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Melting permafrost mounds in subarctic palsa mires are thawing under climate

warming and have become a substantial source of N2O emissions. However,

mechanistic insights into the permafrost thaw-induced N2O emissions in

these unique habitats remain elusive. We demonstrated that N2O emission

potential in palsa bogs was driven by the bacterial residents of two dominant

Sphagnum mosses especially of Sphagnum capillifolium (SC) in the subarctic

palsa bog, which responded to endogenous and exogenous Sphagnum factors

such as secondary metabolites, nitrogen and carbon sources, temperature,

and pH. SC’s high N2O emission activity was linked with two classes

of distinctive hyperactive N2O emitters, including Pseudomonas sp. and

Enterobacteriaceae bacteria, whose hyperactive N2O emitting capability was

characterized to be dominantly pH-responsive. As the nosZ gene-harboring

emitter, Pseudomonas sp. SC-H2 reached a high level of N2O emissions that

increased significantly with increasing pH. For emitters lacking the nosZ gene,

an Enterobacteriaceae bacterium SC-L1 was more adaptive to natural acidic

conditions, and N2O emissions also increased with pH. Our study revealed

previously unknown hyperactive N2O emitters in Sphagnum capillifolium

found in melting palsa mound environments, and provided novel insights into

SC-associated N2O emissions.

KEYWORDS

Sphagnummoss, bacteria, N2O emitters, N2O-related genes, pH, permafrost peat

Introduction

Arctic permafrost soils store ample nitrogen (N) reservoirs that may be subject
to remobilization due to climate warming (Christensen et al., 2013), that leads
to permafrost degradation and thawing (Borge et al., 2017). After permafrost
thaws, increased nitrous oxide (N2O) emissions are observed in arctic permafrost
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peatlands (Voigt et al., 2017a,b). N2O is a potent greenhouse gas
and contributes to the disruption of the ozone layer (IPCC, 2007;
Ravishankara et al., 2009). Therefore, urgency to understand the
primary source of N2O emissions in this arctic environment is
crucial.

Peatlands store one-third of global soil carbon, and boreal
peatlands account for 83% of the global peatland area (Eurola
et al., 1984; Savolainen et al., 1994). Bare peat in permafrost
peatlands has been identified as a hot spot for N2O emissions
due to low availability nitrogen (N) competition in subarctic
tundra (Repo et al., 2009; Marushchak et al., 2011). Sphagnum-
dominated bogs have low nutrient content, low primary
production, low-quality plant litter, low litter decomposition
rates, and low mineral content combined with a low pH
(<4.5) environment, which is vital for carbon (C) sequestration
(Chronáková et al., 2019). Mineral N deposition to Sphagnum

bogs has progressed, with ammonification, ammonia oxidation,
and denitrification playing a critical role in the emission of N2O
(Van Cleemput, 1998; Francis et al., 2007). In addition, the water
table level also affects N2O emissions in northern peatland, as
lowering the water table leads to increased N2O production
(Regina et al., 1996). Once the peatlands are drained, Sphagnum
vegetation and surface peat layers are exposed to the atmosphere,
activating nitrification due to ammonium (NH+

4 -N) release in
aerobic peat degradation, followed by denitrifier stimulation in
N-enriched conditions to emit N2O (Martikainen et al., 1995;
Regina et al., 1999; Minkkinen et al., 2020). Palmer and Horn
(2012) reported that palsa peatlands in the northwestern Finnish
Lapland showed N2O emissions in situ from −0.02 to 0.01
µmol N2O m−2 h−1. Emissions of N2O may rise considerably
during the thaw of permafrost, representing another ongoing
change in northern peatlands. It was reported that a five-fold
increase in N2O flux from palsa mire peat in a permafrost thaw
experiment (Voigt et al., 2017b). However, determining which
active N2O emitters in these northern ecosystems contribute to
high emissions remains largely elusive.

Sphagnum mosses (non-vascular plants) dominate the
vegetation of many northern mire ecosystems and harbor
a high diversity of nitrifiers and denitrifiers (Dedysh et al.,
2006; Gilbert et al., 2006; Opelt et al., 2007). In these moss
communities, N2O gas is mainly produced via nitrification,
nitrifier denitrification, and denitrification pathways (Wrage
et al., 2001). High hummocks in bogs and palsa mire
permafrost mounds have relatively thick aerobic acrotelm
layers and are the most potential microhabitats to N2O
emissions. These microhabitats are characteristically dominated
by Sphagnum fuscum (SF) and Sphagnum capillifolium

(SC) (Markham, 2009; Novak et al., 2015; Zhong et al.,
2020), which are widely distributed throughout European
and North American peat bogs. These keystone species
develop climax-type, raised bog hummock vegetation. Upon
exposure to high N inputs, polyphenol secondary metabolites
produced by these Sphagnum mosses, such as caffeic acid,

are often reduced (Bragazza and Freeman, 2007; Montenegro
et al., 2009). These secondary metabolites may impact the
activity and community composition of the microbiota
within the holobiont and the associated N2O emission rates
(Wang and Cernava, 2020).

Our previous work has demonstrated that the N2O source in
southeastern Finland was mainly from Sphagnum moss rather
than peat soil. However, this previous study only focused on
the single keystone and dominant species of SF in Finnish
temperate marine climate areas (Nie et al., 2015). The different
contributions of N2O emissions between several dominant
Sphagnum species, especially in a typical subarctic permafrost
peatland [hot-spots of N2O emission (Voigt et al., 2017b)]
in Finland, is largely unknown. This study uses SF as the
control plants and aim to answer three questions: (1) Are the
N2O emission potentials between the two dominant Sphagnum
species (SC and SF) similar or different in the subarctic palsa
bog? (2) How does the culture-based N2O assay for the
bacterial community composition of the two Sphagnum species
influence the N2O emission potential? (3) What is the dominant
process of N2O production by active N2O emitters under
aerobic conditions of peat bogs? By investigating N2O emission
potential in SF and SC grown in drained palsa peat bogs of
northwestern Finland, we aim to characterize the dominant
N2O emitters hidden in the microbiota of SF and SC in
association with their N2O emission traits in response to major
holobiont factors.

Materials and methods

Sampling Sphagnum mosses

Composite samples of SF and SC (photos of them at
one site are shown in Supplementary Figure S1) were collected
from a plateau of a permafrost mound of a palsa mire near
Kilpisjärvi (68◦43′; 21◦25′), northwestern Finland (Figure 1A).
Each sample of SC/SF was formed from three random sampling
sites with three replicates in August–September, 2014. SC and
SF were collected from the same patch (within 50–100 cm) and
the sampling sites were 50 to 100m away from each other.
From each sampling site, random 533 to 565 individual plants
of either SC or SF were collected and mixed for each sample
in order to guarantee the sample’s representation. Both SC
and SF were collected from large homogenous stands with a
40 cm thaw layer above the permafrost surface. The region
has a low annual mean temperature (−2.3◦C) and moderate
mean annual precipitation (487mm). The growing season is
one of the shortest in continental Europe (∼100 d when the
mean daily temperature is≥5◦C). The Sphagnum samples stored
in Ziploc R© bags at 4◦C were used for further culture-based
N2O emission measurements.
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FIGURE 1

N2O emission potential and microbial communities in the Sphagnum mosses grown in Finland’s plateau of a permafrost mound. Sample site of

Sphagnum mosses (A). 100 µL Sphagnum leaves washing (100 mg/10ml) as inoculants (B). Sphagnum mosses as the inoculants (C). The

community structure of bacteria revealed by the PCR-DGGE profile was subjected to phylogenetic analysis of SC (D). Incubation conditions of

(B,C): pH = 5, incubated at 15◦C, 7 days, n = 3, with 0.05% sucrose. *P < 0.05 and **P < 0.01.

Comparison of N2O emission potentials
in two Sphagnum mosses

To evaluate the potential for N2O emission of the two
Sphagnummosses under an experimental nitrogen load, we took
three Sphagnum mosses plants (∼0.1 g in dry weight) randomly
from the respectively, composite sample of SC and SF using
sterilized tweezers. At the same time, we standardized the dry
weight for the N2O assay. Either 100 µL of Sphagnum moss
leaf extract (100 mg/10ml) or 3 plants were added to N2O
assay medium [10ml of modifiedWinogradsky’s Gellan (MWG)
medium containing 0.005% yeast extract and solidified with
3% gellan gum with 22.6ml of headspace in each vial (30ml
gas-chromatographic vial with a butyl rubber plug) (Nichiden-
Rika Glass Co., Kobe, Japan)] with 0.05% sucrose diluted with
sterilized Milli-Q water (the solution was adjusted to pH = 5.0
with 2M H2SO4) (three replicates in each case) (Hashidoko
et al., 2008). After incubation at 15◦C (according to the mean
value of summer temperature of Finland) for 7 days in the
dark, an N2O assay was carried out by using an electron
capture detector(ECD)-gas chromatograph (Shimadzu GC-14B,
125 Kyoto, Japan) connected to a Porapak N column (1m long,
Waters, Milford, MS, USA). In another treatment, 0.1 g L−1 of
caffeic acid instead of 0.05% sucrose was added as the carbon
source to the vials with three plants (∼0.1 g in dry weight)

randomly taken from the above composite samples (pH 5).
A control for the assay, without any carbon source, was also
performed simultaneously (three replicates in each case). After
incubation at 15◦C in the dark for 4, 8, and 15 days, an assay of
N2O was performed as mentioned above.

DGGE profiling of the bacterial
communities in two Sphagnum species

Polymerase chain reaction-denatured gradient gel
electrophoresis (PCR-DGGE) was performed to observe
the culture-based bacterial communities on the leaves of the
two Sphagnum mosses. First, genomic DNA was extracted from
the medium after the N2O assay using an Isoplant II DNA
Extraction kit (Nippon Gene, Toyama, Japan). The PCR steps
and conditions were as follows: PCR denaturation for 5min
at 95◦C, and 30 cycles of amplification (15 s at 95◦C, 30 s at
55◦C, 30 s at 72◦C), and 10min elongation at 72◦C. Then PCR
products for DGGE were obtained by using the common 16S
rRNA primers GC-341F (CGC CCG CCG CGC CCC GCG
GGG GTC CCG CCG CCC CCG CCC GCC T AC GGG AGG
CAG CAG) and 907R (CCG TCA ATT CCT TTR AGT TT)
(Ferris et al., 1996) and run on a 30–70% denatured gradient gel
(6% w/v). The sequences of DGGE-cutting bands were obtained
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using an ABI prismTM 310 Genetic Analyzer and retained in
the NCBI (BioProject No. PRJNA681491).

Culture-dependent screening and
identification of N2O emitters

100 µl of medium with three Sphagnum mosses (after
incubation for 7 days) was diluted 1×104- and 106-Fold and
inoculated onto MWG plates to screen N2O emitters. After
incubation for 5 days at 20◦C in the dark, 13 distinguishable
bacterial colonies characterized by colony characteristics were
selected for streak cultivation on MWG plates and transferred
to potato dextrose agar (PDA) plates until purified. Each
Pure strain [a total of 108 isolates (13 bacterial colonies with
8 replicates), with 100 µl of each bacterial cell suspension
(OD660nm = 0.9–1.0)] was inoculated into an N2O assay vial
with 10ml of modified MWG medium to test their N2O
emission ability. The three pure strains SC-K1, SC-L1, and
SC-H2 (from SC) showed relatively higher N2O production
and were active N2O emitters (Supplementary Table S2, data
collected from six top active N2O emission-bacterial colonies).
The genomic DNA of each strain was extracted, and the 16S
RRNA gene was amplified through PCR by using a series
of primers 27F, 338R, 341F, 907R, 1080R, 1380R, 1492R,
1112F, and 1525R. Sequencing was performed with an ABI
PrismTM 310 Genetic Analyzer (Applied Biosystems, USA) (Nie
et al., 2015). All the resulting 16S RRNA gene sequencing
datasets were deposited in the NCBI database (accession nos.
MW301596–MW301598) and compared with sequences in the
nucleotide basic local alignment search tool (BLASTN) database
program provided by NCBI (National Center of Biotechnology
Information, Bethesda, MD, USA; http://Blast.Ncbi.nlm.nih.
gov/Blast.cgi).

N2O emitters response to nitrogen
sources, pH, and temperature

The pure isolates (SC-K1, SC-L1, and SC-H2) pre-cultured
on PDA for 4 days at 15◦C were separately scraped with a
nichrome wire loop and suspended into 1.5ml Milli-Q water
(equal amounts of each pure strain was guaranteed). A 20
µl portion of the inoculant that showed an optical density of
OD660nm 0.9–1.0 was added to the N2O assay vial and then
was thoroughly vortexed for 30s. 1mM NH4NO3, KNO3, and
NH4Cl were tested and incubated at 15◦C for 5 days with
0.05% sucrose (pH = 5.0) to determine the optimal nitrogen
substrates for pure N2O emitters. The pH was adjusted with
1M H2SO4 and 1M KOH solutions to 4.6, 5.0, 5.7, 6.8, and 7.3
before autoclaving and incubated at 15◦C for 5 days with 0.05%
sucrose to determine the optimal pH for N2O emitters. Different

temperatures (4, 10, 15, 20, 25, and 30◦C) were set in separate
incubators and incubated for 5 days with 0.05% sucrose to find
the appropriate temperature. All experiments were performed
with three replicates.

Carbon source- and
polyphenol-supplementation assays

Sucrose and E-caffeic acid were applied as carbon sources
and secondary metabolites (polyphenols), respectively, for the
microbiota inhabiting Sphagnum moss (Nie et al., 2015). The
inoculants were prepared as described in Nie et al. (2015). To
observe the responses of the N2O emitters (SC-K1, SC-L1, SC-
H2) to sucrose, 0 (control), 0.05, and 0.5% sucrose were used
for the separated/cultivated bacterial strains. To determine the
optimal concentrations of E-caffeic acid for N2O emitters (SC-
K1, SC-L1, SC-H2), 0 (control), 0.005, 0.01, 0.05, 0.1, 0.5, and
1 g L−1 E-caffeic acid were used. Each treatment contained three
analytical replicates incubated at 15◦C for 5 days with inoculants
for N2O assays. Their N2O emissions were separately measured.

Analysis of denitrification rates of N2O
emitters

We applied the acetylene inhibition assay, which is widely
used to measure denitrification rates (Sørensen, 1978). The
activity of N2O reductase was inhibited by adding acetylene
(C2H2) at pH 5.0 and 7.0, and 10% C2H2 gas was injected into
the headspace of vials inoculated with N2O emitters (the same
with above inoculation method) (Bollmann and Conrad, 1997).
At the same time, treatments without injected C2H2 gas were
carried out as controls to compare the N2O reductase activity
(three replicates in each case). Incubation conditions were the
same as described above.

Detection of nitrogen cycling functional
genes in N2O emitters

Functional genes of nitrogen cycling, including narG, nirK,
nirS, and nosZ (Supplementary Figure S4), were detected by
using the PCRmethod. The target genes were amplified by using
the primers narGF (TCG GGC AAG GGC CAT GAG TAC)
and narGR (TTT CGT ACC AGG TGG CGG TCG), nirSCd3Af
(AAC GYS AAG GAR ACS GG) (Nie et al., 2015) and nirSR3cd
(GAS TTC GGR TGS GTC T) (Throbäck et al., 2004), nirK-
1F (GGM ATG GTK CCS TGG CA) and nirK-5R (GCC TCG
ATC AGR TTR TGG) (Braker et al., 1998), nosZ-1111F (STA
CAA CWC GGA RAA SG), nosZ-661F (CGG CTG GGG GCT
GAC CAA), nosZ-1527R (CTG RCT GTC GAD GAA CAG),
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and nosZ-1773R (ATR TCG ATC ARC TGB TCG TT) (Scala
and Kerkhof, 1998). The exact reaction conditions of the PCR
amplifications are presented in Supplementary Table S1.

Statistical analysis

The data were expressed as mean with standard error (SE).
The data were examined for normality and homoscedasticity
using the Shapiro-Wilk’s and Levene’s tests, respectively (SPSS,
version 23.0). All data was found to fit the normal distribution
and homogeneity of variances. Comparisons were made using
a one-way analysis of variance (ANOVA) among two or more
groups. One-way ANOVA was used to compare differences in
N2O emission with different inoculants (Sphagnum mosses or
their leaves washing), physicochemical factors [pH, temperature,
sucrose, nitrogen types, and secondary metabolite (E-caffeic
acid)], and C2H2 inhibition assay. Using the Fisher’s Least
Significant Difference(LSD) method, multiple comparisons
were carried out using IBM SPSS 23.0 software (Chicago,
Illinois, USA).

Results

N2O emission potential and microbial
communities

After incubation for 7 days, we found that the average N2O
emissions of SF were 1.9 ng vial−1 d−1 in the leaf extract and
69.9 ng vial−1 d−1 in the leaf samples. The SC sample showed
N2O emissions of 9.1 in the leaf extract and 956.2 ng vial−1 d−1

in the leaf samples (Figures 1B,C).
The PCR-DGGE profile showed that themajor culture-based

bacterial communities in these Sphagnum mosses were similar.
However, the SC sample harbored the family Enterobacteriaceae
(Figure 1D, Supplementary Figure S2), while the SF sample
contained the genus Dyella of Gammaproteobacteria
(Supplementary Figure S2). N2O production increased with
0.1 g L−1 caffeic acid addition in both samples, and the effect
was significantly larger in the SC sample than in the SF sample
(p < 0.05) (Figures 2A,B).

Major N2O emitters in Sphagnum mosses

Compared to PCR-DGGE, the culture-based
approach revealed distinctive profiles of N2O emitters
(Supplementary Figure S2). Two Burkholderia spp. were
isolated from the SF sample, while three Gammaproteobacteria

(one Pseudomonas sp., one Serratia sp., and an unidentified
Enterobacteriaceae bacterium) and one Burkholderia sp. were
isolated from the SC sample. Among them, Serratia sp. SC-K1,

Enterobacteriaceae bacterium SC-L1, and Pseudomonas sp.
SC-H2 showed the most efficient N2O emissions, and the
activity of N2O emissions was the greatest in Pseudomonas sp.
SC-H2, then Enterobacteriaceae bacterium SC-L1, and then
Serratia sp. SC-K1 (pH 5) (Table 1, Supplementary Table S2).

E�ects of substrate type, temperature
and pH on microbial N2O emissions

According to the N2O production responses to different
nitrogen sources, KNO3 was the most efficient substrate for
N2O emission, followed by NH4NO3, while almost no N2O
emissions were found with NH4Cl as the substrate. Active N2O
emissions from KNO3 indicated that the three N2O emitters
were nitrate reducers (Figure 3). N2O emissions increased as the
pH increased from 4.6 to 7.3. Enterobacteriaceae bacterium SC-
L1 and Serratia sp. SC-K1 showed a temporary increase at a pH
value of 5 but no drastic increase in N2O emissions, indicating
adaptation to acidic environments (Figures 4A,B). At pH values
over 6, Pseudomonas sp. SC-H2 emissions increased sharply,
making it the most likely N2O emitter (Figure 4C). For the
three strains used, N2O emissions also increased with increasing
temperature from 4 to 30◦C (Figures 4D–F).

Disparate responses of N2O emitters to
ca�eic acid and sucrose

The three microbial strains exhibited disparate responses
to sucrose and E-caffeic acid (Figure 5). In the absence of
added sucrose (control treatment), Serratia sp. SC-K1 emitted
more N2O than Enterobacteriaceae bacterium SC-L1 and
Pseudomonas sp. SC-H2, while these last two strains emitted
N2O at higher levels with 0.05% sucrose supplementation
(Figures 5A,B). Notably, the response of Pseudomonas sp. SC-
H2 to 0.05% sucrose was very drastic, resulting in emission
∼2x103 times higher than without sucrose (Figure 5C). This
result demonstrated that Serratia sp. SC-K1 is an oligotrophic
bacterium, whereas Enterobacteriaceae bacterium SC-L1 and
Pseudomonas sp. SC-H2 are eutrophic bacteria.

For the pure strains of Enterobacteriaceae bacterium SC-L1
and SC-K1, a relatively lower concentration of E-caffeic acid
(≤0.1 g L−1) increased N2O emissions of these two strains,
and the optimum concentration was 0.1 g L−1 (Figures 5D,E).
Among them, Serratia sp. SC-K1 was very sensitive to 0.1 g L−1,
and 13-fold higher N2O production was found than without
E-caffeic acid (Figure 5E). For Pseudomonas sp. SC-H2, when
the concentration of E-caffeic acid was above 0.01 g L−1, N2O
emissions decreased significantly (p < 0.01) (Figure 5F).
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FIGURE 2

Response of N2O production of Sphagnum fuscum (SF) and Sphagnum capillifolium (SC) to ca�eic acid. Response of N2O production of

Sphagnum fuscum (SF) to ca�eic acid (A). Response of N2O production of Sphagnum capillifolium (SC) to ca�eic acid (B). Incubation

conditions: pH = 5, incubated at 15◦C, 4, 8, 15 days, n = 3, without sucrose. Values are means ± s.e. (shown as error bars).

TABLE 1 Identification of the active N2O emitters using 16s rRNA gene sequence.

Isolates Length (bp) Accession No. Most aligned DNA (Accession No.) Identities

SC-K1 1528 MW301598 Serratia sp. HC3-14(JF312984.1) 1515/1526(99%)

Serratia sp. HC3-9(JF312979.1) 1513/1525(99%)

Serratia sp. HC4-9(JF312995.1) 1512/1525(99%)

SC-L1 1165 MW301597 Serratia liquefaciens strain Noth_10 (MF716557.1) 1123/1153(97%)

Enterobacteriaceae bacterium ENUB8 (JX162036.1) 1133/1167(97%)

Serratia proteamaculans strain 336X(CP045913.1) 1132/1167(97%)

SC-H2 1514 MW301596 Pseudomonas sp. LH1G9(CP026880.1) 1513/1518(99%)

Pseudomonas sp. 05CF15-5C (LC007966.1) 1513/1518(99%)

Pseudomonas sp. Pi 3-62 (AB365063.1) 1512/1517(99%)

Modest responses of N2O emitters to
acetylene

There was no detectable difference between the 10% C2H2

and control treatment emissions at a pH value of 5.0. However,
in Pseudomonas sp. SC-H2 cultured at a pH value of 7.0, N2O
emissions upon exposure to C2H2 were drastically increased

to four-fold higher than that of the control. Without 10%
C2H2, the production level of N2O at a pH value of 7.0 was
higher than that at a pH value of 5.0 (Figure 6). This result
suggested that the peat ecosystem was highly disturbed at a
pH value of 7.0, denitrification was greatly accelerated, and the
final denitrification step to reduce N2O to N2 was driven by
N2O reductase.
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FIGURE 3

N2O emission by three pure N2O emitters (SC-L1, SC-K1, SC-H2) upon exposure to di�erent nitrogen substrates (1mM NH4Cl, NH4NO3, KNO3).

Incubation conditions: pH = 5, incubated at 15◦C for 5 days with 0.05% sucrose (n = 3). Values are means ± s.d. (shown as error bars).

Functional genes involved in N2O
emission

PCR assays detected the narG gene in the three N2O emitter
strains, but only Pseudomonas sp. SC-H2 contained nirS and
nosZ genes (Table 2; Supplementary Figure S3). In combination
with the results of the C2H2 assay, these results suggested that
Pseudomonas sp. SC-H2 is a complete denitrifier. The nirK gene
was not detected within Enterobacteriaceae bacterium SC-L1
and Serratia sp. SC-K1.

Discussion

Cultured bacterial communities in the
leaves distinguishable between two
Sphagnum species

Increased atmospheric N deposition can reduce the growth
of some Sphagnum species, such as Sphagnum magellanicum

(Aerts et al., 2001; Limpens and Berendse, 2003). In contrast,
the production of SF increased with elevated N deposition
but decreased as N deposition reached 14.0 kg ha−1 yr−1

as reported by Vitt et al. (2003). SC can also tolerate a
high N supply (Bonnett et al., 2010). Our study offered
evidence that individual samples of the latter two Sphagnum

species had N2O emission potential reasonably associated
with their bacterial communities. In particular, the SC sample
harbored specific bacterial communities associated with high
N2O emission. Surprisingly, the N2O emission of the SC sample
was significantly greater than that of the SF sample (Figure 1B)
(p < 0.01). Such a large difference in N2O emission between the

SF and SC species gives precedence to the hypothesis of potential
N2O emission differences in different Sphagnum species.

Based on the analysis of bacterial communities using
culture-based PCR-DGGE and isolation of N2O emitters,
the major Sphagnum-associated bacterial communities of
our samples were consistent with boreal mire and tropical
peat forest and included Burkholderia, Mucilaginibacter,
Rhodanobacter, and Janthinobacterium but their N2O emission
activity was different in varied sites due to differences in
climate and habitat environments (Hashidoko et al., 2008;
Sun et al., 2014). Janthinobacterium spp. did not show high
N2O emission potential in subarctic palsa bog unlike in
the tropical peatland soil, which suggested that the N2O
emission functions of N2O emitters were changing in different
climate zones. Previous experimentation has shown that
the Sphagnum microbiota supported the host plant and the
entire ecosystem under environmental changes (Bragina
et al., 2014). Burkholderia spp. were N2O emitters, but their
N2O emission functions were significantly lower than the
acid-tolerant Janthinobacterium sp. in a deforested tropical
peatland soil, which was previously determined by soil pH
(Hashidoko et al., 2010). The Burkholderia spp. isolates in SF
were similar to another climate zone in Finland, showing the
same species of Sphagnum although in a different climate zone
(Nie et al., 2015). Within this study, some unique bacterial
strains were found in the leaves of SC, including a Pseudomonas

sp. and two Enterobacteriaceae family members. In numerous
previous studies, Pseudomonas species (P. denitrificans, P.

perfectomarinus, P. fluorescens, P. stutzeri, P. aeruginosa, and
P. nautica) were found performing denitrification (Delwiche,
1959; Payne et al., 1971; Balderston et al., 1976; Sørensen
et al., 1980; Dooley et al., 1987; Viebrock and Zumft, 1988;
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FIGURE 4

N2O emission by three pure N2O emitters (SC-L1, SC-K1, SC-H2) upon the gradient pH and temperature. N2O emission by SC-L1 (A,D), SC-K1

(B,E), SC-H2 (C,F) upon exposure to di�erent pH from 4.6 to 7.3 (A–C), and di�erent temperatures from 4 to 30 ◦C (D–F) was analyzed. For the

impact of pH on N2O emission, the N2O emitters were incubated at 15◦C for 5 days with 0.05% sucrose (n = 3). For the impact of temperature

on N2O, the N2O emitters were incubated for 5 days with 0.05% sucrose (n = 3 and pH = 5).

SooHoo and Hollocher, 1991; Prudêncio et al., 2000). The
isolated Pseudomonas sp. was not found in the bands of PCR-
DGGE, possibly due to relatively low abundance under acidic
conditions (pH 5) (Figure 4C). Anderson and Levine (1986)
offered evidence that Enterobacteriaceae and Serratia sp.’s nitrate
respiration produces N2O, which was also found in our SC
sample. Enterobacter sp. was also found as dissimilatory nitrate
reduction to ammonium (DNRA) bacteria in agricultural soils
(Heo et al., 2020). Pseudomonas sp. SC-H2, Enterobacteriaceae
bacterium SC-L1, and Serratia sp. SC-K1 were responsible for
N2O emissions in our Sphagnum samples (SC). These findings
suggest that the variation in the N2O emission potential of

Sphagnum found in peatlands is associated with species-specific
bacterial communities, which are variable under different
species and environments.

Complex environmental factors also
impact N2O production of active N2O
emitters

The top three active N2O emitters (Pseudomonas sp.
SC-H2, Enterobacteriaceae bacterium SC-L1, and Serratia sp.
SC-K1) from SC increased N2O production with increasing
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FIGURE 5

(A) N2O emission by three pure N2O emitters (SC-L1, SC-K1, SC-H2) exposure to the di�erent concentrations of sucrose (A–C) and ca�eic acid

(D–F). N2O emission by SC-L1 (A,D), SC-K1 (B,E), SC-H2 (C,F) upon exposure to di�erent concentration of sucrose from 0 to 0.5% (A–C) and

di�erent concentration of ca�eic acid from 0 to 0.1 g L−1 (D–F) was analyzed. For the impact of sucrose on N2O emission, the N2O emitters

were incubated at pH = 7 for 5 days (n = 3), and the control was without supplemented sucrose. For the impact of ca�eic acid on N2O emission,

the N2O emitters were incubated at pH = 7 for 5 days with 0.05% sucrose (n = 3), and the control was without supplemented ca�eic acid.

temperature up to 30◦C (Figures 4D–F), illustrating a potential
rise in N2O emissions following global warming (Pfenning and
McMahon, 1997; Voigt et al., 2017a; Chen et al., 2020). For
the three active N2O emitters, N2O production was relatively
high at a pH value of 7.0 (Figures 4A–C), which is much
higher than the naturally low pH of Sphagnum microhabitats

(Tahvanainen and Tuomaala, 2003). Although N2O reduction to
N2 by Pseudomonas sp. SC-H2was obvious, the N2Oproduction
was still high after 5 days of incubation (Figure 6). This result
indicated that N2O emission hotspots are inclined to be in
neutral peatlands, as supported by Palmer and Horn (2015).
Combining these results with acetylene inhibition assays at pH
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FIGURE 6

N2O emission by three N2O emitters (SC-L1, SC-K1, SC-H2) exposure to 10% C2H2 gas (A–C). The three N2O emitters were incubated at pH 5

and 7, under 15◦C with 0.05% sucrose for 5 days (n = 3). Without C2H2 gas was used as a control. *P < 0.05, **P < 0.01, and ***P < 0.001.

TABLE 2 Characteristics of the three active N2O emitters isolated from SC and PCR assay to detect denitrification-related genes.

Isolates Optimal pH Optimal Optimal Sucrose %) E-caffeic acid narG nirS nirK nosZ

temperature (◦C) substrates (g L−1)

SC-L1 7.3 30 NH4NO3 0.05/0.5 0.1 + – – –

SC-K1 7.3 30 KNO3 0 0.1 + – – –

SC-H2 7.3 30 KNO3 0.05 0.005 + + – +

−; indicated the isolates without the functional genes.
+; indicated the isolates harboring the functional genes.

value of 5.0 and 7.0 showed that N2O reduction to N2 was
almost negligible at a pH value of 5 for these three active
N2O emitters. This result is consistent with a previous study
of the lack of N2O reductase (nos) function at low pH (Liu
et al., 2014). This result also suggested that N2O reduction was
inhibited in the acidic environment in the peat bogs. Since the
Sphagnummicrohabitats are very acidic, N2O reductase activity
is repressed, supporting that N2O reduction is not a pathway
decreasing N2O emissions in the pristine Sphagnum bog system.
Under low-pH conditions, N2O production by Pseudomonas sp.
SC-H2 was small, but N2O could be accumulated. However,
the palsa mounds are formed due to the ice core under the
Sphagnum peat layer in the subarctic climate, and once they
collapse after permafrost thawing, the peat acidity will be
neutralized to some extent by mixing with mineral material and
minerogenic water flow (Seppälä, 2011; Takatsu et al., 2022).

Sphagnum mosses are important for peat accumulation
and form a carbon pool of global significance. Increasing
atmospheric N deposition can activate phenol oxidase in peat

bogs and destabilize peat carbon (Bragazza et al., 2006). Phenol
oxidase requires bimolecular oxygen for its activity (Freeman
et al., 2004), and drying increases aerobic conditions in peatlands
(Swindles et al., 2019) and can degrade recalcitrant phenolic
materials. Tahvanainen and Haraguchi (2013) showed that this
phenolic mechanism is affected by pH. Such changes may
reduce the generally high C:N ratio, which increases net N
mineralization, nitrification, and denitrification rates, while
subsequently increasing the potential of N2O production in peat
bogs, while lower C:N ratios (≤25–30) stimulate N2O emissions
(Huang et al., 2004; Klemedtsson et al., 2005; Maljanen et al.,
2012). Connected mechanisms and the release of ice-trapped
N2O are further impacted by thawing permafrost (Voigt et al.,
2017b). Our findings indicate that N2O emissions are not
exceptionally high under the naturally cold temperatures and
low pH of Sphagnum habitats; rather, substantially high pH and
temperatures, and perhaps a connected imbalance of microbial
communities in such conditions, induced the highest N2O
emissions. The results warrant caution in interpretation and
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against unexpected emission potential under rapidly changing
conditions. It also calls for a need to monitor the in situ N2O
emissions from different permafrost Sphagnum species in the
permafrost in future studies.

Responses of N2O emitters to primary
metabolites and secondary metabolites
of Sphagnum mosses

Without sucrose, the N2O emitters Enterobacteriaceae

bacterium SC-L1 and Pseudomonas sp. SC-H2 could not emit
N2Obecause of their low growth. This result indicated that these
two strains were heterotrophic microorganisms that needed to
gain C sources from Sphagnum moss and form plant-microbial
symbionts between plants and microbes. Interestingly, Serratia
sp. SC-K1 grew well without sucrose and emitted much more
N2O; meanwhile, it could be significantly inhibited by adding a
low concentration of sucrose (0.05%). This result indicated that
this strain is an autotrophic microorganism adapted to nutrient-
poor environments, using carbon dioxide (CO2) as a C source.
These autotrophic microorganisms contribute to CO2 uptake
and carbon sequestration. Drained peatland ecosystems have
an immense potential for C sinks to maintain the C balance,
even though droughts are occasionally caused by decreasing
photosynthesis (Minkkinen et al., 2018).

Our study showed that N2O emitters (Serratia sp. SC-K1
and Enterobacteriaceae bacterium SC-L1) could resist relatively
higher concentrations of caffeic acid (≤0.1 g L−1), while the
N2O emitter (Pseudomonas sp. SC-H2) had low resistance
to caffeic acid (≤ 0.005 g L−1) (Figures 5D–F). These results
could explain why we could not find the Pseudomonas spp.
using DGGE band sequencing. Polyphenol (caffeic acid) from
Sphagnum moss inhibits growth and results in a low relative
abundance of Pseudomonas spp. The more abundant Serratia
sp. SC-K1 and Enterobacteriaceae bacterium SC-L1 were the
dominant N2O emitters due to their higher resistance to
polyphenolic compounds. The stimulated N2O production
in the Sphagnum moss-microbe vial with 0.1 g L−1 caffeic
acid confirmed Serratia sp. SC-K1 and Enterobacteriaceae

bacterium SC-L1 were the dominant N2O emitters. Serratia
spp. are gram-negative bacilli and belong to the family
Enterobacteriaceae. The interaction of polyphenolic compounds
and Enterobacteriaceae bacteria might directly influence N2O
emissions in peatland ecosystems. High concentrations of
polyphenols are likely to lower N2O emissions. The response
of phenol oxidase to N deposition differs by ecosystem type.
In peat bogs, elevated N deposition decreased polyphenols’
contents and decreased the polyphenol ratio to N, which
may increase N2O production due to an inverse relationship
between N2O emissions and the polyphenol to nitrogen ratio
(Pimentel et al., 2015).

N2O production of active N2O emitters

The three N2O emitters preferred KNO3 as a substrate over
NH4Cl. This result suggested that these three isolates mainly
use DNRA or denitrification to produce N2O gas. For the
Enterobacteriaceae bacterium SC-L1 and Serratia sp. SC-K1, the
nirS, nirK, and nosZ genes were not detected, but the narG

gene was, suggesting that they do not have nitrite reductase and
are non-denitrifiers consistent with other Enterobacteriaceae

bacteria emitting N2O as a final product (Arkenberg et al., 2011).
Enterobacter species are often reported as producing N2O by
DNRA (Smith and Zimmerman, 1981). This result indicated
that they are also important sources for N2O emissions in SC
dominant bogs. Pseudomonas sp. SC-H2 harbored nosZ, nirS,
and narG. Therefore, Pseudomonas sp. SC-H2 was a typical
denitrifier. Microbial heterotrophic denitrification and DNRA
compete for shared resources (Jia et al., 2020).

Although the N2O potential was relatively high in the
SC sample, the N2O emissions in situ in the peat bogs were
generally low in northern Finland, which might be impacted by
the complexity of environmental conditions (Dinsmore et al.,
2017). The potential N2O emissions in the field (Repo et al.,
2009; Voigt et al., 2017b) and laboratory incubations (Elberling
et al., 2010) increase with increasing mineral N availability,
permafrost thawing, and drainage. A previous study suggested
that drainage of bogs alters nutrient cycling and microbial
communities to increase N2O emissions (Frolking et al., 2011).
Unvegetated (free of vascular plants) peat surfaces resulting
from wind erosion and frost action were hot spots for N2O
emission in subarctic permafrost peatlands due to the absence
of plant nitrogen uptake, a low C:N ratio, and sufficient drainage
(Marushchak et al., 2011; Voigt et al., 2017b). Pseudomonas sp.
SC-H2 had negligible N2O emissions at low pH (<4.5), while the
other two N2O-emitting Enterobacteriaceae bacteria from SC
exhibited contrasting patterns in the Sphagnum bogs. Therefore,
the contribution of denitrification and DNRA to N2O emissions
in boreal peat bogs should be considered in future studies.

Conclusion

In summary, our study identified several N2O emitters in
microbial communities of Sphagnum samples from the subarctic
permafrost habitat of palsa mires. A composite sample of SC
showed high potential to emit N2O, and a composite of SF
showed moderate potential to emit N2O. The N2O emission
potential was attributed to distinctive bacterial communities
inhabiting moss leaves in both cases. Two classes of hyperactive
N2O emitters hidden in the SC holobiont were revealed.
Pseudomonas sp. SC-H2 was found to harbor narG, nirS, and
nosZ genes. N2O reduction to N2 catalyzed by N2O reductase
was noteworthy in the neutral pHmicroenvironment. The other
hyperactive N2O emitters, Enterobacteriaceae bacterium SC-L1
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and Serratia sp. SC-K1 lacked the nirS, nirK, and nosZ genes
but contained the narG gene and emitted NO/N2O as the
final product, possibly via the DNRA pathway. These findings
provided some theoretical evidence for the future N2O emission
study of the in situ subarctic palsa under elevated N availability
and global warming.
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