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Glyphosate is one of the most widely used non-selective herbicides, and

the creation of glyphosate-resistant cultivars solves the problem of limited

spraying area. Therefore, it is of great significance to quickly identify resistant

cultivars without destruction during the development of superior cultivars.

This work took maize seedlings as the experimental object, and the spectral

indices of leaves were calculated to construct a model with good robustness

that could be used in different experiments. Compared with no transfer

strategies, transferability of support vector machine learning model was

improved by randomly selecting 14% of source domain from target domain

to train and applying transfer component analysis algorithm, the accuracy on

target domain reached 83% (increased by 71%), recall increased from 10 to

100%, and F1-score increased from 0.17 to 0.86. The overall results showed

that both transfer component analysis algorithm and updating source domain

could improve the transferability of model among experiments, and these two

transfer strategies could complement each other’s advantages to achieve the

best classification performance. Therefore, this work is beneficial to timely

understanding of the physiological status of plants, identifying glyphosate

resistant cultivars, and ultimately provides theoretical basis and technical

support for new cultivar creation and high-throughput selection.

KEYWORDS

decision model, glyphosate resistance, hyperspectral imaging, source domain
updating, support vector machine, transfer component analysis

Introduction

High efficiency and low cost make herbicides become an important means in weed
management (Pan et al., 2019). Among them, glyphosate is considered as one of the
best herbicides with superior quality, excellent performance, low toxicity and broad
grass removal spectrum (Duke and Powles, 2008). Glyphosate acts on shikimic acid
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pathway in plants (Gomes et al., 2014) and inhibits the synthesis
of aromatic amino acid and compounds related to protection
mechanisms (Corrêa et al., 2016), thereby adversely affecting
plants physiology (Van Bruggen et al., 2018). Once glyphosate
comes into contact with green plants (whether weeds or crops),
it can be absorbed by stems, leaves and other organs. The
physiological balance and internal structure of the plant can
be destroyed by glyphosate and finally causes wither and die
(Van Bruggen et al., 2018; Lin et al., 2023). Therefore, the
non-selectivity of glyphosate drives breeders to create resistant
cultivars to break the limit for glyphosate use (Clapp, 2021).
It can be sprayed after harvest and even throughout the crop
growth cycle to ensure crop yield while reducing the labor cost
of weed management in the field.

Generally, many in vitro culture and field screening
verifications are often required in the process of new glyphosate
resistant cultivars creation. Common screening methods
including visual observation and bioassays, take 10–14 days
from spraying glyphosate to resistant identification (Singh et al.,
2021), which is time-consuming and labor-intensive. Hence,
exploring a rapid non-destructive detection of glyphosate-
tolerant cultivar method can speed up the breeding process.

Hyperspectral imaging (HSI) technology can obtain the
images and spectra of samples simultaneously (Zea et al., 2022).
Images of different bands reflect the external shape and texture
from multiple angles. Spectra reveals the differences of chemical
substances in samples through the reflectance value in different
bands (Shirzadifar et al., 2020a; Zhang et al., 2021b). As the
derived parameter of spectral reflectance, the spectral index is
composed of multiple band combination by linear or non-linear
methods, and has more abundant information compared with
multiple single bands. Besides, multivariate data analysis can
help uncover useful information hidden within it (Maione et al.,
2019), especially for massive datasets from sensors. Machine
learning methods showed the excellent data mining ability in
hyperspectral data mining (Yang et al., 2020; Najafabadi, 2021;
Weng et al., 2021), and the combination between them can be
exploited as a competent tool in plant science (Greener et al.,
2022) such as early stress detection (Gu et al., 2019; Lu et al.,
2020; Zheng et al., 2020), unsound kernel identification (Liang
et al., 2020; Zhang et al., 2021a), and the evaluation of nutrition
content (Zhang et al., 2020a,b; Najafabadi, 2021).

Generally speaking, an optimal machine learning model can
achieve satisfactory results based on specific data sets (An et al.,
2022; Greener et al., 2022). But it may not match the features of
other data sets with the same type. The property of spectral data
was influenced by plant grown, experiment design, instrument
status (Qiu et al., 2020), which greatly limits the robustness
and generalization of the model. On the other hand, excellent
machine learning model depends on adequate data (Zhu et al.,
2020; Greener et al., 2022), while it is time-consuming to
obtain a sufficient number of samples of the new condition. To
resolve this problem, transfer learning has been introduced. By

transferring historical knowledge to new task (Cheplygina et al.,
2019; Talo et al., 2019), it exhibits great potential in dealing
with the situation where training set and test set come from
different data distribution including hyperspectral data (Tao
et al., 2019; Zhu et al., 2020). Previous literature (Tao et al., 2019)
reported a transferable spectroscopic diagnosis model to predict
soil arsenic concentration in other areas, not limited to a specific
area. Accordingly, it is viable to apply transfer strategies to solve
the heterogeneity of samples of different experiments.

Therefore, HSI technology is a powerful tool to rapidly
screen target cultivars and accelerate the breeding process.
The spectral index can be used to evaluate the state of plant
growth. Machine learning can fully mine spectral information
to improve model performance on the test set. And emerging
transfer learning can further improve model performance in
terms of universality on various datasets. However, there are
few researches on the detection of glyphosate-tolerant cultivars
based on spectral indices of leaves of maize seedling, not to
mention the transferability of machine learning model between
different experiments.

In this study, we aimed to propose a high-throughput
rapid non-destructive model for identifying glyphosate-resistant
cultivars which could be used to screen new samples from
different times. Specifically, the following questions were
discussed: (1) what was the difference in spectral index between
glyphosate resistant and sensitive cultivars? (2) how to build a
robustness model for identifying glyphosate resistant cultivar?
(3) could the transfer strategy improve the classification model?
By responding to the above questions, this research could help
breeders timely understand the physiological conditions of plant
stress, complete the detection of glyphosate-tolerant cultivars,
and ultimately provide theoretical basis and technical support
for new cultivar creation.

Materials and methods

Sample preparation

Two maize cultivars, glyphosate-resistant and glyphosate-
sensitive, were designated as R and S, respectively. Glyphosate
resistance of R maize was obtained by expression of mutant
5-enolpyruvylshikimate-3-phosphate synthase enzyme. All the
seeds were provided by the Institute of Insect Science, Zhejiang
University, Hangzhou, China. The detailed information on
these two seeds was introduced in our previous study (Feng
et al., 2018). Three independent experiments were conducted
in August, November, and December 2021, designated as Exp.1,
Exp.2, and Exp.3, respectively. In each experiment, these maize
plants were grown in the same artificial climate chamber.
The temperature and photoperiod of day/night were 28/26◦C
and 11/13 h, respectively. The average relative humidity was
adjusted to 55%. Treatment group and control group were set
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up for both cultivars. In order to avoid the possible effects of
the glyphosate from treatment group on the control group,
these two groups were placed in two identical artificial climate
chambers respectively. When maize plants grew to the three-
leaf stage (the third leaf was fully expanded but the fourth leaf
was not), the maize plants of treatment group were subjected
to glyphosate, while the maize plants of control group were
sprayed with water.

Visible/near-infrared hyperspectral
image acquisition

First of all, it is worth noting that the treatment group of R,
the control group of R, the treatment group of S, and the control
group of S are designated as RT, RW, ST, and SW, respectively.
Time-series visible/near-infrared hyperspectral images of alive
maize plants were collected at 2, 4, 6, and 8 days after treatment
(DAT) by a line-scan HSI system in the visible/near-infrared
range (380–1,030 nm), which was reported in detail in previous
study (Zhang et al., 2022a). Over the image acquisition, in
order to facilitate the extraction of the spectrum of each leaf, it
was necessary to ensure that leaves did not overlap with each
other and the leaves were as flat as possible. At a distance of
390 mm between the camera lens and the moving sample plate,
for the purpose of guaranteeing image quality, the exposure
time of camera, the intensity of line light source, and the
speed of conveyer belt were adjusted to 70 ms, 240, and
5 mm/s, respectively. Figure 1 shows the detailed steps for the
whole experiment.

Data analysis and model construction

A general processing workflow of hyperspectral data in plant
science includes pre-processing, machine learning preparation
and model building (Paulus and Mahlein, 2020; Sarić et al.,
2022). Therefore, this section explains data analysis according
to this workflow.

Pre-processing
To eliminate the impact of ambient light, original

hyperspectral images needed correcting with a black (selected
the camera lens cap with reflectance close to 0) and white
reference image (selected the pure white Teflon board with
reflectance close to 1). Then, in order to focus on the spectral
features of regions of interest and facilitate further analysis,
it was essential to identify and segment each leaf in each
hyperspectral image and then extract the spectrum of the
leaf. This process was divided into two main phases. First,
the threshold segmentation method was used to extract the
plant region (at 792 nm, the background was separated with
a reflectance threshold of 0.1). Second, the stem and leaf were

separated by manually selecting the stem region with several
rectangles. Based on the shape and reflectance of leaf spectral
curve, the abnormal samples caused by measurement errors
were rejected. As the study reported (Zhang et al., 2020b), the
head-to-tail bands with high noise needs discarding. So only the
bands of 450–902 nm were analyzed, and the mean reflectance
of all pixels was used to represent the spectral features of
corresponding leaf.

Leaf surface reflectance provides a wide perspective for plant
growth conditions (Sun et al., 2021). As a derivative index of
leaf surface reflectance, the spectral index has been widely used
in crop phenotypic monitoring such as stress perception and
variety identification (Feng et al., 2019; Shirzadifar et al., 2020b).
Consequently, based on the reported literatures (Bergmüller
and Vanderwel, 2022; Mushore et al., 2022; Narmilan et al.,
2022), sixteen spectral indices related to health status, chemical
composition and photosynthesis were selected in this study.
Supplementary Table 1 shows the calculation formulas of
spectral indices. Then, one-way analysis of variance (ANOVA),
followed by the Holm-Bonferroni test (p = 0.05) was used
to study the feasibility of 16 spectral indices in identifying
glyphosate-tolerant cultivar.

Machine learning preparation
To prepare the data for modeling, the dataset was divided

into two subgroups (training set and test set) with the same
feature distribution. The Kennard-Stone (KS) algorithm was
used to divide the dataset. KS algorithm selects training
dataset samples based on Euclidean distance between variables,
and ensures uniform distribution of training dataset samples
according to spatial distance (Li et al., 2020). Specifically,
samples in the original dataset with the largest distance from
the others and as far as possible from the candidate subset are
selected to the candidate subset until the division ratio is reached
(Morais et al., 2019). For the same dataset, the sample partition
results obtained by KS algorithm are the same each time (Chen
et al., 2020). Besides, limited by the size of the dataset, the
division ratio of the training set and test set was 4:1.

To investigate the transferability of machine learning model
in the case of the training set and test set coming from different
data distribution, a total of 24 transfer tasks were designed
(Supplementary Table 2). In detail, from the perspective of
future application, this study took all samples from a single
experiment as the source domain dataset, and only the samples
from a certain day of another experiment were taken as the
target domain dataset.

Considering the data distribution differences between
source domain dataset and target domain dataset, in order
to further improve the model performance and transferability,
two transfer strategies of transfer component analysis (TCA)
and source domain updating were used before modeling.
On the one hand, as a typical transfer learning algorithm,
TCA generally performs the role of preprocessing in data

Frontiers in Plant Science 03 frontiersin.org

https://doi.org/10.3389/fpls.2022.973745
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-973745 August 2, 2022 Time: 19:52 # 4

Tao et al. 10.3389/fpls.2022.973745

FIGURE 1

Schematic diagram and detailed information for experiments. Three independent experiments were conducted in August, November, and
December 2021, designated as Exp.1, Exp.2, and Exp.3, respectively. In each experiment, treatment group and control group were set up for
both cultivars (glyphosate resistant and glyphosate sensitive cultivar). When maize plants grew to the three-leaf stage, the maize plants of
treatment group were subjected to glyphosate, while the maize plants of control group were sprayed with water. Then time-series
visible/near-infrared hyperspectral images of alive maize plants were collected at 2, 4, 6, and 8 days after treatment (DAT) by a line-scan
hyperspectral imaging system. The sample size of each experiment was given in unit of maize plant.

analysis, and its input and output are two large matrices
and two small matrices, respectively. TCA maps the source
domain dataset and target domain dataset with different
distribution to a reproducing kernel Hilbert space, and then
continuously reduce the distance between the two domain
datasets and retain their internal attributes as many as possible
(Panigrahi et al., 2021). Specifically, by exploring an optimal
feature map, TCA makes the data distribution of the two
domains have the same probability density and the conditional
probability density. Maximum mean discrepancy is used to
measure the distance between the data distribution of the two
domains (Pan et al., 2011; Tao et al., 2019). In this work, primal
kernel type was selected and the dimensionality after TCA
algorithm was adjusted to 5. On the other hand, the literature
(Wan et al., 2020) found that adding partial samples from the

new experiment to participate in the model construction
upgrades the model performance. In this work, for the
convenience of reading, the data update ratio was calculated
with reference to the target domain dataset, while the ratio
calculated with reference to the source domain dataset was noted
in the results and discussion section. In this study, five source
domain dataset update levels were set, namely 10, 20, 30, 40, and
50% of target domain (dataset of new experiment).

Model building
As a ubiquitous means of solving high-dimensional datasets,

support vector machine (SVM) algorithm is one of the
most robust and accurate discrimination methods. From the
geometric point of view, the merit of SVM is reflected in
the maximum margin needed when constructing hyperplane
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decision boundaries, so there is sufficient space between interval
boundaries to contain test samples. For linear SVM, the general
function of the decision boundary is ω• x + b = 0, where ω

is an n-dimensional vector (n is the number of the features),
x is the data of sample, and b is a constant. More detailed
theories of SVM algorithm are available in the literature (Ding
et al., 2008; Gao and Sun, 2010; Sun et al., 2020). In this
work, the fitcsvm function in the machine learning toolbox
of MATLAB was used to train linear kernel SVM model.
In the modeling without any transfer strategy, because the
value range of different spectral indices varied greatly, set
“standardize” in the function input argument to true. While
it was set to false in the modeling with transfer strategy. The
reasons were as follows. TCA algorithm could handle such
dataset and transfer it into lower dimensional features. After
data updating, standardization was considered unsuitable and
unreasonable because the new source domain was composed of
two sub datasets with different feature distributions. According

to the prediction accuracy and training time of the SVM model
(relevant data are not presented in this paper), compared with
no parameter optimization, automatic parameter optimization
greatly increased the training time (685–1304 times), and did
not improve model performance (0.86–1.10 times for accuracy)
significantly. This result supports the opinion that linear SVM
model is not very sensitive to its hyperparameter (Maros et al.,
2020). Therefore, the model was trained with the default value
kernel parameter in this study. Figure 2 shows the analysis
scheme of spectral data of three experiments.

Model evaluation indices

To quantitatively evaluate classification model performance,
the statistical indices in Figure 3 were calculated. TP, FP, TN,
and FN represented the number of true positives, false positives,
true negatives, false negatives, respectively. False positive rate

FIGURE 2

The flowchart of spectral data analysis for glyphosate-resistant cultivar identification. Yellow represents the data flowchart to answer to question
that how the models constructed for each of the three experiments work. Blue represents the data flowchart to answer to question that how the
transferability of models and how to improve it. ANOVA, analysis of variance. SVM, support vector machine. TCA, transfer component analysis.
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FIGURE 3

Confusion matrix and statistic formulas for decision model performance evaluation. RT represents resistant cultivar with glyphosate treated. ST
represents sensitive cultivar with glyphosate treated. RT plants and ST plants are set as positives and negatives, respectively. TP, FP, TN, and FN
represent the number of true positives, false positives, true negatives, false negatives, respectively. The formulas of model performance
evaluation parameters are given on the right side of the picture. False positive rate (FPR) indicates the proportion of negative samples incorrectly
identified.

(FPR) indicated the proportion of negative samples incorrectly
identified. In this work, RT plants and ST plants were set as
positives and negatives, respectively.

Software tools

Stem and leaf segmentation, model construction, and
model performance calculation were processed in MATLAB
R2016a (Math Works, Natick, MA, United States). All of the
graphs were designed by using Origin 2021b (Origin Lab
Corporation, Northampton, MA, United States) and Microsoft
PowerPoint 2016.

Results and discussion

Descriptive statistics of spectral indices

In order to investigate the feasibility of identifying
glyphosate-resistant cultivars with 16 spectral indices selected
in this work, ANOVA was used to compare each spectral index
among four groups (RT, RW, ST, SW) at each sampling time
point (2, 4, 6, 8 DAT) in each experiment (Exp.1, Exp.2, Exp.3).
Supplementary Table 3 shows the descriptive statistics results
of 16 spectral indices.

It can be seen from the descriptive statistics of 16 spectral
indices at 2, 4, 6 and 8 DAT in Exp.1 (Supplementary Table 3),
at 2 DAT, there was no significant difference (p > 0.05) between
RT and ST, while at 8 DAT, the difference in most spectral indices
of RT and ST were more pronounced (p < 0.05).

At 6 DAT, 11 spectral indices of RT and ST showed
significant difference (p < 0.05). At 8 DAT, EVI (enhanced
vegetation index), NRI (nitrogen reflectance index), RDVI
(renormalized difference vegetation index) and TCARI/OSAVI
(the ratio of transformed chlorophyll absorption in reflectance
index to optimized soil-adjusted vegetation index) of RT and ST

exhibited pronounced differences for the first time. Although
TVI (triangular vegetation index) of RT and ST showed
no significant difference up to 8 DAT, it showed significant
difference at 6 DAT (Supplementary Table 3) in Exp.3. In
addition, according to ANOVA results, there was no significant
difference between RT, RW, and SW in every sampling time
point, which indicated glyphosate had little effect on R owing
to the expression of resistance gene. On the other hand, the
significant difference between the two treatment groups (RT and
ST) confirmed the feasibility of identifying glyphosate-resistant
cultivar based on the selected spectral indices, which contributed
to the model development.

Classification model established on
individual experiment

Based on the dataset of the selected spectral indices of
glyphosate treatment groups (RT and ST), SVM algorithm was
used to evaluate the model performance of each experiment at
each sampling time point. For each dataset, confusion maps of
classification results on training set and test set were shown in
Supplementary Table 4, and the performance evaluation indices
were shown in Table 1.

When the treatment days were not distinguished, the
average of accuracy, precision, recall, F1-score, and FPR of SVM
models on the test set of three experiments were 0.83, 0.76, 0.86,
0.80, and 0.20, respectively. Among them, three experiments
showed significant difference in the recall values, varied from
0.69 to 1. When the dataset obtained on each sampling day was
modeled separately, the difference between experiments were
even more pronounced. Specifically, for Exp.1, RT was identified
correctly at 6 DAT without misjudging ST as RT (FPR = 0 in
test set), and the accuracy was 100% at 8 DAT; for Exp.2, the
accuracy in test set as early as 6 DAT was 100%; for Exp.3,
the SVM model was able to accurately classify RT as early as
4 DAT (accuracy = 1 in test set). The results demonstrated
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TABLE 1 Prediction results of support vector machine models in identifying glyphosate resistant cultivar.

Experiment Sampling time point Training set Test set

Accuracyc Precisionc Recallc F1-scorec FPRc Accuracyp Precisionp Recallp F1-scorep FPRp

Exp.1 2–8DAT 0.73 0.73 0.84 0.78 0.41 0.79 0.82 0.69 0.75 0.13

2DAT 0.86 0.91 0.77 0.83 0.06 0.71 0.75 0.75 0.75 0.33

4DAT 0.72 0.71 0.83 0.77 0.43 0.57 0.50 0.33 0.40 0.25

6DAT 0.80 0.82 0.82 0.82 0.23 0.86 1 0.75 0.86 0

8DAT 0.96 0.94 1 0.97 0.11 1 1 1 1 0

Exp.2 2-8DAT 0.81 0.80 0.93 0.86 0.39 0.85 0.76 1 0.87 0.29

2DAT 0.75 0.79 0.79 0.79 0.31 0.14 0 0 NaN 0.80

4DAT 0.88 0.85 0.94 0.89 0.21 0.57 0.50 0.67 0.57 0.50

6DAT 0.97 0.95 1 0.97 0.08 1 1 1 1 0

8DAT 1 1 1 1 0 0.75 0.67 1 0.80 0.50

Exp.3 2–8DAT 0.70 0.69 0.94 0.79 0.71 0.84 0.70 0.88 0.78 0.18

2DAT 0.69 0.68 0.81 0.74 0.44 0.33 0.20 0.33 0.25 0.67

4DAT 0.95 1 0.90 0.95 0 1 1 1 1 0

6DAT 1 1 1 1 0 1 1 1 1 0

8DAT 0.96 0.96 1 0.98 0.17 0.71 0.50 1 0.67 0.40

DAT, days after glyphosate treatment. Exp.1, Exp.2, and Exp.3 represent three independent experiments. The subscripts c and p represent training set and test set respectively.

TABLE 2 Prediction results of support vector machine models on target domain.

Transfer learning task Target domain Transfer learning task Target domain

Acc. Pre. Rec. F1. FPR Acc. Pre. Rec. F1. FPR
Exp.1→Exp.2 2DAT 0.54 0.54 1 0.70 1 Exp.2→Exp.3 2DAT 0.56 0.54 0.92 0.68 0.79

4DAT 0.77 0.71 0.95 0.82 0.44 4DAT 0.58 0.56 0.83 0.67 0.67

6DAT 0.95 0.91 1 0.95 0.13 6DAT 1 1 1 1 0

8DAT 1 1 1 1 0 8DAT 0.91 1 0.88 0.93 0

Exp.1→Exp.3 2DAT 0.50 0.50 1 0.67 1 Exp.3→Exp.1 2DAT 0.64 0.83 0.29 0.43 0.05

4DAT 0.50 0.50 1 0.67 1 4DAT 0.51 0.67 0.19 0.30 0.11

6DAT 1 1 1 1 0 6DAT 0.49 1 0.10 0.17 0

8DAT 1 1 1 1 0 8DAT 0.45 1 0.11 0.20 0

Exp.2→Exp.1 2DAT 0.58 0.75 0.18 0.29 0.05 Exp.3→Exp.2 2DAT 0.59 0.63 0.57 0.60 0.39

4DAT 0.59 0.65 0.52 0.58 0.33 4DAT 0.64 0.63 0.81 0.71 0.56

6DAT 0.54 1 0.19 0.32 0 6DAT 0.89 1 0.81 0.89 0

8DAT 0.91 1 0.88 0.93 0 8DAT 0.79 1 0.76 0.86 0

Acc., accuracy; Pre., precision; Rec., recall; F1., F1-score; FPR, False Positive Rate; DAT, days after glyphosate treatment. Exp.1, Exp.2, and Exp.3 represent three independent experiments.

that the earliest accurate identification time of the SVM model
may vary with different experiments. It was worth noting that
both in Exp.2 and Exp.3, the performance of SVM model at 8
DAT inferior to that at 6 DAT, which was mainly reflected in
the misjudgment of ST as RT. Those results may be attributed
it to small size of dataset and the fact that some old leaves
came close to death no matter what cultivar on 8 DAT. In
conclusion, the combination of the selected 16 spectral indices
and SVM algorithm could rapidly identify glyphosate resistant
and sensitive cultivar in a non-destructive manner.

Classification model with transfer
learning task

According to the results in Table 1 and Supplementary
Table 4, the SVM model performance of different

experiments varied greatly. So, in this case, how
about the transferability of SVM model? Therefore,
this section studies the transferability of glyphosate
resistant cultivar identification model between different
experiments with the 24 transfer learning tasks
described in Supplementary Table 2 based on 16
spectral indices.

The performances of support vector machine
models on transfer learning tasks

As the benchmark for evaluating the performance of
transfer strategies, the SVM algorithm was also conducted
in 24 transfer learning tasks represented in Supplementary
Table 2, and the results on target domain were showed in
Supplementary Table 5 and Table 2. The transfer tasks,
Exp.1→Exp.2, Exp.1→Exp.3, and Exp.2→Exp.3, performed
the best, and the results of SVM model were the same as
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those of the individual experiment. The two cultivars could
be classified accurately at 6 DAT (the confusion matrixes were
showed in green). The model performance of the transfer
tasks, Exp.2→Exp.1 and Exp.3→Exp.2, was slight worse (the
confusion matrixes were showed in blue). On transfer task
Exp.2→Exp.1, ST could be correctly recognized at 6 DAT (FPR
= 0), but the accuracy of RT (recall) was just 0.19. Transfer
task Exp.3→Exp.2 exhibited the best identification result, and
the obtained accuracy, precision, recall, F1-score, and FPR were
0.89, 1, 0.81, 0.90, and 0 respectively. All the misclassifications
at this time were misjudged RT as ST, which may be because
these four samples were about to age completely. The model
performance of the transfer task, Exp.3→Exp.1, was the worst
(the confusion matrixes were showed in orange), especially for
RT recognition. From 2 DAT to 8 DAT, the range of recall was
0.01∼0.29, which was too low to classify accurately. Besides,
the SVM model constructed based on Exp.3 had the worst
transferability.

Compared to Table 1, the difference in data distribution
between the source domain and the target domain weakened the
performance of SVM models to varying degrees. Furthermore,
the classification accuracy and transferability of SVM models
were different with the source domain. Overall, although
the SVM algorithm had the potential to transfer between
experiments carried out at different times, the dependence
on specific transfer tasks resulted in the low stability of
transferability. Therefore, it was necessary to further explore
whether there were solutions to improve the transferability
of glyphosate tolerance discrimination models between
different experiments.

The performances of transfer component
analysis_support vector machine models on
transfer learning tasks

For the three transfer tasks (Exp.2→Exp.1, Exp.3→Exp.1,
Exp.3→Exp.2) with poor classification accuracy in section

TABLE 3 Prediction results of transfer component analysis-based support vector machine models on target domain.

Transfer learning task Target domain

Accuracy Prediction Recall F1-score FPR

Exp.2→Exp.1 2DAT 0.47 0.46 0.71 0.56 0.74

4DAT 0.56 0.57 0.81 0.67 0.72

6DAT 0.70 0.71 0.81 0.76 0.44

8DAT 1 1 1 1 0

Exp.3→Exp.1 2DAT 0.44 0.44 0.71 0.55 0.79

4DAT 0.54 0.55 0.81 0.65 0.78

6DAT 0.70 0.69 0.86 0.77 0.50

8DAT 0.90 0.86 1 0.92 0.27

Exp.3→Exp.2 2DAT 0.56 0.55 1 0.71 0.94

4DAT 0.54 0.54 1 0.70 1

6DAT 0.95 0.91 1 0.95 0.13

8DAT 0.96 1 0.95 0.98 0

DAT, days after glyphosate treatment. Exp.1, Exp.2, and Exp.3 represent three independent experiments.

FIGURE 4

Prediction results of support vector machine models in target domain before and after using transfer component analysis algorithm. TCA_SVM,
transfer component analysis-based support vector machine model.
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TABLE 4 Prediction results of source domain updating-based support vector machine models on target domain.

Transfer learning task Ratioa (%) Target domain

Accuracy Prediction Recall F1-score FPR
Exp.2→Exp.1 6DAT 10 0.55 0.83 0.26 0.40 0.07

20 0.59 1 0.25 0.40 0

30 0.64 1 0.31 0.47 0

40 0.64 1 0.27 0.43 0

50 0.78 1 0.56 0.71 0

8DAT 10 1 1 1 1 0

20 1 1 1 1 0

30 1 1 1 1 0

40 1 1 1 1 0

50 1 1 1 1 0

Exp.3→Exp.1 6DAT 10 0.64 0.89 0.42 0.57 0.07

20 0.69 0.77 0.63 0.69 0.23

30 0.72 0.80 0.62 0.70 0.17

40 0.77 0.80 0.73 0.76 0.18

50 0.72 0.75 0.67 0.71 0.22

8DAT 10 0.62 1 0.41 0.58 0

20 0.70 1 0.53 0.70 0

30 0.75 1 0.62 0.76 0

40 0.76 1 0.60 0.75 0

50 0.71 1 0.43 0.60 0

aSource domain dataset update levels were set, namely 10, 20, 30, 40, and 50% of target domain. DAT, days after glyphosate treatment. Exp.1, Exp.2, and Exp.3 represent three independent
experiments.

“The performances of SVM models on transfer learning tasks,”
TCA algorithm was applied in an attempt to improve the
transferability of SVM models. After narrowing the data
distribution distance difference between source domain and
target domain, the SVM algorithm was applied to develop
models using the five transformed features of source domain,
and the results were showed in Supplementary Table 6 and
Table 3. Among them, the TCA_SVM model of Exp.3→Exp.2
obtained the best performance. At 6 DAT, accuracy, precision,
recall, F1-score, and FPR were 95, 91, 100%, 0.95 and 13%
respectively on target source. The discrimination accuracy
basically reached the level of SVM model constructed based
on a single experiment, and the confusion maps were
showed in green. Compared to SVM models, for the transfer
tasks, Exp.2→Exp.1 and Exp.3→Exp.1, TCA_SVM models
improved the performance indices of accuracy, recall, and F1-
score on target domain (Figure 4), which to some extent
solved the problem of misclassifying RT to ST in SVM
models. However, instead of improving, the performance
indices of precision and FPR even went in the opposite
direction. Specifically, it resulted in the misjudgment of ST
as RT (Supplementary Table 6), which should be avoided
in the screening process of resistant cultivars compared with
misjudgment of RT as ST. Therefore, for the transfer learning
tasks, Exp.2→Exp.1 and Exp.3→Exp.1, it was necessary to
further explore other transfer learning strategy to optimize the
transferability of SVM models.

The performances of Update_support vector
machine models on transfer learning tasks

After TCA applied, although the classification accuracy of
the transfer tasks (Exp.2→Exp.1 and Exp.3→Exp.1) improved,
it was still failed to reach the level of SVM models based on a
single experiment. Therefore, did transfer learning strategy_2
(update source domain) performed better in improvement of
SVM transferability?

In this work, five source domain dataset updating levels
were set, namely 10, 20, 30, 40, and 50% of target domain.
Supplementary Table 7 and Table 4 show the results of
Update_SVM models on new target domains. In general,
consistent with the literature reported (Weng et al., 2018; Wan
et al., 2020), the performance of Update_SVM models are
improved with the increase of the proportion of new samples
in source domain. For the transfer learning task Exp.2→Exp.1,
when 50% of Exp.1_6DAT dataset (13% of the source domain)
samples were randomly selected and added into the source
domain, accuracy of Update_SVM model on target domain
reached 78% (increased by 44%), recall increased from 19 to
56%, and F1-score increased from 0.32 to 0.71. When classifying
samples of Exp.1_8DAT, 100% accuracy could be achieved by
adding only 10% new samples from target domain (2% of the
source domain). For the transfer learning task Exp.3→Exp.1,
when 40% of Exp.1_6DAT samples (11% of the source domain)
were added to the source domain, accuracy of Update_SVM
model on target domain reached 77% (increased by 59%), recall
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increased from 10 to 73%, and F1-score increased from 0.17 to
0.76. When classifying samples of Exp.1_8DAT, the best result
appeared when 30% new samples were added, where accuracy,
precision, recall, F1-score and FPR were 75, 100, 62%, 0.76
and 0, respectively. Compared with the performance of SVM
model based on a single experiment, there was still obvious
improvement room.

Compared with direct transfer (Table 2 and Supplementary
Table 5), TCA algorithm and source domain updating strategies
greatly improved the prediction accuracy, recall, and F1-score.
But the former had a higher FPR value, and led to an increase
in the proportion of ST misjudged as RT in detection, which
was the least expected misjudgment in breeding screening.
For transfer learning task Exp.3→Exp.1_8DAT, TCA algorithm
worked better than source domain updating strategy. Therefore,
both the two strategies had similar improvement on the
transferability of SVM model in different datasets of experiment.
Can the two transfer strategies be applied simultaneously to
achieve better results?

The performances of Update_TCA_support
vector machine models on transfer learning
task

Since the performance of TCA_SVM and Update_SVM
model in the transfer learning task Exp.3→Exp.1 was quite
different, this section explores the question of whether the two
transfer strategies could complement each other’s advantages to
further improve the performance of the SVM model.

Figure 5 and Table 5 detail the classification results of the
Update_TCA_SVM models on new target domain in transfer
learning task Exp.3→Exp.1. When 50% of Exp.1_6DAT dataset
(14% of the source domain) samples were randomly selected and
added into the source domain, accuracy of Update_TCA_SVM
model on target domain reached 83% (increased by 71%), recall

increased from 10 to 100%, and F1-score increased from 0.17 to
0.86. When classifying samples of Exp.1_8DAT, the best result
appeared when 20% new samples (5% of the source domain)
were added, where accuracy, precision, recall, F1-score and FPR
were 96, 94, 100%, 0.97 and 13%, respectively. Among them,
classification accuracy, recall and F1-score were significantly
higher than those in SVM, TCA_SVM and Update_SVM
models (Supplementary Table 8). Moreover, source domain
updating strategy had a weakening effect on the increase of FPR
value brought by TCA algorithm. The two transfer strategies
could complement each other’s advantages to achieve the best
transferability and model performance.

Discussion

Potential implementation of spectral
index for the filed detection

The merits of glyphosate in field management promote
the creation of glyphosate resistant cultivars. Planting is an
important step to verify the glyphosate tolerance of the
new cultivars developed through genetic engineering and
other technologies. Visual observation is still the mainstream
method for breeders to identify glyphosate resistant cultivars
(Singh et al., 2021), which usually takes several weeks and is
time-consuming and laborious, severely limiting the breeding
process. The difference between resistant and sensitive cultivars
is that the response of the latter to glyphosate stress is more
easily observed than that of the former (Shirzadifar et al.,
2020b). Glyphosate affects the photosynthetic activity of plants
by inhibiting the shikimic acid pathway (Gomes et al., 2014),
which is eventually reflected in leaf surface reflectance. At
present, hyperspectral technology has been widely used in the

FIGURE 5

Performance of four models on new target domain in transfer learning task (Exp.3→Exp.1). SVM, support vector machine model. TCA_SVM,
transfer component analysis-based support vector machine model. Update_SVM, source domain updating-based support vector machine
model. Update_TCA_SVM, source domain updating- and transfer component analysis-based support vector machine model.
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early detection of stress due to its high throughput, rapid and
non-destructive nature (Sun et al., 2021; Sarić et al., 2022).
Visible near infrared spectroscopy can capture the changes in
leaf reflectance in time so as to realize the identification of
resistance cultivars. However, it should be pointed out that the
high dimension of spectral data limits the calculation speed
to some extent, while the spectral index is a combination of
several bands, which can obtain similar results while reducing
the dimension (Bloem et al., 2020). In this work, living plants
were used to achieve non-destructive identification, which was
different from in vitro leaves reported in previous study (Zhang
et al., 2022a). The model constructed based on spectral index
could accurately classify glyphosate resistant cultivars at 6
DAT (accuracy = 100% in Table 1), which was higher than
previous study (Feng et al., 2018), indicating the feasibility
and effectiveness of spectral index in the identification of
glyphosate resistant cultivar, and the detection performance was
better than the sensitive wavelengths and sensitive chlorophyll
fluorescence parameters.

Many studies (Zhang et al., 2019; Zea et al., 2022) have
been emphasized the importance of spectral index in cultivars
identification and early detection of stress. In this work,
at 6 DAT, most spectral indices, such as ARI (anthocyanin
reflectance index), PRI (photochemical reflectance index) and
PSRI (plant senescence reflectance index), were able to detect
differences between RT and ST. ARI is sensitive to anthocyanin
in leaves, and the larger ARI value is, the closer the plant is to
death (Gitelson et al., 2006). Owing to weak defense system to
glyphosate, S plants withed gradually over time with glyphosate
treatment. PRI is sensitive to carotenoids in living plants, and
used to evaluate the utilization efficiency of incident light by
plant in photosynthesis, which is directly related to carbon
absorption efficiency, plant growth rate and photosynthetically
active radiation (Gamon et al., 1992; Peñuelas et al., 1995).
Hence, PRI can be used to study vegetation productivity and

stress, senescence of crops. As Supplementary Table 3 and
Figure 6 show, glyphosate accelerated the aging of S plants
exhibited higher PRI values, but had no significant effect on
R plants. Besides, previous study (Huang et al., 2016) reported
that the soybean sprayed with herbicide can be accurately
distinguished from the control plants at an early stage based
on the spectral index analysis, especially ARI and PRI, which is
consistent with the results of our research. As another spectral
index associated with plant senescence, PSRI is sensitive to
the ratio of carotenoids to chlorophyll in living plants and
its increase is often related to changes in physiological and
phenological status due to plant stresses (Merzlyak et al.,
1999; Yu et al., 2018). Driven by glyphosate treatment and
low tolerance, carotenoids and chlorophyll content in S plant
leaves gradually increased and decreased respectively, so PSRI
values were higher than other groups. Here, significant changes
in spectral indices were associated with severity of stress
development on leaves of S plants, which led to decreased
photosynthetic activities, distinct the senescence signatures and
stunted growth. The above results are consistent with other
studies (da Silva Santos et al., 2020; Hassannejad et al., 2020).
Although the stress in different researches was different, the
physiological changes caused by stress were similar. Hence, the
spectral index could be applied to the early detection of various
stresses and the identification of target cultivars.

Transfer strategy improves model
performance in different experiments

Due to the difference in data feature distribution between
the historical dataset and the new dataset, the model constructed
by the historical dataset with traditional modeling algorithms
may be invalid when predicting the sample spectra of different
experiments, which is shown in the section “The performances

TABLE 5 Prediction results of transfer component analysis- and source domain updating-based support vector machine models on new target
domain in transfer learning task (Exp.3→Exp.1).

Transfer learning task Ratioa (%) Target domain

Accuracy Prediction Recall F1-score FPR

Exp.3→Exp.1 6DAT 10 0.73 0.73 0.84 0.78 0.43
20 0.72 0.72 0.81 0.76 0.38

30 0.80 0.72 1 0.84 0.42
40 0.82 0.73 1 0.85 0.36
50 0.83 0.75 1 0.86 0.33

8DAT 10 0.92 0.94 0.94 0.94 0.11
20 0.96 0.94 1 0.97 0.13
30 0.95 0.93 1 0.96 0.14
40 0.88 0.83 1 0.91 0.29
50 0.86 0.78 1 0.88 0.29

aSource domain dataset update levels were set, namely 10, 20, 30, 40, and 50% of target domain. DAT, days after glyphosate treatment. Exp.1, Exp.2, and Exp.3 represent three independent
experiments.
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FIGURE 6

Time-series effect of glyphosate on the responses of leaf spectral indices at 2, 4, 6, and 8 days after treatment (DAT) in Experiment 1. The
spectral index value is presented as means. Letters highlight significant difference among four groups (p < 0.05) by the Holm-Bonferroni test.

of SVM models on transfer learning tasks” (Qiu et al., 2020;
Zhao et al., 2021). Supplementary Table 9 shows the original
datasets of three experiments. Transfer learning can help the
model transfer the knowledge learned from the source domain
to the target domain and reduce the adverse impact of data
distribution differences on model performance (Cheplygina
et al., 2019; Talo et al., 2019).

According to the result of ANOVA (Figure 6 and
Supplementary Table 3), the spectral indices of RT and
ST were significantly different at 6 DAT at the earliest,
which was consistent with the modeling results (Table 1 and
Supplementary Table 4) of the single experiment. Here, how
to accurately identify glyphosate resistant cultivar at 6 DAT
in transfer tasks was one of the primary goals in this work.

Hence, two transfer learning strategies including the TCA
algorithm and source domain updating, were used to improve
model performance in identifying the new samples from
different experiments. And the model with transfer learning
strategies could also accurately identify resistant cultivar at
6 DAT in most transfer tasks. The two transfer strategies
could complement each other’s advantages to achieve the
best transferability and model performance. For the transfer
learning task (Exp.3→Exp.1) with the worst classification
results, when 50% of Exp.1_6DAT dataset (14% of the source
domain) samples were randomly selected and added into the
source domain (Figure 5 and Tables 2, 5), compared with
the SVM model, the accuracy of Update_TCA_SVM model
on target domain reached 83% (increased by 71%), recall
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increased from 10 to 100%, and F1-score increased from
0.17 to 0.86. Previous literature (Tao et al., 2019) reported
that the transfer model can achieve an effective prediction by
collecting the current samples to the training set, which is
consistent with the results of our research. Their results also
pointed out that the prediction accuracy of transfer model
can be further improved by using more current samples.
However, our results (Tables 4, 5) are not consistent with it,
which may be due to saturation of the number of adding
samples. Anyway, the distinct improvement of the model
transferability prompts us to further explore the universality
of the two transfer learning strategies applied in this work
in more scenarios.

Potential applications and future
prospect

Based on the selected spectral indices in our study,
portable sensors should be developed and integrated with
transfer learning algorithms in the near future. Then attaching
these sensors to unmanned aerial vehicle to realize the
rapid and non-destructive identification of target cultivars
at the field or regional scale. Moreover, in order to study
the universality of the transfer learning strategy, it is
suggested to collect more different samples in more growing
environments and cultivars.

Conclusion

In this study, the HSI system was used to obtain
hyperspectral image of samples, and after stem and leaf
segmentation, the mean spectra and 16 spectral indices of
each leaf was calculated. Then transfer learning strategies were
implemented to construct a model for identifying glyphosate-
resistant cultivars in different experiments. As one of the
classification models, SVM algorithm was employed to explore
the model transferability between different experiments, and
assessed the effectiveness of two transfer learning strategies
including TCA algorithm and source domain updating. For
one of the transfer tasks, transferability of SVM model was
improved by randomly selecting 14% of source domain from
target domain to train and applying transfer component
analysis algorithm, the accuracy on target domain reached
83% (increased by 71%), recall increased from 10 to 100%,
and F1-score increased from 0.17 to 0.86. The overall results
indicated that compared with direct model transfer, both
transfer learning strategies improved model transferability
between different experiments although the prediction results
varied with different added number of new samples from source
domain, and these two strategies could complement each other’s
advantages. Inspired by the distinct positive contribution of

the transfer learning strategy, future work will be concentrated
on experiments with more cultivars, growing conditions and
spectral devices to investigate the universality of the transfer
learning strategies. Ideally, these results could someday be
validated and optimized enough that ultra-portable instrument
combined with the transfer learning strategy could be employed
to screen glyphosate resistant cultivars on large scale in a rapid,
non-destructive and high-throughput way, which could help
breeders improve work efficiency.
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