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Salvia miltiorrhiza Bunge (Danshen in Chinese) is vulnerable to Fusarium wilt,

which severely affects the quality of the crude drug. Mycorrhizal colonization

enhances resistance to fungal pathogens in many plant species. In this study,

pre-inoculation of S. miltiorrhiza with the arbuscular mycorrhizal fungi (AMF)

Glomus versiforme significantly alleviated Fusarium wilt caused by Fusarium

oxysporum. Mycorrhizal colonization protected S. miltiorrhiza from pathogen

infection, thereby preventing a loss of biomass and photosynthesis. There were

greater defense responses induced by pathogen infection in AMF pre-

inoculated plants than those in non-treated plants. AMF pre-inoculation

resulted in systemic responses upon pathogen inoculation, including

significant increases in the protein content and activities of phenylalanine

ammonia-lyase (PAL), chitinase, and b-1,3-glucanase in S. miltiorrhiza roots.

In addition, mycorrhizal pre-inoculation caused upregulation of defense-

related genes, and jasmonic acid (JA) and salicylic acid (SA) signaling pathway

genes after pathogen infection. The above findings indicate that mycorrhizal

colonization enhances S. miltiorrhiza resistance against F. oxysporum infection

by enhancing photosynthesis, root structure, and inducing the expression of

defense enzymes and defense-related genes on the other hand.
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Introduction

Salvia miltiorrhiza Bunge, a diploid species belonging to the

family Lamiaceae (Li et al., 2017), is an industrially important

medicinal plant widely used for treatment of coronary and

cerebrovascular diseases (Chen et al., 2018; Liu et al., 2018; Shi

et al., 2018). With increasing demand for S. miltiorrhiza in

domestic and international markets, the planting area has

expanded in China (Shi et al., 2018). S. miltiorrhiza is mostly

cultivated with large-scale continuous planting, but Fusarium

wilt caused by Fusarium oxysporum is a major threat (Zhang

et al., 2016). Fusarium wilt is a fast-spreading epidemic disease

that causes severe damage to the quality and productivity of S.

miltiorrhiza, similar to the damage experienced by crops such as

cucumber, chickpeas, banana, and cotton (de Lamo and Takken,

2020; Ankati et al., 2021; Qi et al., 2022). It is estimated that up to

70% of continuously cropped S. miltiorrhiza is affected (Yang

et al., 2013). Synthetic fungicides are commonly used to control

Fusarium wilt, however their use causes environmental pollution

and threatens human health (Neeraj and Singh, 2011).

Therefore, there is an urgent need for the identification of new

biological control methods to suppress Fusarium wilt in the

agricultural production of S. miltiorrhiza (Hammad and El-

Mohandes, 1999).

In response to fungus pathogens, plants have evolved a series

of complex strategies to protect themselves from damage (Song

et al., 2015). Symbisis between plant root systems and arbuscular

mycorrhizal fungi (AMF) can be exploited for crop disease

management (Ajit et al., 2017). Arbuscular mycorrhizal

symbiosis can enhance plant resistance against various

pathogens such as Alternaria spp., Rhizoctonia, Fusarium,

Verticillium, and Thielaviopsis (Nair et al., 2015; Mustafa et al.,

2017). The protective effects may result from a combination of

diverse mechanisms (Dey and Ghosh, 2022). AMF induced plant

defense response plays an important role in plant disease

resistance (Jung et al., 2012). The defense responses of plants

can be pre-axisting and induced (Xu et al., 2022). Plant physical

structures and phytochemicals provide basic defense against

fungal pathogens (Robert-Seilaniantz et al., 2011; Bellincampi

et al., 2014; Ziv et al., 2018). After recognition of fungal

pathogens, defense signaling is activated, leading to induction

of immunity, local defense responses, and systemic defense

signaling (Tian et al., 2016). Mycorrhiza-induced resistance is

characterized by induction of root cell wall thickening,

accumulation of phytoalexins, induced expression of plant

defense genes, and stimulation of plant defense enzymes such

as PAL, chitinase, and b-1,3-glucanase (Song et al., 2015; Eke

et al., 2016; Bai et al., 2018).

Pathogen infection can reduce plant photosynthesis and

damage the root system of plants (Dong et al., 2016). Reduced

photosynthesis prevents plants from obtaining carbon nutrients,

and root damage limits the absorption of nutrients and water
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(Serrano et al., 2016). In previous research, we observed that

AMF increases photosynthesis and improves the root system of

plants (Chen et al., 2017b). Therefore, we investigated if AMF

can alleviate the photosynthesis and the root structure damage

leading to reduced yield of S. miltiorrhiza caused by

pathogen infection.

Previously, we found that arbuscular mycorrhizal symbiosis

decreases the disease incidence of continuously cropped S.

miltiorrhiza by nearly 75% (Yang et al., 2013). However, there

is little known about the response of AMF-inoculated S.

miltiorrhiza to F. oxysporum infection and mycorrhizal-

induced defense mechanisms are poorly understood. In this

study, we investigated the mechanisms of defense response in S.

miltiorrhiza against F. oxysporum infection induced by pre-

inoculat ion with AMF from two perspect ives : the

photosynthesis and root structure, and changes in expression

of defense-related genes.
Materials and methods

Plant materials and fungal strains

S. miltiorrhiza seeds were collected from a planting base

located in Laiwu, Shandong Province in North China (36°20’ N,

117°41’ E). The authors identified the seedlings as S.

miltiorrhiza Bunge.

The AMF G. versiforme was originally provided by Professor

Honggang Wang (Chinese Academy of Agricultural Sciences).

and was propagated using Sorghum bicolor as the host. The

spores, hyphae, colonized roots, and substrates were collected as

AMF inocula. The AMF inocula was identified as G. versiforme

following Wang et al. (2016) described (Figure S1).

The pathogen was isolated from roots of diseased S.

miltiorrhiza that showed symptoms of Fusarium wilt and

identified as F. oxysporum (Yang et al., 2013). The pathogen

was cultured for five days in Armstrong Fusarium Medium Base

(20.0 g glucose, 0.2 mg FeSO4, 1.6 g KCl, 0.4 g MgSO4·7H2O,

5.9 g Ca(NO3)2, 0.2 mg ZnSO4, 1.1 g KH2PO4, and 0.2 mg

MnSO4 per liter, pH 7.0) at 28°C in darkness and on a shaker at

150 rpm. Three layers of sterile gauze were used to filtrate

mycelia and the suspension concentration was 106 spores/ml

in aseptic distilled water.
Cultivation substrate

Vermiculite was used as the germination substrate of S.

miltiorrhiza seeds. After 30 days of germination, S. miltiorrhiza

seedlings were transplanted to 1:1 (v/v) mixture of paddy soil and

vermiculite. The paddy soil contained organic matter (0.49 g·kg-1),

total N (3.85 g·kg-1), total P (8.43 g·kg-1), available P (2.27mg·kg-1),
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total K (28.43 g·kg-1), available K (8.71 mg·kg-1), available Zn (0.07

mg·kg-1), available Mn (0.74 mg·kg-1), available Fe (1.6 mg·kg-1),

and available Cu (0.13 mg·kg-1), with a pH value of 8.7. The

substrate was sterilized at 121°C for 2 hours before use.
Experimental design

S. miltiorrhiza seeds were surface-sterilized in 75% ethanol

for 1 min, soaked in 2% (V/V) NaClO for 10 min, and then

rinsed with sterile water for 5 min. Germination substrate was

autoclaved vermiculite. S. miltiorrhiza in AM treatment were

pre-inoculated with G. versiforme, i.e., 100 g (equivalent

to ~1250 spores) of AMF inoculum was mixed with 1 kg

vermiculite. In NM treatment, an equal amount of autoclaved

AMF inoculum was mixed with the vermiculite.

Thirty days after sowing, the mycorrhizal colonization of S.

miltiorrhiza was assessed. S. miltiorrhiza seedlings were

transplanted into square pots (7 cm × 7 cm), and inoculated

with F. oxysporum. Four treatments were designed (NM-Fo,

NM+Fo, AM-Fo, and AM+Fo): (1) NM-Fo: non-mycorrhizal S.

miltiorrhiza inoculated with heat-killed pathogen; (2) NM+Fo:

non-mycorrhizal S. miltiorrhiza inoculated with pathogen; (3)

AM-Fo: mycorrhizal S. miltiorrhiza inoculated with heat-killed

pathogen; (4) AM+Fo: mycorrhizal S. miltiorrhiza inoculated

with pathogen. Each treatment included 60 pots. Seedlings were

incubated in 5 mL spore suspension for 30min. Control S.

miltiorrhiza were treated with 5 mL sterilized spore suspension

for 30 min. Experiments were conducted in a greenhouse (30°C,

14L:10D photoperiod), with a photon flux density of 350 photon

μmol·m−2·s−1 (photosynthetic active radiation).
Assessment of AMF colonization

AMF colonization was measured 30 days after germination.

The roots of mycorrhizal S. miltiorrhiza were cut into 1 cm long

sections and then stained with Trypan Blue following the

protocol published previously (Phillips and Hayman, 1970).

AMF colonization of S. miltiorrhiza was determined as

described previously (Giovannetti and Mosse, 1980).
Disease incidence measured

Seven days after pathogen inoculation, disease incidence and

disease index were measured. Disease incidence was calculated

as the percentage of diseased S. miltiorrhiza. Disease severity was

estimated using a Disease Index (DI) calculated as disease grades

0–5: 0, no symptoms; 1, growth delayed and no significant

necrosis or atrophy of shoots and roots; 2, light chlorosis and

necrosis on shoots and roots; 3, medium chlorosis and necrosis

on shoots and roots; 4, high chlorosis and necrosis on shoots and
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roots; and 5, failed seedlings (Soudani et al., 2022). Disease

incidence, disease index, and control efficacy were calculated

using the following formulas:

Disease   Incidence = diseased  plants
sum   of   plants � 100%

Disease   Index = o(disease   grade�number   of   diseased   plants)

maximum   disease   grades�number   of   plants   sample

�100%

Control  Efficacy =
DI   NM + Foð Þ −DI   AM + Foð Þ

DI   NM + Foð Þ � 100%
Assessment of plant growth

Thirty days after pathogen inoculation, S. miltiorrhiza

seedings were removed from the soil, the shoots and roots

were separated, and the fresh weights of both the shoots and

roots were recorded.
Root system measurement

Thirty days after pathogen inoculation, the roots of S.

miltiorrhiza were scanned with an Epson Expression/STD

4800 scanner (Seiko Epson Corporation, Nagano, Japan), and

the root length, root projArea, and root surfArea were derived

with WinRHIZO image analysis software (Regent Instruments

Inc., Quebec, QC, Canada).
Chlorophyll fluorescence measurement

The chlorophyll fluorescence parameters were determined

30 days after pathogen inoculation. A dual-PAM-100 device

(Heinz Walz, Effeltrich, Germany) was used to measure the

Chlorophyll fluorescence parameters of the two uppermost

leaves of S. miltiorrhiza at 25°C according the previous

published protocols (Ritchie and Bunthawin, 2010). Before

measurement, the minimal fluorescence in the dark-adapted

state (F0) was recorded after the plants were kept in the darkness

for 30 min. The maximal fluorescence in the dark-adapted state

(Fm), the maximal fluorescence (Fm’), the minimal fluorescence

in the light-adapted state (F0’), and the steady-state fluorescence

(Fs) of leaves were determined following the previously described

methods (Gong et al., 2013). The chlorophyll fluorescence

parameters FPSII, Fv/Fm, qP, and qN were as described (Zai

et al., 2012; Sowik et al., 2016).
Chlorophyll measurement

Thirty days after pathogen inoculation, chlorophyll content was

measured as described previously (Gregor and Marsá̌lek, 2004).
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Approximately 0.05 g fresh leaves of S. miltiorrhiza were ground

into fine powder and 8 mL 95% ethanol was added. Samples were

stored in the dark for 48 h. The absorption of the continuation

filtrate was measured at 665 nm, 649 nm, and 470 nm and

the content of chlorophyll was calculated according to the

following formulas:

Ca = 13.95A665 - 6.88A649, Cb = 24.96A649 - 7.32A665,

CChl = Ca + Cb, CCar = (1000A470 - 2.05Ca - 114.8Cb)/245

Chlorophyll a content = Ca × V/W, Chlorophyll b

content=Cb × V/W, Total Chlorophyll content = CChl × V/W,

Carotenoid content = CCar × V/W
Content of soluble protein measurement

Thirty days after pathogen inoculation, soluble protein

content was determined according to the previously published

method (Yen and Pratap-Singh, 2021). A standard curve was

constructed using different concentrations (0-2 mg·mL-1) of

bovine serum albumin (BSA) to estimate of protein content.
Activities of defense-related enzymes

The activities of defense-related enzymes were detected five

days following infection. Approximately 0.1 g root samples of S.

miltiorrhiza were ground into fine powder in liquid nitrogen and

were extracted with 2 mL 0.05 M sodium acetate buffer (pH 5.0).

Extracts were centrifuged at 12,000 g for 15 min at 4°C and the

supernatant fractions were used to assay enzyme activity. PAL

activity was analyzed as Mozzetti et al. (1995) described. b-1,3-
Glucanase activity was assayed by the laminarin-dinitro salicylic

acid method (Pan, 1991). Chitinase activity was analyzed as

Boller and Mauch (1988) described.
Expression of defense-related genes

The expression levels of defense-related genes, SmLOX

(JX297420.1), SmAOS, SmAOC (HM156740.1), SmOPR

(MN125491.1), SmJAR, SmPDF2.1 (OP066222), SmPAL

(DQ408636.1), SmNPR1, SmPR1, and SmPR10 (KF877034.1),

were measured by qRT-PCR three days after pathogen

inoculation. To do this, 0.1 g root samples were ground into

fine powder in liquid nitrogen and total RNA was extracted

using the RNeasy Plus Mini kit (Qiagen, Germany). Reverse

transcription was performed using PrimeScript™ Reverse

Transcriptase (TaKaRa, Japan). Primer Premier 5 software

used to design the primers as shown in Table S1 and qRT-

PCR analysis was conducted using SYBR® Premix Ex Taq™ II

(TaKaRa, Japan), with SmActin (DQ243702) as a reference gene

using a LightCycler 480 real-time PCR system (Roche,
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Switzerland). CT values were calculated to analyze the relative

expression levels using the 2-DDCt method (Guo et al., 2016).
Statistical analysis

All data were analyzed using IBM SPSS Statistics 24. Results

are presented as the mean values ± standard deviation (SD).

Data were analyzed with two-way ANOVA followed by Tukey’s

test and differences were reported as significant for values of

P < 0.05.
Results

Induction of disease resistance by
Mycorrhizal colonization

Mycorrhizal colonization was examined 30 days post-

inoculation. Among the S. miltiorrhiza treated with G.

versiforme (AM treatment), 83.33 ± 3% were successfully

colonized by G. versiforme (Figures 1A, B, Table 1). There was

no fungal structure in the roots of plants in the NM treatment.

The results showed that S. miltiorrhiza was successfully

colonized by the AMF and the pathogen could be

inoculated later.

No disease symptoms were found in the two groups

without inoculation of the pathogen (Figures 1C, E). Disease

symptoms of S. miltiorrhiza infected with F. oxysporum

exhibited dwarfish stem, yellow and smallish leaves, and

generally withered plants (Figures 1D, E). Pre-inoculation of

S. miltiorrhiza with the G. versiforme significantly decreased

the disease incidence and disease severity of Fusarium wilt

compared to the plants in the NM+Fo treatment. The disease

incidence and disease index of the NM+Fo treatment were

48.3% and 41.5%, while those of the AM+Fo treatment were

only 18.3% and 15.5% after seven days of pathogen inoculation

(Table 1). Disease incidence was reduced by 62.1% in

mycorrhizal plants. Mycorrhizal plants had significantly

decreased disease symptoms compared to non-mycorrhizal

inoculated plants 45 days after pathogen infection

(Figure 1E). The control efficacy of AMF pre-inoculation was

62.6% (Table 1).
G. versiforme alleviated the retarded
growth of S. miltiorrhiza resulting from F.
oxysporum infection

G. versiforme colonization significantly increased the fresh

weight of shoots and roots by 11.74% and 34.56%, respectively

(Figures 1F, G). In contrast, F. oxysporum decreased the shoot
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biomass and root biomass by 37.5% and 40.6%, respectively

(Figures 1F, G). Mycorrhizal plants promoted the accumulation

of plant biomass relative to non-mycorrhizal plants after

inoculation with the pathogen (Figure 1E). Compared to NM

+Fo treatment, pre-inoculation with AMF (AM+Fo treatment)

increased the fresh weight of shoots and roots by 49.8% and

45.7%, respectively.
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G. versiforme improved root
morphology of S. miltiorrhiza
infected with F. oxysporum

The results of root scanning showed that the F. oxysporum

infection seriously damaged the root system of S miltiorrhiza,

resulting in less fibrous roots and root vascular blocking, while
TABLE 1 Mycorrhizal colonization, disease incidences, and indices of S. miltiorrhiza inoculated with F. oxysporum.

Treatment Mycorrhizal colonization (%) Disease incidence (%) Disease index (%) Control efficacy (%)

NM-Fo 0 0c 0c 0

NM+Fo 48.3 ± 7.6a 41.5 ± 3.3a 0

AM-Fo 83.33 ± 3 0c 0c 0

AM+Fo 18.3 ± 2.8b 15.5 ± 2.3b 62.6
Values are means ± SD from four sets of independent experiments with 60 pots per treatment for each set of experiments. Different lowercase letters indicate significant differences between
different treatments according to two-way ANOVA followed by Tukey’s test for multiple comparisons (P < 0.05).
FIGURE 1

G versiforme alleviates disease of S. miltiorrhiza infected with F oxysporum. (A, B) Uncolonized roots (A) and colonized roots (B) by G
versiforme. The photos were taken 30 days after mycorrhizal inoculation. (C, D) S. miltiorrhiza seedlings without pathogen inoculation (C) and
diseased S. miltiorrhiza seedlings infected with the pathogen (D). The photos were taken 7 days after inoculating with F oxysporum. (E) S.
miltiorrhiza plants of four treatments 30 days after inoculating with F oxysporum. (F, G) Fresh weight of shoot (F) and root (G) of S. miltiorrhiza
30 days after pathogen inoculation. Four treatments included: (1) NM-Fo: non-mycorrhizal S. miltiorrhiza inoculated with heat-killed pathogen
inoculation; (2) NM+Fo: non-mycorrhizal S. miltiorrhiza inoculated with pathogen; (3) AM-Fo: mycorrhizal S. miltiorrhiza inoculated with heat-
killed pathogen; (4) AM+Fo: mycorrhizal S. miltiorrhiza inoculated with pathogen. Values are means ± SD from four sets of independent
experiments with 30 pots per treatment for each set of experiments. Different lowercase letters indicate significant differences between different
treatments according to two-way ANOVA followed by Tukey’s test for multiple comparisons (P < 0.05).
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mycorrhizal colonization greatly promoted the development of

root system (Figure 2A). Mycorrhizal S. miltiorrhiza partially

resisted root damage caused by pathogen infection (Figure 2A).

G. versiforme colonization significantly increased the length of

root by 32.80%, root projArea by 16.27%, and root surfArea by

18.18%, but pathogen infection decreased those of S. miltiorrhiza

(Figures 2B–D). Pre-inoculating AMF decreased the loss of root

biomass caused by pathogen infection. The length of root and

root surfArea of S. miltiorrhiza in NM+Fo treatment were

significantly lower than those of S. miltiorrhiza in AM+Fo

treatment (Figures 2B, D).
G. versiforme improved photosynthesis
of S. miltiorrhiza infected
with F. oxysporum

F. oxysporum infection decreased the photosynthesis-related

parameters FPSII and Fv/Fm of non-mycorrhizal S. miltiorrhiza

by 20.2% and 13%, respectively. While 10% decreased on FPSII

and no significant difference in Fv/Fm (Table 2) of mycorrhizal S.
Frontiers in Plant Science 06
miltiorrhiza. Pathogen inoculation also decreased the qP and qN,

but there was no significant difference between the four

treatments (Table 2).

The content of Chlorophyll a, Chlorophyll b, and total

Chlorophyll of S. miltiorrhiza in the NM+Fo treatment were

significantly decreased by 10%, 11%, and 15% compared with

NM-Fo treatment. However, the above parameters were not

decreased by pathogen inoculation in mycorrhizal S.

miltiorrhiza (Table 3). In addition, AMF colonization

significantly increased the content of carotenoid (Table 3).
G. versiforme improved the protein
content of S. miltiorrhiza infected
with F. oxysporum

Mycorrhizal colonization significantly reduced the content

of soluble protein in the roots of S. miltiorrhiza by 22.6%

compared with non-mycorrhizal plants (Figure 3). F.

oxysporum infection significantly reduced the protein

content in non-mycorrhizal S. miltiorrhiza by 72.4% but
B C

A

D

FIGURE 2

Root morphology of S. miltiorrhiza in the four treatments. (A) Root scans of S. miltiorrhiza in AM+Fo treatment and NM+Fo treatment. Length of
root (B), root projArea (C), and root surfArea (D) of S. miltiorrhiza 30 days after pathogen inoculation. Four treatments included: (1) NM-Fo: non-
mycorrhizal S. miltiorrhiza inoculated with heat-killed pathogen inoculation; (2) NM+Fo: non-mycorrhizal S. miltiorrhiza inoculated with
pathogen; (3) AM-Fo: mycorrhizal S. miltiorrhiza inoculated with heat-killed pathogen; (4) AM+Fo: mycorrhizal S. miltiorrhiza inoculated with
pathogen. Values are means ± SD from four sets of independent experiments with 30 pots per treatment for each set of experiments. Different
lowercase letters indicate significant differences between different treatments according to two-way ANOVA followed by Tukey’s test for
multiple comparisons (P < 0.05).
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increased protein content by 48% in mycorrhizal S.

miltiorrhiza (Figure 3).
Induction of defense-related enzymes
in Mycorrhizal S. miltiorrhiza by
pathogen infection

To determine the effects of AMF colonization on defense

responses in S. miltiorrhiza, the levels of three defense-related

enzymes, PAL, b-1,3-glucanase, and chitinase, were analyzed in

the roots of S. miltiorrhiza after pathogen infection.

The PAL activity of mycorrhizal and pathogen-infected S.

miltiorrhiza (AM+Fo treatment) was significantly increased by

39% compared with that of control NM treatment S. miltiorrhiza

(Figure 4A). However, inoculation of S. miltiorrhiza with AMF

or pathogen alone did not significantly enhance PAL activity in

the roots of S. miltiorrhiza (Figure 4A).

Inoculation of AMF or pathogen alone significantly

increased b-1,3-glucanase activity by 28% and 34%,

respectively, while inoculation of S. miltiorrhiza with both

AMF and pathogen increased b-1,3-glucanase activity by

125% (Figure 4B).

Unlike the increased activities of PAL and b-1,3-glucanase,
chitinase activity significantly decreased by 39% and 45% after

AMF colonization or pathogen infection, respectively. However,

there was a smaller drop (11.55%) in the activity of chitinase

after AMF and pathogen dual inoculation (Figure 4C).

Overall, mycorrhizal S. miltiorrhiza treatment showed

higher increases in three enzymes activities after pathogen

infection, especially PAL and b-1,3-glucanase, suggesting that
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mycorrhizal pre-inoculation enhanced the activities of these

enzymes in the roots of S. miltiorrhiza upon pathogen infection.
Mycorrhizal colonization induced
transcription of defense-related genes

To determine whether the transcript induction of defense-

related genes was enhanced by mycorrhizal colonization, gene

expression was analyzed from S. miltiorrhiza roots three days

after pathogen inoculation using real-time RT-PCR. The

amplification efficiency of the primer pairs ranged from 90 to

110% (Table S1, Figure S2). These primers were used for

quantitive analysis of the transcriptional activity of defense-

related genes. The JA synthesis pathway genes, SmLOX, SmAOS,

SmAOC, and SmOPR, were significantly up-regulated by 443%,

653%, 178%, and 113%, respectively, in mycorrhizal S.

miltiorrhiza roots after pathogen infection (Figures 5A–D).

However, pathogen infection alone did not induce these gene

transcription. Similarly, the JA signaling pathway gene, SmJAR,

and the markers of the JA defense-response pathway, SmPDF2.1,

were upregulated by 116% and 257%, respectively, in

mycorrhizal S. miltiorrhiza roots after pathogen infection

(Figures 5E, F). In addition, inoculation AMF alone up-

regulated the transcripts of SmAOS, SmAOC, SmJAR, and

SmPDF2.1. by 156%, 325%, 123%, and 163%, respectively

(Figures 5B, C, E, F).

SmPAL, the key gene involved in the biosynthesis of SA

(Shine et al., 2016), and SmNPR1, a master regulator of SA (Tada

et al., 2008), were significantly up-regulated by 156% and 151%,

respectively, in mycorrhizal S. miltiorrhiza roots after pathogen
TABLE 3 Content of Chlorophyll a, Chlorophyll b, Carotenoid, and total Chlorophyll in leaves of S. miltiorrhiza seedlings.

Treatment Chlorophyll a (mg/g) Chlorophyll b (mg/g) Carotenoid (mg/g) Total Chlorophyll (mg/g)

NM-Fo 0.846 ± 0.019a 0.303 ± 0.008a 0.335 ± 0.012bc 1.318 ± 0.012a

NM+Fo 0.759 ± 0.011b 0.269 ± 0.007b 0.315 ± 0.005c 1.117 ± 0.017b

AM-Fo 0.813 ± 0.018ab 0.304 ± 0.009a 0.363 ± 0.008a 1.281 ± 0.023a

AM+Fo 0.790 ± 0.022ab 0.285 ± 0.018ab 0.344 ± 0.039ab 1.233 ± 0.038ab
Values are means ± SD from four sets of independent experiments with 15 plants. Different lowercase letters indicate significant differences between different treatments according to two-
way ANOVA followed by Tukey’s test for multiple comparisons (P < 0.05).
TABLE 2 Chlorophyll fluorescence parameters in leaves of S. miltiorrhiza seedlings.

Treatment FPSII Fv/Fm qP qN

NM-Fo 0.450 ± 0.028a 0.6312 ± 0.074a 0.860 ± 0.147a 0.556 ± 0.147a

NM+Fo 0.359 ± 0.022b 0.548 ± 0.073b 0.794 ± 0.065a 0.523 ± 0.065a

AM-Fo 0.439 ± 0.019a 0.650 ± 0.038a 0.854 ± 0.067a 0.555 ± 0.067a

AM+Fo 0.395 ± 0.014b 0.627 ± 0.031a 0.798 ± 0.091a 0.536 ± 0.091a
f

Values are means ± SD from four sets of independent experiments with 15 plants. Different lowercase letters indicate significant differences between different treatments according to two-
way ANOVA followed by Tukey’s test for multiple comparisons (P < 0.05).
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infection (Figures 5G, H). However, there were no expression

changes in response to either mycorrhizal colonization or

pathogen infection alone. SmPR1 and SmPR10, encode

pathogenesis-related proteins and were significantly up-

regulated in mycorrhizal S. miltiorrhiza roots after pathogen

infection (Figures 5I, J). After pathogen infection, SmPR1 was

45-fold up-regulated in mycorrhizal S. miltiorrhiza roots, while

15-fold up-regulated in non-mycorrhizal S. miltiorrhiza

roots (Figure 5I).
Discussion

Fusarium wilt has become a major disease of S. miltiorrhiza

and is a major limiting factor for cultivation. We showed that the

Fusarium wilt caused by F. oxysporum can be alleviated through

mycorrhizal pre-inoculation. Pre-inoculation of S. miltiorrhiza

with G. versiforme significantly decreased disease incidence

(from 48.3% to 18.3%) and disease index (from 41.5%

to15.5%) of Fusarium wilt compared to S. miltiorrhiza without

mycorrhizal colonization (Table 1). F. oxysporum infection

reduced the shoot and root biomass of non-mycorrhizal S.

miltiorrhiza by 37.5% and 40.6%, however, G. versiforme pre-
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inoculation reduced the loss of shoot biomass to 16.19% and root

biomass to 35.68% (Figures 1F, G). The results were in

accordance with previous reports that AMF colonization

alleviates alfalfa leaf spots caused by Phoma medicaginis (Li

et al., 2021), and that Funneliformis mosseae significantly

alleviates early blight disease in tomato caused by Alternaria

solani Sorauer (Song et al., 2015).

Roots allow plants to absorb nutrients and water. Infection

of S. miltiorrhiza by F. oxysporum leads to Fusarium wilt, with

symptoms including less fibrous roots and root vascular

blocking, decreasing absorption of nutrients and water and

resulting in plant wilting and death (Yang et al., 2013; Chen

et al., 2017a). We found that G. versiforme increased the length

of root by 32.80%, root projArea by 16.27%, and root surfArea

by 18.18% of S. miltiorrhiza (Figures 2A–D). Root structure is

key to determining a plant’s ability to effectively explore soils

(Dorlodot et al., 2007). AMF improves plant nutrition, and this

could contribute to increased plant tolerance and compensation

for root damage caused by the pathogen (Cordier et al., 1998).

The increased nutrition and fitness of mycorrhizal plants likely

serve as systemic protection mechanisms against pathogen

attack (Fritz et al., 2006). Many studies have shown that the

major benefit of AMF colonization is its effect on the host root
FIGURE 3

Protein content in the roots of S. miltiorrhiza from the four treatments. The protein content was measured 30 days after pathogen inoculation.
Data are mean values ± SD; significant differences (P < 0.05 using Tukey’s test) among treatments in the same column are indicated by different
letters. Four treatments included: (1) NM-Fo: non-mycorrhizal S. miltiorrhiza inoculated with heat-killed pathogen inoculation; (2) NM+Fo: non-
mycorrhizal S. miltiorrhiza inoculated with pathogen; (3) AM-Fo: mycorrhizal S. miltiorrhiza inoculated with heat-killed pathogen; (4) AM+Fo:
mycorrhizal S. miltiorrhiza inoculated with pathogen. Values are means ± SD from four sets of independent experiments with 15 plants per
treatment. Different lowercase letters indicate significant differences between different treatments according to two-way ANOVA followed by
Tukey’s test for multiple comparisons (P < 0.05).
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system (Gutjahr et al., 2009; Vos et al., 2013). Consistently, the

improved root system structure we observed here appears to be a

key factor in the disease resistance of S. miltiorrhiza induced by

G. versiforme.

Photosynthesis not only provides nutrients for plant growth,

but also produces defense-related substances to counter

pathogens (Serrano et al., 2016). Suppressing photosynthesis is

also a strategy for successful infection of pathogens. Fv/Fm and

FPSII are important indicators of the photosynthetic apparatus

and are widely used to assess plant-pathogen interactions (Wang

et al., 2018). Consistent with our findings (Table 2), a previous

study found that pathogen infection significantly reduced Fv/Fm
andFPSII in plants not inoculated with AMF, but had no effect in

mycorrhizal plants (Wang et al., 2018). Here, F. oxysporum

infection decreased the photosynthesis-related parameters Fv/Fm
and FPSII by 20.2% and 13% in non-mycorrhizal S. miltiorrhiza,

respectively, while FPSII only decreased by 10% and Fv/Fm did

not decrease in mycorrhizal S. miltiorrhiza (Table 2). In plants,

carotenoids play vital roles in photosynthesis as light-harvesting

pigments and photo-protective compounds (Gupta and

Hirschberg, 2022). Previous study demonstrated a positive

correlation between carotenoids and photosynthetic rate

(Lobato et al., 2010). In this study, the pathogen infection

significantly increased the carotenoid content in mycorrhizal S.

miltiorrhiza. Together, these results suggest that the disease

res is tance of S. mi l t iorrhiza can be improved by

improving photosynthesis.

The activity of defense-related enzymes (e.g., PAL, chitinase,

and b-1,3-glucanase) can be enhanced when systemic resistance

is activated (Hura et al., 2014; Jain and Choudhary, 2014; Eke

et al., 2016; Gharbi et al., 2017). Here, we found that, after
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pathogen infection, the activities of PAL, chitinase, and b-1,3-
glucanase showed greater increases in the roots of mycorrhizal S.

miltiorrhiza than in non-mycorrhizal S. miltiorrhiza plants

(Figures 4A–C). These enzymes are crucial components in

plant resistance to biotic diseases (Funnell et al., 2004). PAL is

the key enzyme in the biosynthesis of multiple antimicrobial

compounds (phenolic acid, flavonoids), lignin (a rapidly

deposited physical barrier), and salicylic acid, three compunds

that are related to plant resistance (Wang et al., 2019). Chitinase

and b-1,3-glucanase can degrade pathogenic fungal cellular

components to inactivate fungi, and also produce monomers

to further stimulate plant defense responses (Anguelova-Merhar

et al., 2001; Doxey et al., 2007; Kumar et al., 2018). Our results

showed that AMF can trigger the expression of defense enzymes

in the host plant, which was similar to the response of F.

oxysporum infection (Figures 4A–C). Inoculating AMF or

pathogen alone significantly increased b-1,3-glucanase activity,

inhibited chitinase activity, and did not affect PAL activity in S.

miltiorrhiza (Figures 4A–C). These results indicate that

inoculation of AMF or infection with pathogen alone can

stimulate b-1,3-glucanase-related defense responses, but do

not affect chitin- and PAL-related defense responses. This

result is in agreement with the report that mycorrhizal fungi

initially trigger plant defense mechanisms similarly to a

biotrophic pathogen (Paszkowski, 2006). Song et al. (2015)

found that AMF inoculation itself did not affect most enzyme

activities, but after pathogen attack AMF pre-inoculation

induces tomato plants to produce a defense response of four

defense-related enzymes. Our results showed that upon

pathogen attack (AM+Fo treatment), AMF pre-inoculation

strongly induced the activities of PAL and b-1,3-glucanase by
B CA

FIGURE 4

The activity of chitinase (A), PAL (B), and b-1,3-glucanase (C) in the roots of S. miltiorrhiza five days after pathogen inoculation. Four treatments
included: (1) NM-Fo: non-mycorrhizal S. miltiorrhiza inoculated with heat-killed pathogen inoculation; (2) NM+Fo: non-mycorrhizal S.
miltiorrhiza inoculated with pathogen; (3) AM-Fo: mycorrhizal S. miltiorrhiza inoculated with heat-killed pathogen; (4) AM+Fo: mycorrhizal S.
miltiorrhiza inoculated with pathogen. Values are means ± SD from four sets of independent experiments with 15 plants per treatment. Different
lowercase letters indicate significant differences between different treatments according to two-way ANOVA followed by Tukey’s test for
multiple comparisons (P < 0.05).
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39.23% and 125.18%, respectively (Figures 4A, B). PAL and b-
1,3-glucanase activities in the AM+Fo treatment were the

highest among all treatments. Pre-inoculation of AMF can

alleviate the inhibitory effect on chitinase activity caused by

the pathogen. Overall, pre-inoculation with G. versiforme

inhibits pathogen infection by increasing the activities of PAL,

b-1,3-glucanase, and chitinase.

Disease resistance in plants is tightly regulated through an

interlinked network of JA and SA signaling pathways (Song

et al., 2015). The JA signaling pathway plays an important role in
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plant defense response, and SmLOX, SmAOS, SmAOC, and

SmOPR are important genes in JA biosynthes. Plant defensins

(PDFs) are a family of small cysteine-rich basic proteins (Garcıá-

Olmedo et al., 1998). SmPDF2.1, a gene encoding plant defensin,

is a marker of the jasmonate (JA) defense-response pathway

(Hanks et al., 2005). The stronger induction of these genes in

mycorrhizal plants after pathogen infection suggested that

mycorrhizal colonization activates the JA signaling pathway

and enhances the resistance of S. miltiorrhiza to F. oxysporum.

This is consistent with previous studies that mycorrhizal
B C D

E F G H

I J

A

FIGURE 5

Relative expression levels of SmLOX (A), SmAOS (B), SmAOC (C), SmOPR (D), SmJAR (E), SmPDF2.1 (F), SmPAL (G), SmNPR1 (H), SmPR1 (I), and
SmPR10 (J) in the roots of S. miltiorrhiza three days after pathogen inoculation. Four treatments included: (1) NM-Fo: non-mycorrhizal S.
miltiorrhiza inoculated with heat-killed pathogen inoculation; (2) NM+Fo: non-mycorrhizal S. miltiorrhiza inoculated with pathogen; (3) AM-Fo:
mycorrhizal S. miltiorrhiza inoculated with heat-killed pathogen; (4) AM+Fo: mycorrhizal S. miltiorrhiza inoculated with pathogen. Values are
means ± SD from four sets of independent experiments with 15 plants per treatment. Different lowercase letters indicate significant differences
between different treatments according to two-way ANOVA followed by Tukey’s test for multiple comparisons (P < 0.05).
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colonization enhances resistance to early blight in tomato by

initiating a systemic defense response and that the JA signaling

pathway is critical in the mycorrhizal-initiated disease resistance

process (Song et al., 2015). SmPAL is a key gene involved in the

biosynthesis of SA (Shine et al., 2016), and SmNPR1 is a master

regulator of SA (Tada et al., 2008). The induction of SmPR1 and

SmPR10 indicates that mycorrhizal colonization provokes SA

signaling pathways upon pathogen attack. PR genes are usually

used as marker genes of the acquisition of systemic resistance in

plants (Mitsuhara et al., 2008) and the levels of PR proteins are

used as an indicator of defense responses (Song et al., 2015).

Pathogenesis-related 1 (PR1) protein is a commonly used

reporter of SA-activated defense responses in plants

(Pečenková et al., 2022). Consistent with our studies, many

studies reported that mycorrhizal colonization induced the

transcription of PR genes (Ismail and Hijri, 2012; Li et al., 2021).
Conclusion

Pre-inoculation of S. miltiorrhiza with the AMF, G.

versiforme, enhanced resistance to Fusarium wilt by priming

the systemic defense response. Mycorrhizal colonization

improved the root structure and photosynthesis capacity of S.

miltiorrhiza to reduce disease incidence. Infection with the

pathogen alone could evade the PAL- and chitinase-related

defense responses, however pre-inoculation of S. miltiorrhiza

with AMF strongly induced PAL-, b-1,3-glucanase-, and

chitinase-related defense responses upon pathogen attack. JA

and SA signaling pathways are key components of the plant

defense response, and were strongly activated by pre-inoculation

of AMF upon pathogen attack.
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