-
binding βαβ fold” due to the ability to bind the ADP region of
dinucleotides (Hanukoglu, 2015). TIR domains are common to
several immune system proteins in higher eukaryote organisms.
While highly conserved in plant TNLs, the plant TIR group
diverges significantly from metazoan TIRs with distinctive,
thoroughly analyzed features (Toshchakov and Neuwald, 2020)
including specific additions and ablations which make them
prone to a precise identification. This high TIR conservation in
plant TNLs is in startling contrast to the CNL diversity in which
the N-ter CC domains exhibit a very high variability. Most CCs
display 4 or 5 predicted helical segments of which the 3rd is the
most conserved, embedding the so-called EDVID motif which
was proved to have critical functions in several systems (Rairdan
et al., 2008; Maekawa et al., 2011; Hao et al., 2013; Casey et al.,
2016; Slootweg et al., 2018; Wróblewski et al., 2018) and/or to
be involved in CC-LRR interaction as shown by ZAR1 cryo-EM
structures (Wang et al., 2019a,b). Among other, less frequently
reported extensions in the N-ter region of NLRs were SD, kinase,
α/β hydrolase, WRKY (Sarris et al., 2015; De Oliveira et al., 2016;
Kroj et al., 2016; Andolfo et al., 2019).

In all NLRs, the most conserved region is the central NB-
ARC/NBS domain which acts as an “on/off switch” that changes
its configuration upon activation by a matching pathogen
effector (Sukarta et al., 2016; Burdett et al., 2019; Wang et al.,
2019a; Ma et al., 2020). In plants this domain consists of
three subdomains: the Nucleotide Binding Domain (NBD), the

Helical Domain, HD1, also known as ARC1 and the Winged
Helix Domain, WHD, also termed ARC2. In the inactive
state, the three subdomains collectively bind an ADP molecule.
During activation, ADP is released and replaced by an ATP. This
leads to a drastic change of configuration in which the ARC2
rotates ∼180◦ with respect to NBD/ARC1. The nucleotide-
binding pocket is formed by residues located in seven highly
conserved regions spread all over the three NBD, ARC1 and
ARC2 subdomains, referred to herein as: VG, P-loop, Walker
B—in NBD; RNBS-B, RNBS-C—in ARC1 and GLPL, MHD—
in ARC2 (Tameling et al., 2002; Van Ooijen et al., 2008; Qi and
Innes, 2013; Wróblewski et al., 2018; Johanndrees et al., 2021;
Yu et al., 2021). Along with these seven “pocket” stretches two
other regions which are instrumental in providing subdomain
stability show a rather high invariance: the RNBS-A in NBD and
RNBS-D in ARC2 (Wang et al., 2019b; Ma et al., 2020; Martin
et al., 2020b).

Finally, the LRR domain has a solenoidal, horseshoe-like 3D
architecture and consists of recurrent stretches of 15–35 amino
acids length that start each with a so-called LxxLxL motif, where
L is a hydrophobic amino acid, dominantly leucine, and X can be
any residue (Kajava, 1998; Kobe and Kajava, 2001). Repeats are
held together via a H-bond network formed among the LxxLxL
stretches located on the ventral side of the horseshoe. The LRR
domain is present not only in NLRs, but in many other immune
system proteins, both in plants and metazoans. For instance, in
plant Receptor-Like Kinases/Proteins (RLK/RLP) and metazoan
TLRs the LRR domain is localized on the extracellular side
of the receptor and is responsible for the direct detection of
pathogen-associated molecules (Sun et al., 2013; Rajaraman
et al., 2016; Eckardt, 2017; Dievart et al., 2020). Some of these
RLKs require also the association with other membrane-bound
receptors through their own LRR domains such as FLS2-BAK1
(Sun et al., 2013). In cytosolic NLRs, the LRR domains were
shown to display various intra- and inter-molecular interacting
functions. For example, the cryo-EM structures of ZAR1 CNL
and RPP1 TNL (Wang et al., 2019a,b; Ma et al., 2020) indicate
that the N-ter region of the LRR interacts with NBS. On the
other hand, while in ZAR1 the downstream C-ter region of
the LRR binds to the RKS1 kinase which is an adaptor for the
recognition of the effector, in other NLRs such as RPP1, Rx or
Gpa2, the LRR domain recognizes directly the effector or the
pathogen molecule (Slootweg et al., 2017; Ma et al., 2020).

The working environment imposes interesting constraints
on the local properties of LRR sequences. Whereas the
extracellular LRR domains of RLK/RLP/TLRs display repeats
of regular ∼24 aa lengths and almost invariant 3D shape,
in cytosolic NLRs LRR repeats are very irregular while the
LxxLxL motifs are highly variable and ambiguous, with many
local alternative “satellites” (Kobe and Kajava, 2001; Kajava
and Kobe, 2002; Sela et al., 2012, 2014; Baudin et al.,
2019; Wang et al., 2019b). This imposes a high level of
uncertainty in repeat delineation which makes the investigation
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of structure-function relations problematic and inflicts on
model-driven analysis of LRR fold stability, interdomain and
protein-protein interactions. Some more accurate machine
learning-based tools were recently developed to address this
problem (Bej et al., 2014; Martin et al., 2020a; Liu et al., 2022) but
these are computationally costly. For instance, the LRRpredictor
(Martin et al., 2020a), which was specifically designed to address
motif irregularities, relies on the consensus of 8 classifiers of
which 4 are based on variability profiles only, built starting
from global databases, and 4 rely in addition on secondary
structure predictions. Such complex methods clearly require
high computational resources which makes them less usable in
genome-wide or large proteome datasets scanning.

In this context lighter but similarly precise tools—able
to screen overall transcriptomes and proteomes are needed
in order to discriminate between complete transcripts and
incomplete sequences lacking key functional motifs. To this
end we introduce here NLRexpress—a bundle of 17 ML-
based predictors designed to identify CC-/TIR-/NBS- and LRR-
specific motifs. The main focus in developing NLRexpress was
to create an instrument scalable for screening large sets of
plant NLRs based on simple but effective NN models able to
reduce the computing time with minimal accuracy losses. Motifs
identified with NLRexpress in a large NLR atlas (NLRscape,
2022) were then subjected to unsupervised classification in order
to identify correlations hidden underneath motif variabilities in
individual domains and the overall NLR structure.

The online NLRexpress webserver can be accessed at https:
//nlrexpress.biochim.ro and the standalone version can be
downloaded from https://github.com/eliza-m/NLRexpress.git.

Materials and methods

Training sets and preprocessing

In generating the training sets for NLR motifs we used data
found in the NLRscape database which organizes information
on over 80,000 plant NLR proteins and fragments (NLRscape,
2022). From the overall set, sequences that contain a single,
complete canonical NBS domain with a proper NBD-ARC1-
ARC2 subdomain layout were clustered at 90% identity and 90%
coverage resulting in a subset of ∼34,000 NLR. This contains
around 41% CNLs (CC-NBS-LRR), 15% TNLs (TIR-NBS-LRR),
and 1.2% RNLs (RPW8-NBS-LRR) while the remaining 43%
sequences are either NLs (NBS-LRR) or display incomplete or
a non-canonical domain layout.

Individual CC, TIR, NBS, and LRR domain regions were
then extracted from the full protein sequence and further
clustered at a minimum of 70% domain coverage and various
sequence identity thresholds using MMseqs2 (Steinegger and
Söding, 2017).

For the CC domain, a 30% identity threshold was imposed
resulting in 685 representatives. This set was further manually
curated to eliminate incomplete CC entries with large deletions
of 15–20 aa in helical predicted regions and retain only those
entries having CC lengths of over 120 aa including the linker to
NBS. By this, a final clean set of 475 sequences was retained for
EDVID CC motif training.

A similar approach was used in generating the TIR
motifs training data. By contrast to the CC domains which
are highly variable, TIRs are significantly more conserved—
therefore a 60% identity cutoff was enough to obtain a
set of 881 representatives. After the manual inspection and
elimination of incomplete motifs, 490 sequences were retained
for training the TIR module.

As the NBS region displays not less than nine highly
conserved potential motifs (VG; P-loop; RNBS –A, –B, –C,
and –D; Walker B, GLPL, and MHD) spread over the three
subdomains of NBS, only sequences displaying the complete
NBD-ARC1-ARC2 layout were selected. By using a cutoff
of 50% sequence identity at 70% coverage, a set of 1,910
representatives was obtained, which was further reduced to 861
by the elimination of incomplete N-/C- termini or missing
motifs sequences.

Finally, for LRR motif detection, a curated set of 117 LRR
domains containing ∼2,000 core LRR motifs was selected for
the overall training set resulting from the following workflow.
In a first step, only sequences containing both complete NBS
and LRR domains were retained. The LRR domain regions of
these sequences were clustered at 50% identity and clusters were
ranked according to their dimension. From these, only the top
117 clusters were retained, containing each over 40 sequences
while the rest were treated as sparse LRR outliers. Sequences
within the top 117 largest clusters were further subjected to
LRR motif delineation with LRRpredictor (Martin et al., 2020a)
and in-depth sequence profiling and analysis for representative
selection. While the level of intra-cluster identity ensures a
robust structural homology, the sequence diversity induces local
variations of profiles such as the secondary structure state or
the LRR motif probability—these were in turn used as selection
criteria in choosing the optimal cluster representative.

Feature selection

In most state-of-the-art sequence-based predictors,
variability profiles are computed based on remote homologs
retrieved from very large databases such as Uniprot20
or Uniclust30/50. However building such HMM/PSSM
profiles starting from large databases comes with a significant
computational cost, especially when the protein query contains
repetitive patterns such as LRR motifs—due to the vast increase
in multiple alignment possibilities of such repetitive stretches
found in the hits of a given queried sequence. As this is the
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time-limiting step in generating the NLR profiles, instead of
using the Uniprot/Uniclust datasets, we explored the possibility
of compiling downscaled custom-generated focused sets in
achieving the best tradeoff between the computational cost and
the HMM profile relevance. To this end, in building profiles, a
set of 2,361 sequences was generated consisting of a collection
of 1,361 plant NLRs of at least 500 amino acids filtered at
20% identity and an extra group of 1,000 LRR domains larger
than 200 aa filtered at the same identity level, but derived
from different protein types and origins—added in order to
allow the predictor to detect swiftly in a given genome all
kinds of LRRs, not only those NLR specific. This focused
dataset was further used by all the 11 predictors included in
NLRexpress to generate the training features which consist of
match emissions probabilities inferred using the JackHMMER
suite (Johnson et al., 2010; Potter et al., 2018) with a 1e-5 expect
value cutoff. The first and second iterations of HMM profiles
were investigated as features and using them in conjunction
proved to yield the best results.

Network architecture—Training and
performance evaluation

Supervised classifiers were trained for each of the 17
individual motif types—specific to the CC (extended EDVID),
TIR (βA, αA, βC, αC, βD-αD1, αD3), NBS (VG; P-loop; RNBS
–A, –B, –C, and –D; Walker B, GLPL, MHD) and LRR (LxxLxL)
domains. For each residue in the input sequence, the individual
predictors compute the probability to be the starting point of
a motif by using as features the negative natural log of HMM
emission probabilities to each 20 possible amino acids computed
in the first and second iteration over a sliding window of 5
positions upstream and downstream motif borders adding up to
a total number of 20 × 2 × (5 + motif length + 5) input features.

For training the individual predictors, the CC, TIR, NBS,
and LRR motif datasets were split into 5 equal groups. The first
4 groups were used for parameter optimization using a fourfold
cross-validation scheme, while the fifth group was left aside and
used as the final test set. In order to tradeoff between class
imbalances, non-linear separable problems on small datasets
and computational costs, a multilayer perceptron network
(MLP) architecture, known to effectively mitigate such issues,
was chosen as the supervised algorithm. The hyperparameter
tuning stage was conducted using a fourfold cross-validation
scheme in which the number of hidden layers, neurons per
layer, the solver and regularization parameters were subjected
to optimization. A network with three hidden layers of 250,
125, and 100 neurons, respectively, was found to optimally suit
all the 17 classifiers, while the Adam stochastic gradient-based
optimizer (Kingma and Ba, 2015) with a constant learning rate
of 0.001, ReLu activation function and L2 penalty regularization
with customized alpha parameters for each predictor were

selected as network parameters. The out-of-sample performance
was evaluated on the test set using the precision, recall,
specificity, F1 and G scores metrics. For training and evaluating
the predictors, the scikit-learn library v24.2 (Pedregosa et al.,
2011) was used.

Nod-like receptor motifs analysis

NLRexpress was then used to predict NLR motifs on the
overall set of ∼34,000 NLRs trimmed at 90% identity. As the
overall database contains not only regular NLRs but also all
sorts of non-canonical sequences with missing, duplicated or
shuffled NLR domains, selections were performed to derive
subsets fulfilling specific criteria in order to carry out more
targeted correlation analysis.

For instance, in order to identify correlations within
NBS motifs a subset of only ∼20,000 sequences was selected
containing at the same time all the nine motifs—only once,
in the right order and with a probability estimate higher than
80%. Extended regions conveying each motif and 5 flanking
positions on both sides were then extracted and concatenated
in the right order. These excised NBS chimeras were subjected
to sequence-based clustering using MMseq2 (Steinegger and
Söding, 2017) at various identity thresholds using the connected
component clustering method as implemented in the MMseq2
suite. Correlation analysis was performed using the CMAT
method (Jeong and Kim, 2012) as implemented in VisualCMAT
(Suplatov et al., 2018) and MISTIC (Simonetti et al., 2013).
Henikoff weights and profile-based pseudocounts were used for
join probability adjustments. A minimal Z-score of 3.5 was set
as cutoff for both cumulative and proximity mutual information
metrics.

For LRR motif distribution analysis domains were selected
only if: (a) they contain upstream a proper NBS domain with all
9 motifs unambiguously identified in the right order; (b) they
display the LRR domain downstream NBS with a linker less
than 50aa; (c) they contain at least 9 LRR repeats of expected
regular lengths: 15–50 aa. This last constraint was imposed to
avoid ambiguous motif assignments. An exception was made
though in cases where the difference in probability among local
motif “satellites” found in less than 15 aa surpasses 20%—a
situation in which the motif with the highest probability was
selected. With these cleaning constraints, a subset of ∼6,850
regular NLR sequences were selected containing a total number
of ∼61,700 LRR motifs.

The LRR motifs were further clustered based on the physico-
chemical properties of amino acids in the LxxLxL region. For
each of the six positions the hydropathy, charge and volume
were used as descriptors summing up to an 18-dimensional
clustering embedding. Given its ability to deal with uneven
cluster sizes, densities and non-flat geometries the OPTICS
algorithm (Ankerst et al., 1999) was selected from several
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unsupervised clustering methods tested, and ran using its scikit-
learn library implementation along with the Xi algorithm as
the extraction method and the Minkowski norm 2 metric
(Pedregosa et al., 2011).

For the analysis of the N-ter NLR region, TNL/CNL, a
sequence-based clustering approach was used similarly to the
NBS domain analysis. In the case of TNLs, a subset of 3,774
sequences was gathered to contain a TIR domain with all 6
TIR motifs unambiguously identified in the right order and a
downstream proper NBS domain with all 9 NBS motifs. The
extracted motif regions with 5 flanking positions on both sides
were concatenated and subjected to sequence-based clustering
using MMseq2 (Steinegger and Söding, 2017). For CNLs, in
addition to the above-mentioned criteria imposed to identify
regular NLR proteins, a supplementary condition was used
regarding the presence of a single integral CC domain upstream
of the NBS. Given that all the potential CNL interdomain
interactions were shown to take place within the first five LRR
repeats (Qi et al., 2012; Slootweg et al., 2013, 2017; Wang et al.,
2019b) CNLs displaying at least five proper repeats, not nine
as in LRR domain analysis, were selected resulting in a clean
6,000 CNL subset which was further subjected to a workflow
similar to the one described above. As in the NBS analysis—
regions covering all the 15 motifs within the CC, NBS and
the first five N-ter LRR, each with 5 flanking positions on
both sides were extracted and concatenated in the right order
to be subjected to sequence-based clustering using MMseq2
(Steinegger and Söding, 2017) with various identity thresholds.
Logomaker (Tareen and Kinney, 2020) was used to generate
sequence variability plots, while figures illustrating 3D protein
structures were edited using (PyMOL, 2018; The PyMOL
Molecular Graphics System, Version 2.2.3 Schrödinger, LLC).

Results and discussion

NLRexpress structure, development,
and performance analysis

NLRexpress consists of a collection of 17 NN-based
predictors trained to identify individual plant NLR domain-
specific motifs and it is organized as four prediction modules:
CC-, TIR-, NBS-, and LRRexpress that can be also used
independently. The CC- and LRRexpress modules contain a
single motif predictor for the extended EDVID and LxxLxL
pattern respectively, while TIRexpress comprises a bundle of 6
motif predictors for the following most preserved elements: βA,
αA, βC, αC, βD-αD1, αD3, and NBSexpress contains a bundle
of 9 individual motifs for the following conserved regions:
P-loop; RNBS –A, –B, –C, and –D; Walker B, GLPL, and MHD
(Figure 1A).

The workflow of NLRexpress is shown in Figure 1. As input,
the predictor accepts amino acid sequences provided by the

user in FASTA format. In a first step which is also the most
time-consuming, NLRexpress generates the numerical features
required by the NN models. Next, the NN-model input is
processed and fed to the prediction modules. Users can select
either a single CC/TIR/NBS/LRR module or all four together.
The output consists of a probability estimate for each residue
of the sequence to be the starting position of the given motif
(Figure 1B).

For generating the features, HMM profiles are usually
learnt from a set of homologs queried over a protein sequence
database. Today state of the art predictors generally rely in
this step on global protein DBs such as Uniprot20 (∼30 GB;
∼8.3 million sequences), and Uniclust30 (∼9 GB; ∼10 million
sequences), the scanning of which results in high computational
costs. In order to reduce the execution time of this stage,
NLRexpress alternatively relies on a downscaled, manually
curated dataset. This ensures an optimal tradeoff between
performance and speed. For instance, using the downscaled
dataset reduces eightfold the time required to build the HMM
profile for ZAR1 using Uniclust30, at the same accuracy.
However, even when starting from such small datasets of only
∼2,400 seq, the longest duration of feature generation is 15-fold
higher than the rest of the workflow including predictions—
which take on average less than 3.5 s per protein (Figure 1A).

As described under methods, curated sets of CC, TIR, NBS,
and LRR domains were used to train and test the 17 individual
NN models. The four domain sets were divided into five subsets
of which the first 4 were used in a fourfold cross-validation
scheme for parameter tuning while the fifth was left aside
for a final out-of-sample predictor performance testing. The
workflow results in four predictor modules for the CC, TIR,
NBS, and LRR motifs, respectively.

The CC predictor focuses on the EDVID motif found
in many CC domain classes. The initial training trials were
performed using the minimum EDVID motif span and proved
less effective. However, by using an extended version of the
motif spanning over 12 positions covering the upstream region
involved in the CC-LRR interfacing in the ZAR1 cryoEM
structure (Wang et al., 2019a,b)—with RDbbbDbEDbbD as
consensus (b-hydrophobic residues)—significantly improved
the F1 score to a proper 96% value (Figure 2).

The TIR module identifies six highly conserved plant TNLs
regions (Toshchakov and Neuwald, 2020): βA, αA, βC, αC,
βD-αD1, αD3 (where α and β refer to helical and beta-
strand elements and A-D correspond to structural modules of
the TIR domain). Given their high conservation, predictors
attain almost perfect performance with F/G scores above 99%
(Figure 2).

The NBS predictor targets 9 motifs: P-loop; RNBS –A,
–B, –C, and –D; Walker B, GLPL, and MHD. The highest
scores were reached by the most conserved NBS motifs with
precision, recall and specificity and F/G scores surpassing 96%
(Figure 2). A somehow lower sensitivity/recall of only 88% was
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FIGURE 1

(A) NLRexpress pipeline diagram with typical computation times shown below for a queried NLR sequence of average length. (B) Screen capture
of the NLRexpress webserver: input form and the results page containing the prediction output. Average times may vary depending on
hardware and sequence properties.

FIGURE 2

Out-of-sample performance of the NLRexpress predictors on the test set (TP, true positive; TN, true negative; FN, false negative; TP, true
positive). Cross-validation out- and in-sample performance results are shown in Supplementary Table 1.

shown by the VG motif which is expected given its higher
variability. Detailed stats on the cross-validation out-of-/in-
sample performance can be examined from Supplementary
Table 1.

Finally, LRRexpress focuses on the detection of LxLxxL
motifs in LRR domains in general. This yields a total F-score of

92% on the test set, with a balanced precision to recall ratio. As
an additional provision ZAR1, ROQ1 and RPP1 clusters were
set aside from the training data and used only in the out-of-
sample predictor performance testing as these are so far the
only plant CNLs/TNLs with known full-protein 3D structure.
LRRexpress is able to accurately identify 12/13 repeats in the
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case of ZAR1, while 19/20 and 21/21 in the case of RPP1
and ROQ1, respectively, which is consistent with the ∼90%
sensitivity estimated on the test set.

While the out-of-sample results assessed above involve
only plant NLRs, the extrapolation ability and performance
of LRRexpress were next investigated on other protein classes
containing LRR domains.

Using a set of 178 structures from PDB containing LRR
domains at 90% sequence identity, consisting of ∼2,000
manually curated and delineated LRR repeats from Martin
et al. (2020a), LRRexpress reaches an F1 score of 92% when
considering only the core LRR motifs and 88% when the
border, more diverse N-ter and C-ter motifs are included
(Supplementary Figure 1A). Compared to the plant NLR set,
the precision/recall ratio is much more tilted toward higher
precision rates (98%) rather than sensitivity (88% on core motifs
and 80% when border motifs are included).

In order to further evaluate the LRRexpress performance
a thorough comparison with a former more laborious method
implemented in LRRpredictor (Martin et al., 2020a) was
undertaken. For this LRRexpress was run on the same set
used previously for testing the LRRpredictor out-of-sample
performance. While this yields a somehow lower F-score
when compared to LRRpredictor, ∼85% vs. 90%, it displays
on the other hand a higher precision, 99% vs. 92%. Results
indicate that LRRexpress shows an overall 88–99% agreement
rate with LRRpredictor in pinpointing the same LRR motifs
on various LRR-containing protein classes: cytosolic plant
resistance proteins (CNL and TNL), extracellular plant receptors
with or without kinase domains (RLK/RLP) and their vertebrate
corresponding classes—cytosolic NLRs and extracellular TLRs
(Supplementary Figure 1C). However, the cross-diagonal cases
where the two predictors disagree have a large proportion
of either atypical motif patterns or result from ambiguities
related to motif selection in regions showing multiple local
alternatives.

To assess its discriminative capacity, LRRexpress was also
tested using as inputs other solenoidal architectures containing
high levels of LxxLxL patterns that might result in false-
positive predictions. On five benchmark sets each comprising
50 sequences from ankyrin, armadillo, trimeric, and pectate
lyases classes from Martin et al. (2020a), LRRexpress is able to
correctly classify the LxxLxL patterns as non-LRR motifs, with
almost no false positives in 1,000–2,700 LxxLxL patterns per set
(Supplementary Figure 1B).

NLRexpress was further subjected to speed benchmarks on
two sets of sequences: (–1) the entire A. thaliana proteome
consisting of ∼137.000 sequences from UniprotKB; and (–
2) A random set of 1,000 plant NLRs retrieved from the
overall set. These were subjected to the NLRexpress pipeline
for identifying NBS and LRR motifs, on an Intel(R) Core(TM)
i9-9900K CPU machine running in three parallel jobs of
4 CPU threads each. The whole Arabidopsis proteome was

screened in 31.5 h yielding 930 sequences with complete
nine-motif NBS and 4,461 sequences with LRR domains (at
least 5 repeats). Given that variability profiles are generated in
NLRexpress starting from a reduced and targeted set of clean
NLRs supplemented by LRRs from diverse sources—during a
genome/proteome/transcriptome scanning the program swiftly
discards, in less than 2 s/non-NLR-sequence the “non-
NLR/LRR” regions spending most of the time in building
profiles of the regions embedding the NLR-specific domains—
arr. 32 s/NLR-sequence on average over the 1,000 NLR set,
which was scanned entirely in ∼9 h by a 4 CPU thread job.

These results indicate that the LRR module of NLRexpress
and LRRpredictor complement each other—given that
LRRpredictor is structure-oriented while LRRexpress is
sequence oriented, based on a “clean” set of examples—and in
conjunction are able to generate an accurate description of LRR
domains for structural modeling. On the other hand, this comes
with a clear speed advantage for LRRexpress which in addition
is able to scan entire genomes/proteomes/transcriptomes for
identifying all LRR domains in a reasonable time.

Motif analysis

NLRexpress was then next used to analyze the overall set of
∼34,000 NLR and NLR fragments at 90% identity in order to
identify the main patterns and correlations shaping up in NLR
proteins at both individual-domain and global NLR levels.

As the 17 motifs are the main invariants of an NLR sequence
these were subjected to clustering, based both on amino acid
sequence with Blosum-derived metrics and on physio-chemical
properties such as hydropathy, side-chain charge and size.

While distant in sequence, some of these motifs are or
might be brought close in space by folding or during the
NLR functioning cycle. For instance, seven of the NBS motifs
are brought together to form the ADP/ATP binding site of
the domain, moreover, the CC/TIR, NBS, and LRR might be
permanently or transiently in contact with each other in given
functional states of an NLR. Therefore the motif analysis was
extended to investigate potential correlations between groups of
motifs according to the functional context.

The coiled-coil extended EDVID motif
Within the overall set of ∼34,000 NLR and fragment

sequences, the CCexpress predictor was able to identify with
over 80% probability ∼22,800 extended-EDVID motifs in
20,000 sequences. This excess is due to the fact that many
sequences in our database have a more complex domain layout
than that of a canonical CC-NBS-LRR layout, with repeated,
multiple and/or shuffled arrangements of CC, NBS, LRR, TIR.
By focusing now exclusively on the canonical CNL (X-CC-NBS-
LRR-X) subset consisting of ∼13,150 sequences 97% display
such extended-EDVID motifs (12,815).
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The six toll/interleukin-1 receptor motifs
A set of 3,774 TNL sequences which simultaneously contain

all 6 TIR and 9 NBS motifs was gathered, and the excised
motif sequences with a margin frame of five residues were
concatenated and subjected to clustering as described in
methods. Using a threshold of 55% identity, around 75% of the
TNL sequences cluster in top six largest clusters (Figure 3).

The cryo-EM structures of RPP1 and ROQ TNLs (Ma
et al., 2020; Martin et al., 2020b) posit the TIR domains in
an asymmetrical tetrameric configuration, binding two ATP
molecules between TIRs type 1 and 2 conformation. The
nucleotide-binding site 1 consists of βA strand and αC helix
and are highly conserved among all TIR classes—particularly the
catalytic glutamate and neighboring cysteine in positions 1&4
of αC motif residue experimentally proved essential for NAD∗

hydrolysis and/or cNMP synthetase activities (Ma et al., 2020;
Lapin et al., 2022; Yu et al., 2022). The second ATP binding site
is located on the neighboring TIR and consists in (i) the βD-
αD1 beta-loop-helix, particularly with conserved Phe and Pro
in positions 4 and 9 respectively and (ii) the helical element αD3
and the downstream loop (positions 8–14), more variable across
various TNL classes. Besides binding ATP, the regions αA, αC,
βD-αD1, and αD3 also participate in TIR-TIR interfacing in the
tetrameric structure, and display a higher variability between the
identified clusters, suggesting a coevolution process.

The nine NBS motifs
The above-mentioned sequence complexity also inflicts

upon the NBS subdomain integrity and organization—as
some of the sequences show missing or duplicated regions
containing one or multiple NBS motifs. Therefore, the overall
set was cleaned to retain only those sequences that contain
simultaneously all of the 9 NBS motifs, predicted by NBSexpress,
in the right order, with a probability higher than 80%. This
reduces the initial set to around 20,000 sequences, with a similar
rejection rate of ∼60% as that seen when curating the NBS
training set. The 9 motifs were then simultaneously clustered
based on their amino acid sequence at different identity
thresholds. At 55% identity, 85% of the NBS motifs are conveyed
into the top 9 clusters, the largest one comprising ∼28% of
all sequences (Figure 4). Interestingly this clustering method,
based exclusively on the sequence information confined only
within the 9 NBS motifs also adequately separates between NLR
types suggesting that differences in the molecular environment
in which NBS is confined are a driving force in diversification.

As expected, the most invariant motifs are those containing
amino acids forming the ADP/ATP binding sites—especially the
P-loop region, Walker-B β-strand, RNBS-B, GLPL and MHD—
which is consistent for instance with mutagenesis experiments
results on NRC1, SW5, I-2, Mi-1, etc., indicating that many
critical single amino acid substitutions are located in the NBS
highly conserved motifs (Tameling et al., 2006; Van Ooijen et al.,
2008; Sueldo et al., 2015; de Oliveira et al., 2018; Wang et al.,

2020). By contrast, the VG, RNBS-A, –C, –D motifs are more
diverse, with cluster-specific characteristics.

Of these, the most diverse is the VG motif (bbGRE), located
right at the border between the CC and NBS domains. In all
clusters, the consensus extends with two more hydrophobic
positions, denoted by b, upstream VG: bbVG. The cryo-EM
structure of ZAR1 shows that these bbV are in contact with
the nucleotide in both resting and activated states. The next
two positions downstream of the conserved glycine (positions
3 and 4 in Figure 4) are cluster-specific: VGRE/D in the largest
CNL cluster (NBS #1), while VGIE/D (NBS #2,#5), VGEx (NBS-
#7) in the other CNL clusters. The most atypical is cluster
NBS-#4 which displays a significantly divergent motif FESR, in
which the glycine is replaced by a serine. Oppositely, in the case
of TNLs and RNLs the motif consensus is robust—VGIE/D—
with a hydrophobic and acidic residue downstream of the VG
(positions 3, 4; Figure 4).

Next in sequence is the P-loop motif (also termed Walker-
A with consensus GbGGbGKTT) which is highly invariant
across the identified clusters, with modest variations at given
positions. Position —1 is either populated by hydrophobic
aliphatic (mostly valine) or aromatic residues (tyrosine—in
several CNL groups or tryptophan in TNLs). Position 1, which
is majorly composed of aliphatic hydrophobic residues, usually
methionine, is frequently replaced with proline in a small
cluster of TNLs (NBS-#6) found only in malvids clade. The
most notable differences are spotted in the RNLs group, where
the P-loop motif is less stringent, especially in positions 0–2
(Figure 4).

The highly hydrophobic motif RNBS-A is located in the
central, second beta-strand of the NBD and has a structural
role in stabilizing strands 1 and 3 which both contribute to the
formation of the nucleotide binding site. While quite variable
across clusters, a strong preference shapes up for Phe in position
0 of all clusters, with the CNLs Trp in position 5 replaced by Phe
in TNLs and RNLs (Figure 4).

Walker-B is located in the next beta-strand. As being
involved in nucleotide binding, this motif—KRFbbbbDDbW—
is highly invariant. Here, letter b denotes hydrophobic residues
which are mostly aliphatic with the exception of the last one,
which in CNLs is frequently a tryptophan (Figure 4).

As also being involved in ligand binding, the RNBS-B
motif—KbbbTTR—is also highly conserved regardless of the
NLR type, with variability occurring only in the flanking regions.
Notably, in the small cluster of malvid TNLs (NBS-#6) the
arginine in position 6 is less conserved, which is interesting as
this position is expected to actively participate in binding the
nucleotide (Figure 4).

Within the RNBS-C motif (consensus LxxxExWxLF), only
the leucines from positions 0 and 8 are highly conserved as they
are part of the binding site, while the surrounding positions
of the motif are subjected to increased variability. This can
be explained by the location of the motif, which covers the
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FIGURE 3

Sequence clustering of the TIR domains based on the confined motif regions. Motif variability is expressed as relative entropy displayed as letter
height, while the taxonomic distributions of each cluster is depicted in the right panel. The ATP contacts within 5Å are mapped below the motif
consensus (light/dark purple—ATP binding sites 1 and 2 PDB: 7crc). Amino acids are colored according to their properties as follows: yellow,
hydrophobic; orange, aromatic; brown, cysteine; cyan, polar; red, acidic; blue, basic; gray, proline, and glycine.

FIGURE 4

Sequence clustering of NBS domains based on the confined 9 NBS motifs. Motif variability is expressed as relative entropy displayed as letter
height—the larger the more conserved. Top clusters are grouped according to the preponderant NLR class: CNL, TNL, or RNL. The taxonomic
distributions of each cluster is depicted in the right panel. The ADP/ATP contacts within 5Å are mapped above the motif consensus
(magenta—the inactive ADP-bound ZAR1 PDB: 6j5w; purple—the activated ATP-binding ZAR1 PDB: 6j5t). Amino acids are colored as described
in Figure 3 caption.

NBD-ARC1 linker and the beginning of the first helical segment
of ARC1 subdomain (Figure 4).

The GLPL motif is very well conserved across NLR
classes, as being a key region in forming the binding site.
Notable particularities that can be mentioned are the increased
preference for cysteine at position –2 in CNLs and RNLs
compared to TNLs in which this cysteine is less conserved.

The RNBS-D motif—CFbYCxLFP—is not involved in
binding the ligand but in NBS-LRR interface and shows the
highest divergences across the NLR classes. Common to all
three NLR classes seems only the high occurrence of Phe in
positions 1 and 7. Interestingly positions 0 and 4 appear to

show class-specific preference—with two Cys in CNLs; Cys and
Leu,respectively, in RNLs; and Leu and Ile in TNLs. In addition
the triad Pro-Glu-Asp shapes up in CNLs and RNLs but not in
TNLs (Figure 4).

Finally, the MHD motif is well conserved across all NLR
classes, whereas variations occur in regions next to the motif.
Interestingly, only the NBS-#6 small cluster on TNLs does not
have the aspartic acid conserved in position 2, while in RNLs,
the methionine in position 0 is often substituted by glutamine
(Figure 4).

As seven out of nine NBS motifs are brought close in
space in forming the nucleotide binding sites, a correlation
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FIGURE 5

(A) Correlated amino acid pairs within the nine NBS motifs. Correlations endorsed by 3D space proximity (<5Å) in ZAR1 inactive ADP cryo-EM
structure (6j5w) are shown in violet, while contacts found also in pentameric ATP structure (6j5t) are shown in purple. Correlations not
supported by 3D proximity are depicted in gray and were computed using VisualCMAT (Suplatov et al., 2018). Amino acid color code is detailed
in Figure 2 caption. (B) Correlated interaction pairs mapped onto the cryo-EM inactive ZAR1 structure (PDB: 6j5w). Amino acid pairs are
depicted with dotted lines. Domain color code is as in (A): NBD, blue; ARC1, light blue; ARC2, teal.

analysis was performed in order to identify co-evolving residues.
Only the close-in-space correlated pairs were further analyzed
and shown in Figure 5, which are numbered according to
their positions in ZAR1. As can be seen from Figure 5
most of these close-in-space, correlated positions are found
in the NBD subdomain. This can be explained by its large
size but also by the beta-sheet architecture that brings close
in space residues found far apart in sequence in a more
intricate way. Most significant inter-subdomain correlations
shape up between the P-loop (NBD) and GLPL (ARC1); GLPL
(ARC1) and MHD (ARC2) and between RNBS-B (NBD) and
MHD (ARC2). Notably, the correlation identified between
residue 297 in RNBS-B “bbbTTR” and the ARC2-MHD-
489, forms in the ZAR1 structure a saline bridge (R297-
D489).

The leucine-rich repeat motifs—Clustering by
physico-chemical properties

Screening the overall NLR dataset with LRRexpress yields
a collection of ∼468,000 motifs in ∼31,100 sequences. As
LRR domains may be found as standalone or part of many
other protein classes only sequences containing regular NBS
domains along with LRR domains larger than 9 repeats
with no delineation ambiguities were retained for analysis, as
described under methods.

The cleaned set of ∼61,700 LRR motifs from ∼6,850 seq
were further clustered using unsupervised ML techniques in a
space describing their hydropathy, charge and size, as described
under methods. As various parts of the LRR horseshoe were

shown to be involved in different types of internal and external
interactions (Wang et al., 2019a; Ma et al., 2020) motifs were
further grouped according to their position in the repeat ladder
for 4,101 CNLs, 2,671 TNLs, and 84 RNLs.

Figure 6 shows the top 24 largest LRR motif clusters and
their distribution in the LRR ladder for the three NLR classes.
The most frequent pattern displays lysine and arginine in
position 1 which is mainly found within the first 4–6 repeats of
the analyzed NLRs. In general, the first 4–6 repeats of all three
NLR classes show a high preference for positively charged LRR
motifs, especially arginine. As can be seen from Figure 6, the
cluster separation is mainly driven by the distribution of charge
features in various solvent-exposed positions of the LxxLxL
pattern.

In general more bulky charged amino acids, R&E, are
preferred in positions 1 and 2 of the LxxLxL motif, while the
lighter ones K&D are more frequent in position 4 of the motif.
Remarkably Arginine in position 1 of the motif is dominant
in the first four CNL repeats, in repeats 2 and 3 in TNLs and
in repeats 1, 3 and 4 in RNLs. By contrast, aspartic acid in
position 4 starts shaping up above repeat 3. Interestingly clusters
with glutamic acid in position 1 are dominant in the first TNL
and second RNL repeat in contrast with CNLs. Aside from the
presence of Glu in the first TNL/RNL repeats, Figure 6 also
indicates other interesting differences among the three NLR
classes – for instance, while the second uncharged cluster shapes
up quite frequently (>15%) and evenly in all CNL/TNL repeats,
this is almost absent in RNLs with the exception of the first
repeat (<4%).
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FIGURE 6

Clustering of the LRR motifs in a physico-chemical properties embedding—top 24 clusters and their distribution among position in the LRR
domain ladder in the three NLR classes. Displayed values are percentages normalized vertically, with respect to the total number of repeats in
the given position of the ladder. Amino acids are colored as described in Figure 3 caption.

The CNL clustering data are consistent with the
experimental reports indicating that at least in some systems
such as ZAR1, Rx, SW5 charge complementarity between the
first 4-6 LRR repeats and the CC and NBS domains is involved
in CC-LRR and NBS-LRR interfacing and has a critical role
in correct CNL functioning (Slootweg et al., 2013; de Oliveira
et al., 2018; Wang et al., 2019b).

Interdomain correlations in CNL receptors
Due to their overall fold or to the conformational changes

taking place during NLR functioning, the individual domains
might be brought close in space, permanently or transiently.
Inter-domain contacts could leave traces in correlations between
motifs which are the most invariant regions of this highly
diverse class of proteins. To identify such correlations we
simultaneously clustered all the 11 NLR motifs in the case of
CNLs, mapping results onto the recently released structural data
(Wang et al., 2019a,b). As CNLs represent the largest group
of NLR proteins (∼14,100 CNLs vs. ∼5,100 TNLs and ∼400
RNLs in the analyzed set) and were shown to host a relatively
conserved region readily detectable with ML techniques—the

“extended EDVID” motif—we separated the main groups of
this class of NLRs using clustering techniques described under
the methods. The best cluster separation is reached at ∼37%
identity where around 80% of the sequences do gather into the
top seven CNL clusters. As can be seen from Figure 7A, five out
of the seven main clusters: CNL#1, 2, 4, 5, and 7 display a strong
charge complementarity between the EDVID and the first 5 LRR
motifs, while clusters CNL#3 and 6 completely or partially lack
strict EDVID pattern and charge match, with motifs being more
diverse and neutral.

When mapping the motifs onto the ZAR1 cryo-EM
structure the charge complementarity locates at the CC-LRR
interface suggesting that sequences in CNL#1, 2, 4, 5, and
7 might adopt CC-LRR configurations similar to that seen
in ZAR1. Some marked differences are noticeable though
between clusters in LRR repeats 1–4 and the EDVID region
which displays only two main conserved positions 9 and 12 in
all these clusters.

Interestingly also the first two LRR motifs are quite
irregular returning low probabilities by both LRRexpress and
LRRpredictor, especially due to the unusual usage of amino acids
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FIGURE 7

(A) CNL proteins clustering based on the regions confining the CC extended EDVID (α3 helix) and the first 5 LRR motifs. Motif variability is
expressed as relative entropy displayed as letter height (the higher the more conserved). The taxonomic distributions of each cluster is depicted
in the right panel. The ZAR1 CC-LRR contacts within 5Å are mapped below the motif consensus (PDB: 6j5w). (B) Zoom in on the conservation
profile of the CC domain of the top CNL clusters from (A).

in positions –3 (upstream) and L0 of the motif. This is related
most likely to the involvement of these regions in CC-LRR
interfacing which constitutes a stabilizing factor, while further
repeats require a structural reinforcement provided by canonical
leucines in these two positions.

The top largest CNL groups, clustered based on the most
conserved 11 motifs (CC-EDVID, NBS, and LRR motifs) were
next inspected with respect to the entire span of the CC domain
(Figure 7B). Strong consensus signatures are observed solely
within the third helix (α3)—with tryptophan upstream the
extended EDVID motif highly conserved in most CNL groups.
By contrast, the remaining three helical segments display a
high sequence and length variability, preserving though the
hydrophobic positions involved in coil-coiled zipping.

Among these, the first helix (α1) displays the highest
variability which may be linked to both NLR localization and
functioning. For instance, a general more hydrophobic profile
is particularly seen in the CNL groups displaying canonical
EDVID signatures. By contrast, groups lacking a strict EDVID
pattern and CC-LRR charge match (CNL-#3&#6), display also a
significantly higher sequence and length variability in α1.

The “MADA” motif in its extended form
“MA(D/E)AxVSFxVxKLxxLLxxEx” (Adachi et al., 2019),
also present in ZAR1 is seen mainly in CNL groups #1&#4

which is consistent with Adachi et al. (2019) observation that
this motif is found in around one fifth of plant CNLs. While
certain positions in this extended motif were experimentally
shown to be essential in the activation and/or the protruding
of the plasma membrane in ZAR1 (Baudin et al., 2019; Wang
et al., 2019a; Bi et al., 2021) this is by no means an universal
feature in CNLs. Other NLRs that display a N-ter α1 CC region
highly non-homologous to ZAR1 attach to the membrane
via N-myristoylation and/or palmitoylation such as RPS5 (Qi
et al., 2012), while other NLRs such as Rx1 and RPS4, have a
nucleo-cytoplasmic localization during their activation cycle
(Tameling et al., 2012; Qi and Innes, 2013).

Conclusion

Results presented herein indicate that NLRexpress—the
bundle of 17 ML based predictors designed to identify CC,
TIR, NBS and LRR specific sequence motifs—performs fast and
accurately in identifying NLRs on large datasets and might be of
use in overall genome, transcriptome or proteome screening. In
addition, LRRexpress—the NLRexpress module for LRR motif
prediction was tuned for general LRR detection and may be
used as a fast and accurate standalone tool in identifying LRR
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domains and delineating repeats in other protein classes such
as extracellular plant RLK/RLP or metazoan LRRs, making it a
complementary tool to the existing DeepLRR (Liu et al., 2022),
LRRpredictor (Martin et al., 2020a), LRRsearch (Bej et al., 2014),
LRRfinder (Offord and Werling, 2013), etc.

NLRexpress was then use to detect motifs in a large set
of ∼34,000 plant NLRs and cluster these proteins based on
their motif properties using unsupervised methods in order to
identify correlations within and between the canonical domains
shaping up underneath the NLR significant diversity.

All in all, NLRexpress is designed as a flexible bundle for the
fast prediction of main NLR domains in large sequence datasets.
Using LRRexpress alone will pinpoint all proteins displaying
LRR domains, most of which are immune system receptors.
Using it in conjunction with NBSexpress will identify all NLRs
irrespective to their group, while adding the CCexpress and/or
TIRexpress modules will bring further information related to the
main NLR groups—TNL and CNL.
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