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Short-term but not long-term
perennial mugwort cropping
increases soil organic carbon in
Northern China Plain
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Kunpeng Zhang1,2* and Shijie Han3

1School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China,
2Taihang Mountain Forest Pests Observation and Research Station of Henan Province,
Linzhou, China, 3International Joint Research Laboratory for Global Change Ecology, School of Life
Sciences, Henan University, Kaifeng, China
Perennial cropping has been an alternative land use type due to its widely

accepted role in increasing soil carbon sequestration. However, how soil

organic carbon (SOC) changes and its underlying mechanisms under

different cropping years are still elusive. A chronosequence (0-, 3-, 6-, 20-

year) of perennial mugwort cropping was chosen to explore the SOC dynamics

and the underlying mechanisms in agricultural soils of Northern China Plain.

The results revealed that SOC first increased and then decreased along the 20-

year chronosequence. The similar patterns were also found in soil properties

(including soil ammonium nitrogen, total nitrogen and phosphorus) and two C-

degrading hydrolytic enzyme activities (i.e., a-glucosidase and b-glucosidase).
The path analysis demonstrated that soil ammonium nitrogen, total nitrogen,

and plant biomass affected SOC primarily through the indirect impacts on soil

pH, total phosphorus availability, and C-degrading hydrolytic enzyme activities.

In addition, the contributions of soil properties are greater than those of biotic

factors (plant biomass) to changes in SOC across the four mugwort cropping

years. Nevertheless, the biotic factors may play more important roles in

regulating SOC than abiotic factors in the long run. Moreover, SOC reached

its maximum and was equaled to that under the conventional rotation when

cropping mugwort for 7.44 and 14.88 years, respectively, which has critical

implications for sustainable C sequestration of agricultural soils in Northern

China Plain. Our observations suggest that short-term but not long-term

perennial mugwort cropping is an alternative practice benefiting soil C

sequestration and achieving the Carbon Neutrality goal in China.
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Introduction
Soils store approximately 1550 Gt organic carbon (C),

dominating the global soil C pool (2500 Gt), which is 3.3

times than the atmospheric C pool (Lal, 2004). Soil organic

carbon (SOC) is vital for maintaining key functions of

agricultural soils, such as water and nutrient retention,

microbial activity, as well as the maintenance of a

physicochemical balance (Trost et al., 2013; Miller et al., 2015;

Wang et al., 2019; Wiesmeier et al., 2019). Increasing SOC in

agricultural soils by optimized management is a priority for

achieving food security and mitigating climate change (Lal, 2004;

Ledo et al., 2020; Jia et al., 2021; Beillouin et al., 2022). Previous

studies have revealed that agricultural managements/land use

types have substantial impacts on SOC stocks (Ledo et al., 2019;

Ledo et al., 2020; Zhu et al., 2021; Kan et al., 2022; Mondal and

Chakraborty, 2022). For example, proper agricultural

management (such as, perennial cropping) can elevate SOC

sequestration in subtropical upland soils (Zhu et al., 2021). By

contrast, land use conversion from natural to agricultural

ecosystems (annual or perennial crops) could lead to SOC loss

(Don et al., 2011; Deng et al., 2016; Ledo et al., 2020). In fact,

intensified land use changes have been observed in recent

decades (Song et al., 2018; Winkler et al., 2021), however, little

efforts have been made to explore the effects and underlying

mechanisms of the conversion from annual to perennial crops

on SOC at spatial-temporal scale.

In addition to provide food, energy feedstock, fiber, and

medicinal component, perennial cropping have been also

demonstrated to be an effective land use type for increasing

SOC (Glover et al., 2010; Ledo et al., 2020; Zhu et al., 2021). It

has been shown that conversion from natural ecosystems to

perennial crops could have diverse impacts on SOC stocks. For

example, land use changes from natural ecosystem to perennial

crops could lead to positive (Post and Kwon, 2000; Robertson

et al., 2017), negative (Don et al., 2011; Crowther et al., 2016;

Deng et al., 2016), or neutral effects on SOC (Fialho and Zinn,

2012; Qin et al., 2016). The divergent impacts of perennial

cropping on SOC may be attributed to different perennial crop

species and soil properties. In addition, perennial cropping could

result in shifts of soil physicochemical properties, such as soil C

and N nutrients (Zan et al., 2001; Glover et al., 2010). These

changes may have the potential to affect the growth of crops and

the sustainability of soil-crop systems (Bezemer et al., 2006;

Hawkers et al., 2013). Nevertheless, with the increasing of

perennial cropping years, soil C sequestration may decrease

due to the reduced capacity of self-sustainability (Rowe et al.,

2016) or continuous cropping obstacles (Chen et al., 2020; Wang

et al., 2020b; Tan et al., 2021), which pose great challenges for

sustainable soil-crop systems.

In general, perennial crops have greater biomass than

annual crops, providing high organic matter input into soils
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with crop residues, root exudates, and fine root turnover

(Glover et al., 2010; Anderson-Teixeira et al., 2013; Zhu

et al., 2021). Plant roots could affect SOC dynamics by root

litter and rhizodeposition (Dijkstra et al., 2021). For example,

SOC may gain when plant roots increase SOC stabilization

through forming soil aggregates, which are less accessible to

decomposition (Schimdt et al., 2011; Slessarev et al., 2020). By

contrast, SOC may also lose when plant roots stimulate SOC

destabilization by aggregate destruction with tillage (Hartley

et al., 2012; Cheng et al., 2014; Dijkstra et al., 2021). In

addition, recent evidence reveals that preference for root

nitrogen uptake as ammonium nitrogen over nitrate

nitrogen could lead to rhizosphere acidification, and thus

inhibit the rhizosphere priming effect, with consequently

promote SOC sequestration (Wang et al., 2016; Wang and

Tang, 2018). Moreover, SOC could also be regulated by soil

extracellular enzyme activity (Chen et al., 2018; Chen et al.,

2020; Chen and Sinsabaugh, 2021). Extracellular enzymes

secreted by soil microbial communities degrade complex

polymers into substrates assimilating and respiring CO2

during the decomposition of soil organic matter (Burns

et al., 2013; Bödeker et al., 2014), during which the

extracellular enzymes play a critical role during the

decomposition of soil organic matter (Sinsabaugh et al.,

2008; Cenini et al., 2016). Due to less soil disturbance

associated with lower tillage, conversion from annual to

perennial cropping may have the potential to increase soil

microbial enzyme activities (Haney et al., 2010; Dou et al.,

2013). In addition, soil chemical properties under less soil

disturbance can provide steady nutrient supply for

extracellular enzymes (Cattaneo et al., 2014; Zhang et al.,

2021a). Thus, conversion from annual to perennial cropping

may have substantial impacts on SOC through affecting

enzyme activities. Nevertheless, the relative contributions of

diverse soil and plant properties to SOC under the conversion

from annual to perennial cropping remain unclear.

Considering that perennial crops dominate 30% of global

croplands (Ledo et al., 2018) and usually have greater biomass

than conventional crops, perennial cropping has the

substantial potential to sequester more C into agricultural

soils and thus mitigate climate change (Ledo et al., 2019;

Ledo et al., 2020). As a perennial crop, mugwort (Artemisia

argyi Lévl. et Van) has been widely cultivated in recent years

due to its medicinal value in Northern China Plain (Jiang et al.,

2019). In this study, a chronosequence (0, 3, 6, and 20 years) of

perennial mugwort cropping was identified and chosen in

Northern China Plain. Soil and climate conditions were

similar among the four sampling sites, which provided us the

opportunity for using the space-for-time substitution method

to explore the scientific questions: 1) what are SOC dynamics

along the chronosequences of mugwort cropping? 2) which

factors drive the changes in SOC under different cropping years

of mugwort?
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Materials and methods

Site description and sample collection

This study was conducted in Tangyin County (35°45′-36°01′
N, 114°13′-114°42′ E), Anyang, Henan, where is one of the

origins of mugwort, a genuine herb. This region has a warm

temperate continental monsoon climate, with mean annual

temperature of 13.4°C and precipitation of 582.0 mm,

respectively. The soil is classified as cinnamon soil according

to the Chinese soil classification system. The surface soil

contained organic matter of 16.7 mg/g and total nitrogen

content of 1.07 mg/g. With the development of the traditional

Chinese medicine industry, parts of croplands were gradually

converted from maize-wheat rotation to perennial mugwort

cropping in Tangyin County in recent years, which provides

the opportunity to assess the effects of the chronosequence of

perennial mugwort cropping on soil organic carbon.

We identified and selected a chronosequence (continuous

maize-wheat rotation (Control-Y0), perennial mugwort

cropping for 3 (Y3), 6(Y6), and 20 years(Y20)) of perennial

mugwort cropping in this study region. Given the distances

among the four chronosequence periods were close (less than 5

km), we considered that soil types among the four

chronosequence periods were not heterogeneous. In each

chronosequence period, three blocks were randomly

established. The aboveground plant parts of each plot in each

block were harvested and put into tagged mash bags in late

September of 2020. Then, three 20 cm depth (0-10 cm, 10-20

cm) cylindrical holes were excavated using a soil auger (5 cm in

diameter) in the plots. Soil samples were passed through a 0.25

mm sieve and roots were collected then oven-dried at 105°C

for 48 hours. Then, soil samples were divided into two

subsamples. One subsample was stored at 4°C for measuring

soil physicochemical properties. Another subsample was stored

at -20°C for measuring soil extracellular enzymatic activities (a-
(AG) and b-glucosidase (BG)).
Soil chemical properties and extracellular
enzyme activities

Soil organic carbon and total N content were measured by an

elemental analyzer with a dry combustion method (Vario MAX

CN, Elementar Co., Germany). The total phosphorus (P)

content was determined by H2SO4-HClO4 digestion and then

P molybdenum blue colorimetric analysis (Murphy and Riley,

1962). The concentrations of ammonium (NH4
+) and nitrate-

nitrogen (NO3
-) were extracted with 2M KCl solution and

measured by a flow injection analyzer (SAN-System,

Netherlands). Soil pH was measured with a combination glass-

electrode [soil:water = 1:2.5 (W/V)] (Tian et al., 2022).
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a-glucosidase (AG) and b-glucosidase (BG) are two key C-

degrading hydrolytic enzymes. The activities of the two enzymes

were determined by a colorimetric method described previously

using fluorescently-labeled substrates (German et al., 2011;

Allison et al., 2018). Fresh soil sample (0.2 g dry weight) was

homogenized in 100 mL 25 mM maleate buffer (pH = 6.0). 125

µL of fluorometric substrate solution in 25 mM maleate buffer

was mixed with 125 µL soil homogenate in each well of a 96-well

microplate. Then, we incubated the 96-well microplate for 4

hours for analyzing the two hydrolytic enzymes (AG and BG).

Fluorescent signals for the two enzymes were acquired at 365 nm

excitation and 450 nm emission (BioTek Synergy H1 microplate

reader, Winooski, VT, USA). The enzyme activity was expressed

as nmol h-1 g-1 dry soil based on the method described by

German et al. (2011).
Statistical analyses

All data are presented as mean values ± standard deviation

(SD) for the three plots in each cropping type. Two-way

ANOVAs were used to explore the effects of soil depth and

cropping year on all the variables included in the study. In

addition, changes in soil chemical properties among the four

cropping types were assessed using one-way ANOVA with

Duncan multiple comparisons. After that, regression analyses

were conducted between SOC and cropping years to fit the SOC

dynamic. The correlations among variables were explored by the

Pearson correlation method. Significant differences were

evaluated at the 0.05 probability level.

Random Forest (RF) models were used to partition

independent influences of NH4
+, NO3

-, NH4
+/NO3

-, TN, TP,

pH, AG, BG, root biomass (RB), and aboveground biomass

(AGB) on SOC. Then, path analysis was employed to explore a

mechanistic understanding of the direct and indirect effects of

soil properties and enzyme activities, as well as RB and AGB on

SOC along the chronosequence of perennial mugwort cropping.

We first examined whether there were any collinear

relationships between the factors by calculating the variance

inflation factor (VIF). The factors were excluded if VIF was more

than 5. Due to there were no significant relationships of SOC

with NO3
- and RB/AGB, or weak relationships between SOC

and NH4
+/NO3

- in linear regression analyses, NO3
-, RB/AGB,

and NH4
+/NO3

- were not included in the path analysis. The path

analysis was achieved based on the maximum likelihood

method, Chi-square (c2), degree of freedom (df), root-mean-

squared error (RMSE), AIC value, and goodness of fit index

(GFI). The path analysis was performed using AMOS 20.0

(AMOS Development Corporation, Chicago, IL, USA) and

other statistical analyses were performed using SAS 8.0 (SAS

Institute Inc., Cary, NC, USA) and R v.4.1.1 (R Development

Core Team). Excel 2019 (Microsoft Crop., Redmond, WA, USA)
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and GraphPad Prism 9.0 software (GraphPad Inc., San Diego,

California, USA) were used to plot the graphs.
Results

Soil properties

Soil ammonium nitrogen (NH4
+), nitrate-nitrogen (NO3

-),

NH4
+/NO3

-, total N and phosphorus (P), pH, a-glucosidase
Frontiers in Plant Science 04
(AG) and b-glucosidase (BG), as well as SOC showed significant

variations among different mugwort cropping years across the

two depths (Figures 1, 2, all P < 0.001, Table 1). NH4
+, TN, TP,

AG, BG, and SOC showed a trend of first increase and then

decrease along the chronosequence (Y0-Y20, Figures 1A, D, E,

G, H, 2A, B). TN and TP, BG, as well as SOC were lowest in 20-

year mugwort cropping soils (Figures 1D, E, H). In addition, the

highest of NH4
+/NO3

-, TN, AG, BG, and SOC were found in the

3-year mugwort cropping soils (Figures 1C, D, G, H). When

simulating the SOC against with year (R2 = 0.77, P < 0.001,
A B

D

E F

G H

C

FIGURE 1

NH4
+ (A), NO3

- (B), the ration of NH4
+ to NO3

- (NH4
+/NO3

-, C), TN (D), TP (E), pH (F), AG (G), and BG (H) (Mean ±SD) of different soil depths (0-
10 cm and 10-20 cm) along the chronosequence of mugwort cropping. Y0: continuous maize-wheat rotation; Y3: mugwort cropping for 3
years (since 2017); Y6: mugwort cropping for 6 years (since 2014); Y20: mugwort cropping for 20 years. Different letters indicate significant
differences among the four cropping years at P < 0.05. See Table 1 for abbreviations.
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Figure 2B), we found that SOC reached its maximum (20.82 g/

kg) in the year of 7.44 and was equal to that under the

conventional rotation when cropping mugwort for 14.88 years

(Figure S1).
Plant properties

The lowest root biomass was observed in 0-year

mugwort cropping (Table 2). There was no difference in

root biomass among the 3-year, 6-year, or 20-year mugwort

cropping. Aboveground biomass showed a decreasing trend

along the chronosequence of mugwort cropping (Table 2).

The ratio of RB to AGB (RB/AGB) in 0-year mugwort

cropping soils was lower than that in the other three

chronosequence cropping periods. No differences in RB/
Frontiers in Plant Science 05
AGB were detected among the 3-year, 6-year, or 20-year

mugwort cropping (Table 2).
Relationships among soil and
plant properties

Soil organic carbon (SOC) enhanced with increasing NH4
+,

NH4
+/NO3

-, TN, TP, as well as AG and BG (Figures 3A, C–E, G,

H), whereas decreased with the augment of pH (Figures 3F, G). In

addition, the quadratic relationships of SOC with root and

aboveground biomass were observed (Figures 4A, B). There was

no relationship of SOC with RB/AGB (Figure 4C). The RF models

showed that AG and BG accounted for 17.59% and 10.93% of SOC

variance, respectively (Figure 5). Path diagrams showed

interdependence relationships of TN with NH4
+ (r = 0.52, P =
A B

FIGURE 2

Soil organic carbon content across the two soil depths (SOC, g/kg, n=3, Mean ± SD, A), and the relationship of SOC with cropping years (B).
Different letters indicate significant difference among the four cropping years at P < 0.05. See Figure 1 for abbreviations.
TABLE 1 Effects of soil depth (Depth) and cropping year (Year) on soil ammonium-nitrogen content (NH4
+), nitrate-nitrogen content (NO3

-), the
ratio of NH4

+ to NO3
- (NH4

+/NO3
-), total nitrogen content (TN), total phosphorus content (TP), pH, two C-acquiring enzymes: a- (AG) and b-

glucosidase (BG), and soil organic carbon content (SOC).

Variations Depth Year Depth×Year

F P F P F P

NH4
+ 0.26 0.62 17.16 <0.001 0.68 0.58

NO3
- 0.14 0.72 50.42 <0.001 2.09 0.14

NH4
+/NO3

- 25.53 <0.001 65.57 <0.001 24.63 <0.001

TN 8.13 0.01 22.09 <0.001 1.14 0.36

TP 0.67 0.43 17.42 <0.001 0.61 0.62

pH 0.01 0.94 15.04 <0.001 3.31 0.05

AG 6.33 0.02 37.31 <0.001 1.67 0.21

BG 1828.52 <0.001 661.95 <0.001 186.44 <0.001

SOC 18.11 <0.001 59.76 <0.001 9.20 <0.001
frontier
The bold numerals indicate the significance at P ≤ 0.05.
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0.03) and pH (r = -0.53, P = 0.01), as well as of RB with AG (r =

0.44, P < 0.01) and AGB (r = -0.81, P < 0.01), respectively (Figure 6).

In addition, neither AGB nor RB had effects on SOC directly,

whereas affect SOC by altering AG and BG indirectly. Changes

in RB had positive impacts on AG (r = 0.44, P < 0.01), with

consequently alter the SOC (r = 0.21, P < 0.01). Moreover,

changes in NH4
+ have impacts on SOC mainly through affecting

pH (r = -0.41, P = 0.03; r = -0.21, P < 0.01) and TP (r = 0.31, P =

0.05; r = 0.41, P < 0.001). RB increased with increments of NH4
+,

indicating that NH4
+ could also mediate SOC through altering

RB (r = 0.20, P < 0.001), and thus AG (Figure 6). Furthermore,

the interdependence relationship of TN with pH, as well as the

positive dependence of TP on TN, suggesting that changes in TN

had noticeable influences on SOC by altering TP (r = 0.56, P <

0.001; r = 0.41, P < 0.001) and pH (r = -0.53, P = 0.01; r = -0.21, P

< 0.01). Given that the positive relationship of BG with AG (r =

0.54, P < 0.001), variables that affect AG could thus alter BG, and

consequently change SOC (Figure 6).
Discussion

Changes in SOC along the
chronosequence of perennial
mugwort cropping

In this study, SOC under 3- and 6-year cropping of perennial

mugwort is greater than that under conventional rotation, which

indicates that short-term perennial mugwort could be an

effective practice for improving soil C sequestration. This

finding is consistent with those reported by previous studies,

which have revealed that perennial cropping can have

fundamental positive impacts on soil C sequestration (Ledo

et al., 2019; Ledo et al., 2020; Zhu et al., 2021). However,

mugwort cropping begins to decrease SOC after 7.44 years

(especially after 14.88 years: SOC is lower than that under the

conventional rotation), suggesting that long-term perennial

mugwort cropping could not benefit for soil C sequestration,

which may lead to positive feedbacks to climate change (Lal,

2004; Ledo et al., 2020; Jia et al., 2021).
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When analyzed by different soil depths, SOC under mugwort

cropping at the 20-year chronosequence was equivalent to that

under maize cropping (Y0) at the depth of 10 cm (Figure S1).

Therefore, the observations of reduced SOC across the two

depths can be largely attributed to decreased SOC at the depth

of 20 cm (Figure S1), indicating that subsoil SOC may decrease

more quickly than topsoil SOC under mugwort cropping at the

long-term scale. The findings that decreased patterns of SOC

with soil depth observed in this study are consistent with those

reported in previous studies (Rentschler et al., 2019; Zhu et al.,

2021). The above observations contribute to the decreased SOC

across the two depths over the chronosequence of mugwort

cropping. The trends reported in this study make it reasonably

clear that short-term mugwort cropping is beneficial to SOC

sequestration, whereas long-term (more than 14.88 years)

mugwort cropping has the reverse impacts on SOC

sequestration, indicating that mugwort should be rotated with

other crops to prevent the decrease of SOC compared with that

under conventional crops. However, recent evidence reveals that

SOC storage of deep soil may show change compared with

that of surface soil under perennial cropping (Ledo et al., 2020).

For example, conversion from annual to perennial crops can

result in an average 20% enhancement in SOC at 0-30 cm and

10% increase across the 0-100 cm soil profile (Ledo et al., 2020).

Therefore, accurate evaluation on the dynamics of SOC under

perennial cropping needs to consider deeper profiles (such as, up

to 60 cm or 100 cm depth) in future studies (Ledo et al., 2020;

Kan et al., 2022; Chen et al., 2022). Nevertheless, lack of

cropping chronosequence between 6 and 20 years, during

which there may be uncertainties in SOC shifts. Therefore,

more cropping years are needed to be considered in future

field studies.
Changes in aboveground and root
biomass and their impacts on SOC

Aboveground and root biomass play important roles in

regulating SOC through providing C input (Anderson-Teixeira

et al., 2013; Waring et al., 2014; Deng et al., 2019; Zhou et al.,

2020). In this study, the aboveground biomass of mugwort was
TABLE 2 Mean values (Mean ± 1SE) of root biomass (RB), aboveground biomass (AGB), and the ratio of RB to AGB (RB/AGB) across the plots
along the chronosequence of mugwort cropping.

Cropping years RB (kg/m2) AGB (kg/m2) RB/AGB

Y0 0.15 ± 0.06b 1.43 ± 0.05a 0.11 ± 0.04b

Y3 0.77 ± 0.15a 1.08 ± 0.04b 0.71 ± 0.14a

Y6 0.71 ± 0.25a 0.89 ± 0.01c 0.80 ± 0.29a

Y20 0.51 ± 0.22a 0.69 ± 0.05d 0.77 ± 0.37a
fro
Different letters indicate significant differences among the four cropping years.
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lower than that of maize, whereas root biomass of mugwort was

greater than that of maize (Table 2). Under the short-term

mugwort cropping, higher root biomass could stimulate root

turnover and C exudation, and thus increase SOC (Beare et al.,

2014). Under the long-term (more than 14 years) mugwort

cropping, although root biomass of mugwort is still greater

compared with that of maize, the turnover of mugwort root
Frontiers in Plant Science 07
may be lower than that of maize root due to continuous

cropping obstacle, which is demonstrated in other crops (Chen

et al., 2020; Wang et al., 2020b; Tan et al., 2021), leading to

reduced root exudation (Leifeld et al., 2015; McNally et al.,

2017), and consequently result in lower SOC. In addition,

decreased aboveground biomass under perennial mugwort

cropping, leading to a reduction of crop C input into soil,
A B

D

E F

G H

C

FIGURE 3

Relationships of SOC (g/kg) with NH4
+ (A), NO3

- (B), the ratio of NH4
+ to NO3

- (C), TN (D), TP (E), pH (F), AG (G), and BG (H), respectively. The
shadow areas represent 95% confidence intervals. See Table 1 for abbreviations.
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which may further depress SOC at a long-term scale (Cai et al.,

2022; Krauss et al., 2022).
Changes in soil properties and their
impacts on SOC

The finding of short-term (Y3 and Y6) consecutive mugwort

cropping increased NH4
+, total N and P of surface soil (Figures 1A,

D, E, 2A) are consistent with that reported in a previous study (Zhu

et al., 2021). In the current study, although short-term mugwort

cropping decreased aboveground biomass, increased root biomass
Frontiers in Plant Science 08
combining the enhanced soil NH4
+, total N and P nutrient could

stimulate the turnover rate of roots (Sun et al., 2017), which is

beneficial to sequestrate C into the soil. The observations of

positive and quadratic relationships of SOC with root biomass

and aboveground biomass, respectively (Figures 4A, B) support the

above discussion. In addition, less tillage associated with

conversion from annual crops (Y0) to perennial mugwort could

decrease the fragmentation of soil aggregates and thus

decomposition of soil organic matters (Liu et al., 2021b; Kan

et al., 2022; Lessmann et al., 2022; Mondal and Chakraborty,

2022), which can increase the storage of SOC. Moreover, it has

been documented that enzyme activity plays a vital role in
A B C

FIGURE 4

Relationships of SOC (g/kg) with root (RB, kg/m2, A) and aboveground biomass (AGB, g/m2, B), as well as the ratio of root biomass to
aboveground biomass (RB/AGB, C) under the four cropping durations. The shadow areas represent 95% confidence intervals.
FIGURE 5

Relative contributions (Increase in MSE, %) of different factors to SOC. See Table 1 for abbreviations.
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regulating organic carbon in agricultural soils and shows a positive

relationship with SOC (Cattaneo et al., 2014; Zhang et al., 2021a).

The observations of positive dependences of SOC with AG and BG

in this study are consistent with those found in previous studies

(Cattaneo et al., 2014; Zhang et al., 2021a). In this study, increased

root biomass could stimulate root turnover and associated

substrate accumulation (e.g., dead root, root exudation, etc.). The

extent of increased substrate accumulation may exceed that

decomposed by enzymes, and thus resulting in the positive

relationships between SOC and enzyme activities, with

consequently increase SOC. Furthermore, decreased pH may

inhibit soil respiration and thus the C mineralization process

(Kemmitt et al., 2006; Lazicki et al., 2022), with consequently

contribute to the increased SOC under the short-term mugwort

cropping. Less soil disturbance under consecutive mugwort

cropping with lower tillage may also protect the aggregates from

fragmentation and thus the loss of SOC (Zhu et al., 2014; Lal, 2015;

Liu et al., 2021b; Kan et al., 2022; Mondal and Chakraborty, 2022).

As a consequence, consecutive perennial mugwort cropping could

increase SOC sequestration at the short-term scale in the temperate

regions of Northern China Plain.

By contrast, at the long-term scale (20-year mugwort cropping),

changes in soil properties (soil NH4
+, total N and P, as well as AG

and BG) were reversed compared with those at the short-term scale

(Figure 1). The decreased above soil properties (soil NH4
+, total N
Frontiers in Plant Science 09
and P) may be ascribed to two reasons. First, long-term

monoculture could lead to intensified intraspecific competition

and continuous cropping obstacles (Chen et al., 2020; Wang

et al., 2020b; Liu et al., 2021a; Tan et al., 2021), and thus result in

lower nutrient use efficiency, which depress the aboveground

biomass (Table 2), further decrease the transfer of C from plant

to the soil (Wang et al., 2020b), with consequently inhibit the

enzyme activities (i.e., AG and BG, Figures 1G, H) and soil nutrient

availability. Second, decreased soil total N and P associated with

reduced nutrient use efficiency may result from the leaching effects,

and exacerbate the positive feedbacks of aboveground biomass

reduction. Decreased soil total N could lead to lower soil C/N,

which further reduce the stability and resistance to the

decomposition of soil organic matters, resulting in decreased SOC

(McNally et al., 2017; Wang and Tang, 2018; Ni et al., 2022).

Regression and path analyses showed that there were indirect

impacts of aboveground biomass on SOC through affecting root

biomass and thus AG and BG activities (Figures 4, 6). In addition,

given the important role of pH in regulating C mineralization

(Kemmitt et al., 2006; Zhang et al., 2021b), increased pH associated

with decreased soil total N could stimulate soil respiration (C

mineralization process) and consequently reduce SOC under

long-term mugwort cropping (Figures 1, 3, 6), which is consistent

with that found in a recent study (Lu et al., 2022). Irrespective of the

temporal impacts of mugwort cropping on SOC, the contributions
FIGURE 6

Path analysis showing the effects of pH, TP, NH4
+, TN, AG, BG, as well as RB and AGB on SOC. The final path analysis adequately fitted the data

c2 = 28.55, df = 20, P = 0.10, GFI = 0.83, AIC = 78.55, RSME = 0.001. Solid and dashed arrows suggest significant and non-significant paths,
respectively. The width of the solid arrows indicates the strength of the relationships. R2 shows the proportion of SOC explained by variables.
Significant level: * P < 0.05; ** P < 0.01; *** P < 0.001.
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of C-degrading hydrolytic enzyme activities (i.e., AG and BG) and

soil nutrients (e.g., TN and TP, Figure 5) were greater than those of

biotic factors (aboveground and root biomass) on SOC along the

chronosequence cropping. These observations indicate that soil

properties play more important roles than biotic factors in

regulating SOC at the spatial scale in agricultural soils, which is

also supported by the path analysis (Figure 6). It has been

demonstrated that long-term conservation tillage (such as, no-

tillage) could increase the abundances of plant pathogens,

resulting in root rot and thus reduction of plant biomass (Wang

et al., 2020a), with consequently further decrease the substrate

supply for accumulation of SOC in the long run. As a

consequence, the importance of biotic factors may exceed than

that of abiotic factors under the long-term mugwort cropping.

Overall, our study has critical implications for sustainable mugwort

cropping and mitigation of climate change. The findings of first

increased and then decreased SOC along the chronosequence of

mugwort cropping suggest that short-term (less than 7.44 years)

mugwort cropping could be beneficial for maximized C

sequestration, whereas long-term mugwort cropping has a

negative impact on SOC. These observations indicate that long-

term mugwort cropping (more than 14 years) should be avoided to

access the goals of peak C emission and neutrality (Wang

et al., 2021).
Conclusions

Using a data set of SOC along a chronosequence of perennial

mugwort cropping in Northern China Plain, we demonstrated

that SOC increased under the short-term cropping and reached

the maximum in the year of 7.44, whereas decreased under the

long-term cropping (more than 14.88 years). Soil properties and

C-degrading hydrolytic enzyme activities contributed more than

biotic factors (aboveground and root biomass) in regulating SOC

across the chronosequence. Nevertheless, the role of biotic factors

may exceed that of abiotic factors in mediating SOC under long-

term mugwort cropping. Given its economic benefit and critical

role in regulating SOC sequestration, short-term (less than 7

years) perennial mugwort cropping is an alternative practice to

maximumly sequestrate more C into the soil in Northern China

Plain. Our findings that contrast impacts of short-term and long-

term perennial mugwort cropping on SOC suggest that long-term

perennial mugwort cropping may not beneficial for maintaining

soil C storage and achieving the goals of C neutrality of China.
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