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Drought restricts the growth of alpine grassland vegetation. This study aimed

to explore a new technical system to improve the drought resistance of forage

grass. Qinghai cold-land Poa pratensis seedlings were used in the drought

stress experiment. A combination of abscisic acid (ABA) and polyacrylamide

(PAM) were used to affect the growth, leaf physiology, soil enzyme activity, and

rhizosphere microbial diversity of P. pratensis. The fresh leaf weight and root

surface area were significantly increased after ABA-PAM combined treatment,

while root length was significantly reduced. Besides, the leaf catalase (CAT)

and superoxide dismutase (SOD) enzyme activity, proline and chlorophyll

content, increased after the treatment, while malondialdehyde (MDA) content

decreased. The treatment also increased sucrase, urease, and alkaline

protease activities in rhizosphere soil, while decreasing acid phosphatase

and neutral phosphatase enzyme activities. ABA-PAM combined treatment

enhanced the rhizosphere microbial community and forage drought

resistance by altering the abundance of various dominant microorganisms

in the rhizosphere soil. The relative abundances of Actinobacteria,

Chloroflexi, and Acidobacteria decreased, while Proteobacteria, Firmicutes,

and Ascomycota increased. Unlike the relative abundance of Gibberella that

decreased significantly, Komagataeibacter, Lactobacillus, Pichia, and Dekkera

were significantly increased. Single-factor collinearity network analysis

revealed a close relationship between the different rhizosphere microbial

communities of forage grass, after ABA-PAM treatment. This study implies

that ABA-PAM combined treatment can improve the drought resistance of

forages. Therefore, it provides a theoretical and practical basis for restoring

drought-induced grassland degradation.
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Introduction

Grassland is one of the most widely distributed terrestrial
ecosystems. It regulates ecosystem balance, biodiversity,
regional economy, climate change, and animal husbandry
development (Du et al., 2004; Curlock and Hall, 2010; Zheng
et al., 2018). The total grassland area in China is about
3.9 × 108 hm2, accounting for 13% of the global grassland
area and about 41% of the land area in China (Kang et al.,
2007). However, interference by natural factors and human
activities in the recent decades has severely destroyed grasslands
(Gang et al., 2014; Yang et al., 2016). Grassland degradation
often leads to soil desertification, with large pores in the
sandy soil particles, loose soil texture, high permeability, poor
water retention, and low water content. These culminate into
grassland desertification, ecological deterioration, and even
sandstorms. The northwestern part of Sichuan Province is a
high-latitude, high-altitude alpine grassland ecosystem. Besides,
it is an important part of the plateau ecosystem in the entire
Qinghai-Tibet area and the Three River Source region (Wen
et al., 2013). Drought and cold stress have affected the vegetation
growth in this area for a long time due to the high altitude and
scarce precipitation, thus decreasing biodiversity and biomass
(Gang et al., 2014; Wang et al., 2016; Yang et al., 2016). These
have consequently resulted in a low robustness and resilience.
As a result, nearly 38.8% of the grassland has been degraded
(Xia et al., 2014; Wang et al., 2016).

Soil provides nutrients, water, and root-fixing substrate
for plant growth. Several studies have shown that plant-soil-
microbe interaction is crucial in maintaining the balance of the
terrestrial ecosystems. Soil microorganisms, including bacteria,
fungi, actinomycetes, algae, and protozoa, are essential in the soil
ecosystem. Active microorganisms in the rhizosphere micro-
ecological environment provide good nutritional conditions
for plants. They also directly or indirectly affect soil nutrient
cycling, energy flow, etc. Therefore, microorganisms can be
used as a key parameter for evaluating soil environmental
quality (Koide et al., 2011; Pratscher et al., 2011; Eisenhauer
et al., 2012; Petersen et al., 2012; Purahong and Krüger,
2012). However, rhizosphere microorganisms are sensitive to
the subtle changes in the soil micro-ecological environment,
including drought stress (Berendsen et al., 2012; Mendes
et al., 2013). Drought stress disturbs the normal physiological
and biochemical reactions of plants, such as the water
content, net photosynthetic rate, transpiration rate and stomatal
conductance of leaves (Lafitte et al., 2007; Chaves et al.,
2009; Li et al., 2015; Yuan et al., 2016). Drought stress also
directly causes the lysis and death of some microbial cells
(Turner et al., 2003) and changes the physical structure,
chemical properties, nutrient status, element stoichiometric
ratio, and enzyme activity of soil (Cregger et al., 2014; Wang
et al., 2018). Moreover, drought stress indirectly changes the
use of carbon sources by microorganisms by affecting the

photosynthesis, respiration and other metabolic processes of
plants (Lemanceau et al., 2006).

Polyacrylamide (PAM) is a high molecular polymer
polymerized by Acrylamide (AMD) and its derivatives. It can
be used as a water-retaining agent to reduce soil evaporation.
This enhances soil water holding capacity (Wen et al., 2013),
thus increasing the microbial biomass carbon, nitrogen mass
fraction, and crop yield (Li et al., 2017). Chen found that
PAM as a water-retaining agent, increases the soil wettability of
artificial soil (Chen Z. et al., 2018). Researchers have also found
that soaking millet seeds with an appropriate concentration
of PAM effectively reduces the drought stress damage to
millet seed germination and seedling growth, thus enhancing
plant resistance to drought (Ke et al., 2015). Young also
found that PAM increases the water storage capacity during
drought period, significantly enhancing the drought tolerance
of high roof greening plants (Young et al., 2017). Abscisic acid
(ABA) is an endogenous hormone that responds to biotic and
abiotic stresses in plants, thus can significantly improve plant
resistance to drought. ABA regulates plant growth, inhibits seed
germination, and increases plant resistance to stress (Apel and
Hirt, 2004; De Smet et al., 2006; Wasilewska et al., 2008; Ding
and De Smet, 2013). ABA can induce the formation of protective
enzymes in the biomembrane system, reduce the degree of
membrane lipid peroxidation, and protect the integrity of the
membrane structure and photosynthetic characteristics. These
are initiated by increasing the content of proline and soluble
sugars and controlling the closing of stomata to reduce leaf
water evaporation (Liu et al., 2013; Li et al., 2014; Minardi
et al., 2014; Kaur et al., 2015; Han et al., 2016; Wu and Liang,
2017; Wang et al., 2020). Although studies have reported the
effects of ABA on crop resistance (Lu et al., 2003; Souza et al.,
2013; Chae et al., 2015; Estrada-Melo et al., 2015) and the
restoration of degraded grassland using water-retaining agents
(Yuan, 2010; Chu et al., 2012), none has reported the effect of
abscisic acid-polyacrylamide (ABA-PAM) on the restoration of
degraded grassland vegetation and soil microbial diversity.

This study systematically investigated the effects of
ABA-PAM combined treatment on plant growth and
the rhizosphere microbial diversity under drought stress
conditions. The study aimed to improve the adaptability
of forages to arid environments. Therefore, this study may
provide a theoretical and practical basis for restoring degraded
grassland and managing undegraded grassland via ABA-PAM
combined treatment.

Materials and methods

Experimental materials

This study used a local grass species, P. pratensis, a
native perennial herb mainly distributed in Qinghai Tibet
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Plateau. The severe desertified soil was collected from heavy-
desertification grasslands in Xiaman Town, Zoige County,
Sichuan Province, at an altitude of 3,500 m. The soil had a
90.7% sediment content. The area is cold and windy in winter
and spring; and rainy and humid in summer and autumn. It
has an average annual temperature and rainfall of 1.4◦C and
643.3 mm, respectively.

Forage planting and treatment

A 40-mesh sieve was used to remove impurities from the
severe desertified soil. Each square flowerpot (13× 13× 15 cm)
was filled with 2.5 kg of desertified soil. The pots were
divided into four groups (six pots per group). Only groups 1
(ABA-PAM) and 2 (PAM) were treated with PAM (8 gm·−2

PAM mixed with 0.5 kg upper soil). The healthy and plump
P. pratensis seeds were evenly mixed into the upper soil of
the flowerpot (0.3 g per flowerpot), watered (100 mL), and
cultivated in a light incubator at 25 ◦C at a 16/8 h photoperiod.
The height of the forage grass plants was measured every seven
days. Each pot was watered (100 mL) every five days after
sowing. Drought stress was applied when the forage had grown
to a height of 5 cm (seven days after sowing) and watered
(100 mL) every seven days. ABA (2 mg·L−1) was sprayed
(thrice) on the leaves at 450 L·hm−2 after 12 days of stress
treatment for groups 1 and 3 (ABA), once every 12 days, for a
total of 3 sprays. Groups 2 and 4 (CK) received equal volumes
of distilled water. Soil water content were measured with WET-
2 Soil Water Sensor (Delta-T Devices Ltd., United Kingdom) at
different time point.

Determination of leaf and soil enzyme
activity

After the treatment period (63 days), the whole plant
was uprooted, washed, and the fresh weight, root weight,
root length, and plant height were measured. A root scanner
(WinRHIZO STD4800 LA2400, Regent, Canada) was used
to determine the root surface area. Forage leaves and soil
samples were collected to determine enzyme activity. Leaf
catalase, peroxidase, superoxide dismutase, malondialdehyde,
H2O2, proline, and chlorophyll contents were determined
using the corresponding kits (A007-1-1, A084-3-1, A001-
1-2, A003-1-2, A064-1-1, A107-1-1, and A147-1-1, Nanjing
Jiancheng Bio-Engineering Institute Co., Ltd., China). The
activity of soil alkaline protease (ALPT), urease (UE), neutral
phosphatase (NP), acid phosphatase (ACP), polyphenol
oxidase (PPO), and sucrase (SC) were determined using soil
enzyme activity kits (BC0885, BC0125, BC0465, BC0145,
BC0115, and BC0245, Beijing Solarbio Science & Technology
Co., Ltd., China).

Microbial diversity analysis

Forage plants were planted in 48 pots and divided into
eight groups. As mentioned above, the groups were treated with
drought stress, PAM, and ABA, and sampled at different time
points. Correspondingly, eight sample groups were collected,
including severe desertified soil grew grass without PAM
and ABA treatment (CK); severe desertified soil grew grass
with drought (D10, D40); severe desertified soil grew grass
with PAM treatment, without (P0) or with drought (PD10,
PD40); severe desertified soil grew grass, with drought and
ABA treatment (AD40); severe desertified soil grew grass,
with drought, PAM, and ABA treatment (PAD40) (Table 1).
The whole plants were uprooted and rhizosphere soil samples
were collected after the treatment period (63 days). The
soil was divided into three parts. One part was stored in
a sterile EP tube (three replicates for each sample), another
part was stored at –80◦C after quick freezing in liquid
nitrogen, and the last part was sent to Shanghai Majorbio
Bio-pham Technology Co., Ltd. Powersoil DNA Isolation Kit
(MO-BIO, United States) was used to extract the total soil
DNA. NanoDrop 2000 (NanoDrop, United States) and 1%
agarose gel electrophoresis were used to determine the purity,
concentration, and integrity of DNA samples. The DNA samples
were then amplified with FastPfu polymerase (TransGen,
China). The primers 338F (5′-ACTCCTACGGGAGGCAGCAG
-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT -3′) were
used to amplify the bacterial 16S rRNA gene V3-V4 region.
ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R
(5′-GCTGCGTTCTTCATCGATGC-3′) were used to amplify
the fungal ITS1-ITS2 region. Each sample was conducted in
replicate with 20 µL PCR reaction system, including 4 µL
5 × FastPfu Buffer, 2 µL 2.5 mM dNTPs, 0.8 µL Forward
Primer (5 µM), 0.8 µL Reverse Primer (5 µM), 0.4 µL FastPfu
Polymerase, 0.2 µL BSA, 10 ng Template DNA, added ddH2O
to 20 µL. The PCR program for 16S rRNA gene included
initial denaturation at 95◦C for 3 min, followed by 30 cycles
of 95◦C for 30 s, 56◦C for 30 s and 72◦C for 45 s, and a final
extension at 72◦C for 10 min. The PCR condition for ITS was
95◦C for 3 min, followed by 30 cycles of 95◦C for 30 s, 55◦C
for 30 s and 72◦C for 45 s, and a final extension at 72◦C for
10 min. The amplicons were then purified with AxyPrep DNA
Gel Extraction Kit (Axygen, United States) and quantified with
QuantusTM Fluorometer (Promega, United States). Sequencing
libraries were prepared with NEXTflex R© Rapid DNA-Seq Kit
(Bioo Scientific, United States). Illumina MiSeq 2500 platform
(Illumina, United States) was used for pair-end sequencing of
the amplified library. The sequencing data were uploaded to the
Majorbio Cloud platform1 for analysis. The sequencing reads
were deposited into the NCBI Sequence Read Archive (SRA)

1 https://cloud.majorbio.com/
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TABLE 1 Preparing methods and sequencing statistics of different soil samples.

Samples Grass 8 gm−2
PAM

2mgL
ABA

Drought
stress time

ITS sequencing statistics 16s rDNA sequencing statistics

Drought Time
(d)

Sequences Bases(bp) OTU Sequences Bases(bp) OTU

CK_ – – – – 0 51,308± 2263 21,314,011± 946,921 1263 60,258± 7023 12,679,986± 850,918 3371

CK + – – – 0 51,509± 3192 21,446,726± 1,319,903 818 57,104± 6559 12,897,923± 828,339 3665

P0 + + – – 0 53,327± 1889 22,131,858± 794,664 972 60,679± 4646 13,824,004± 960,376 3756

D10 + – – + 10 57,416± 2329 23,888,836± 972,396 907 59,138± 6233 13,713,658± 1430,603 3806

PD10 + + – + 10 59,954± 2939 24,915,978± 1,231,385 1103 64,109± 8975 13,878,630± 1,826,709 3722

D40 + – – + 40 60,582± 3848 25,149,897± 1,591,661 946 67,445± 4732 14,898,716± 1,377,651 3642

AD40 + – + + 40 59,539± 2193 24,735,623± 897,928 972 56,896± 5424 13,177,685± 1,357,368 3744

PD40 + + – + 40 57,752± 2871 23,974,343± 1,192,680 855 52,953± 3504 12,244,031± 863,361 3658

PAD40 + + + + 40 57,645± 2929 23,839,562± 1,219,006 871 61,515± 8750 12,496,002± 1,132,299 3455

CK_: severe desertified soil grew grass without growing plants and without any treatment; CK: severe desertified soil grew grass without PAM and ABA treatment; D10, D40: severe
desertified soil grew grass with 10 or 40 days drought; P0: severe desertified soil grew grass with PAM but without drought; PD10, PD40: severe desertified soil grew grass with 10 or 40 days
drought; AD40: severe desertified soil grew grass with 40 days drought and ABA treatment; PAD40: severe desertified soil grew grass, with 40 days drought, PAM, and ABA treatment.

database under the accession number PRJNA805202. Raw fastq
files were quality-filtered by Fastp (v 0.19.2) (Chen S. et al.,
2018) and assemblies by FLASH (v1.2.113) (Magoč and Salzberg,
2011). Operational taxonomic units (OTUs) were clustered with
a 97% similarity cut-off using UPARSE (v7.0.10904) (Edgar,
2013) using a novel ‘greedy’ algorithm that simultaneously
performs chimera filtering. Then the OTUs were classified using
RDP classifier (v2.115) (Wang et al., 2007) against the Silva
16S rRNA database (v1386) and UNITE ITS database (v8.07)
using a confidence threshold of 70% to obtain the species
classification information.

Data processing and analysis

Excel 2010 was used to pre-process and analyze the test data.
SPSS 19.0 was used to analyze variance and test of significance
of difference (LSD method). Origin 2018 software was used
for mapping based on the values calculated by SPSS. The
community column chart was drawn using the R language
(version 3.3.1) according to the community composition data
at different taxonomic levels. The Kruskal Wallis h test and
one-way ANOVA were used to evaluate the significance of the
observed differences and draw the relevant histogram based on
the community abundance data in the sample. Network software
was used for single factor correlation network analysis.

2 https://github.com/OpenGene/fastp

3 http://www.cbcb.umd.edu/software/flash

4 http://www.drive5.com/uparse/

5 https://sourceforge.net/projects/rdp-classifier/

6 https://www.arb-silva.de/

7 https://unite.ut.ee/

Results

Effect of abscisic acid-polyacrylamide
combined treatment on plant growth

In preliminary experiments, we firstly added 60 and 90%
sand to the culture substrate, and then added 0, 4, 8, and
16 g·m−2 PAM. The water contents were analyzed. When added
8 g·m−2 PAM into the soil and the soil was treated with drought
stress for 80 days, the water content was 3.18 ± 0.06% and
10.99 ± 0.97%, respectively, corresponding to 60 and 90%
sediment content. When added 0, 4, and 16 g·m−2 PAM to
the soil with 90% sediment content, the water contents were
1.48 ± 0.22%, 2.16 ± 0.24%, and 1.88 ± 0.23%, while that for
60% sediment content were 8.89 ± 0.55%, 8.96 ± 0.61%, and
9.69± 1.08%, respectively. These results suggested that 8 g·m−2

was the optimal PAM ratio. So, we selected 8 g·m−2 PAM in this
following study.

The results showed that the growth situation increased after
ABA-PAM treatment under drought stress compared with the
control, ABA, and PAM groups (Figure 1A). On the 28th day,
the average plant heights in the ABA-PAM, ABA, PAM, and
control groups were 5.99 ± 0.08, 5.85 ± 0.10, 6.09 ± 0.04 cm,
and 5.83 ± 0.43 cm, respectively (Figure 1B). Moreover,
the fresh leaf weight and root surface area were significantly
higher in the ABA-PAM treatment group (0.38 ± 0.01 g and
0.39 ± 0.02 cm2, respectively) than in the control group
(0.10± 0.04 and 0.30± 0.09, respectively). However, root length
was significantly lower in the ABA-PAM group (5.11± 0.21 cm)
than in the control group (7.34± 0.09 cm) (Figure 1C).

Water contents were measured when the forage grass
plants were treated with drought stress. Results showed that
the soil water contents were increased after PAM treatment
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FIGURE 1

Effect of ABA-PAM combined treatment on the growth of grasses. Drought-stressed forage grasses were treated with ABA and/or PAM (A), and
plant height were measured at different time points (B). After the treatment period (63 days), the whole plants were uprooted and washed. The
fresh weight, root weight, and root length were measured (C). Leaf catalase (CAT), peroxidase (POD), superoxide dismutase (SOD),
malondialdehyde (MDA), H2O2, proline, and chlorophyll contents were determined (D,E). The units for MDA, H2O2, proline, and chlorophyll
were mmol·g−1 protein, mmol·g−1 protein, µg·g−1, and mg·g−1, respectively.

(Supplementary Table 1). Soil water contents for PAM group
were higher than the control group at all time points. However,
when the grass plants were sprayed with ABA, the soil water
content were lower than that in the control group, which could
be because the ABA treatment group had higher transpiration
rate. ABA-PAM combined treatment not only promoted the
growth of grass plants, but also increased the soil water contents
than the control, although the improvement rate were lower
than the PAM treatment group. Besides, the soil water contents
of drought-stressed grass plants were lower than 8% at most time

points, and lower than 5% on every seventh day, which means
moderate and severe drought, respectively.

Effect of abscisic acid-polyacrylamide
combined treatment on leaf
physiology

Antioxidative enzymes, such as catalase (CAT), peroxidase
(POD), and superoxide dismutase (SOD), are well known
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FIGURE 2

Effect of ABA-PAM combined treatment on soil invertase (SC), acid phosphatase (ACP), neutral phosphatase (NP), polyphenol oxidase (PPO),
urease (UE) and protease (ALPT). After the trea tment period (63 days), soil samples were collected for the analyses of soil enzyme activities. (A)
Activities of SC, PPO, and ACP; (B) Activities of ALPT, NP, and UE.

to be involved in protecting plants against oxidative stress.
CAT, POD, and SOD contents in the leaves of the drought-
stressed P. pratensis were 14.73 ± 0.42, 58.31 ± 2.94, and
145.66 ± 0.85 U·mg−1 protein, respectively, in the ABA-PAM
group, and 9.51± 1.19, 41.19± 0.74, and 101.06± 2.11 U·mg−1

protein, respectively, in the control group (Figure 1D). The
contents of toxic substances (malondialdehyde and H2O2) were
significantly lower in the ABA-PAM group (1.33 ± 0.12 and
19.26 ± 2.06 mmol·g−1 protein, respectively) than in control
(2.35 ± 0.07 and 31.94 ± 2.99 mmol·g−1 protein, respectively)
and the PAM groups (1.78 ± 0.08, 26.51 ± 0.40 mmol·g−1

protein, respectively). The MDA levels were significantly lower
in the ABA-PAM treatment group (1.87 ± 0.001 mmol·g−1

protein) than in the ABA group. Besides, the content of the
two toxic substances were also lower in ABA groups than
in control (Figure 1E). However, proline and chlorophyll
content were elevated in the ABA-PAM (301.95 ± 3.30 µg·g−1,
6.65 ± 0.26 mg·g−1) and ABA (293.43 ± 3.33 µg·g−1,
6.49 ± 0.35 mg·g−1) group than in the PAM (273.08 ± 5.78
µg·g−1, 5.47 ± 0.27 mg·g−1) and control (257.40 ± 6.60
µg·g−1, 4.52 ± 0.23 mg·g−1) group (Figure 1E). The above
results indicate that ABA-PAM combined treatment enhances
antioxidant activity, reduces the content of toxic substances,
degradation of chlorophyll, and the damage of drought stress,
thus providing adequate nutrition guarantee for the growth and
development of plants.

Effects of abscisic acid-polyacrylamide
combined treatment on soil enzyme
activities

Abscisic acid (ABA) and PAM significantly increased
soil invertase (SC) activity. However, SC activity was highest
in the ABA-PAM treatment group (123.22 ± 1.05 U·g−1,

Figure 2A). The acid phosphatase (ACP) activity was
inhibited after PAM treatment (4.36 ± 0.64 nmoldg−1)
and ABA-PAM treatment (4.73 ± 0.30 nmoldg−1). In
contrast, ABA alone had no significant effect on ACP activity
(7.17± 1.35 nmoldg−1). Neutral phosphatase (NP) activity was
inhibited in ABA and ABA-PAM treatment groups (1.43± 0.06
and 1.07± 0.06 nmoldg−1, respectively) (Figure 2B). However,
PAM treatment did not significantly affect NP activity
(1.94 ± 0.09 nmoldg−1). Moreover, ABA and PAM had
no significant effect on polyphenol oxidase (PPO) activity
(Figure 2A). Urease (UE) activity was highest in the ABA-PAM
treatment group, reaching 0.038 ± 0.001 U·g−1 (Figure 2B).
PAM enhanced alkaline protease (ALPT) activity (0.85 ± 0.05
U·g−1). However, ABA-PAM significantly enhanced ALPT
activity (1.34± 0.10 U·g−1) (Figure 2B).

Effects of abscisic acid-polyacrylamide
combined treatment on microbial
diversity under drought stress

16S rDNA/ITS sequencing analysis
Plant rhizosphere soil microbiome is essential for plant

growth and development, nutrient acquisition, and adaptation
to stress (Philippot et al., 2013; Trivedi et al., 2020). Soil samples
were collected from the alpine degraded grassland in Xiaman
Town, Zoige County, Sichuan Province. P. pratensis plants
were grown and treated with drought stress, followed by the
sequencing of the 16S rDNA/ITS (CK, P0, D10, PD10, D40,
AD40, PD40, PAD40, see Table 1 for sample treatment methods,
see part 2.2 for soil treat and P. pratensis planting methods)
to analyze the effect of ABA and PAM on the soil microbial
community structure of forage rhizosphere. A total of 1,527,099
16S rDNA reads and 1,620,295 ITS DNA reads were obtained
(average lengths, 415 and 221 bp, respectively).
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A total of 4,812 bacterial OTUs and 2,278 fungal OTUs
were obtained using 97% sequence similarity as the classification
threshold for OTUs clustering (Supplementary Table 2). The
bacterial OTUs were distributed in 41 phyla, 106 classes, 256
orders, 453 families, 925 genera, and 1,802 species, while
fungal OTUs were distributed in eight phyla, 31 classes, 92
orders, 205 families, 446 genera, and 750 species. Alpha
diversity analysis found that PAM and ABA alone had no
significant effect on the bacterial Chao1 index and Shannon
index under drought stress compared with the control group
(Figures 3A,B and Supplementary Table 3). In contrast, ABA-
PAM treatment decreased the bacterial Chao1 index (3152.69),
Shannon index (5.3562), and bacterial diversity. Moreover,
PAM, ABA, and ABA-PAM had no significant effect on the
Chao1 and fungal Shannon indices compared with the control
group (Figures 3C,D and Supplementary Table 3).

Effect of polyacrylamide on microbial
community composition

Analysis of six samples without ABA (CK, P0, D10, PD10,
D40, and PD40) found that the relative abundance of nine
phyla bacteria was more than 1%. Actinobacteria had the
highest abundance, followed by Proteobacteria, Chloroflex,
Acidobacteria, Firmicutes, Gemmatimonadetes, Bacteroidetes,
Rokuhacteria, and Planctomycetes. The number of sequences
of the five phyla with the highest abundance accounted
for more than 89.4% of the total sequences and was the
dominant flora in the bacterial community. The relative
abundance of Actinobacteria, Chloroflexi, Acidobacteria,
Gemmatimonadetes, Rokuhacteria, and Planctomycetes in
soil was decreased by 2.1%, 1.25%, 5.99%, 0.16%, 0.17%,
and 0.51%, respectively, in the absence of drought stress.
PAM increased the relative abundance of other dominant
bacteria with an abundance > 1% (P0 vs. CK). Moreover,
the relative abundances of Actinobacteria, Chloroflexi,
Rokuhacteria, and Planctomycetes in PAM-treated soil were
decreased by 2.63%, 1.94%, 0.28%, and 0.43%, respectively,
after 10 days of drought stress (PD10 vs. D10). The relative
abundances of Actinobacteria, Chloroflexi, Acidobacteria,
Gemmatimonadetes, Rokuhacteria and Planctomycetes in
PAM treatment group was decreased by 9.80%, 3.89%, 3.61%,
1.16%, 0.42% and 0.14%, respectively, after 40 days of drought
treatment (PD40 vs. D40) (Supplementary Figure 1A and
Supplementary Table 4). In conclusion, PAM increased
the relative abundance of dominant bacteria Proteobacteria,
Firmicutes, and Bacteroidetes, while it decreased Actinobacteria,
Chloroflex, and Acidobacteria.

Fungal community structure analysis (Supplementary
Figure 1C and Supplementary Table 4) found that the relative
abundance of three phyla in six samples was greater than 1%
(Ascomycota, Zygomycota, and Basidiomycota). Ascomycota
accounted for more than 82.4% of the total sequences and was
the dominant flora of the fungal community. PAM reduced the

relative abundance of Ascomycota and Basidiomycota by 1.29%
and 3.77%, respectively, in the absence of drought stress (P0
vs. CK). Moreover, the relative abundance of Basidiomycota in
the PAM treatment group was decreased by 0.02% after 10 days
of drought stress treatment (PD10 vs. D10). PAM reduced the
relative abundance of Ascomycota and Basidiomycota by 5.64%
and 0.71%, respectively, after 40 days of drought treatment
(PD40 vs. D40). In conclusion, although PAM decreased
the relative abundance of Ascomycota and Basidiomycota,
Ascomycota was the dominant bacteria in rhizosphere soil.

Further analysis showed that Arthrobacter (2.34%) and
RB41 (2.69%) were the dominant genera in the control group
(CK) in the absence of drought stress. Komagataeibacter
(4.59%), Lactobacillus (3.25%), Arthrobacter (3.01%) were the
dominant genera in the PAM (P0)- treated soil (Supplementary
Figure 1B and Supplementary Table 4). However, PAM
did not affect the dominant genera in rhizosphere soil
(Komagataeibacter and Lactobacillus) after 10 days of drought
stress treatment, but it altered the relative abundance. The
relative abundances of Komagataeibacter and Lactobacillus
in group D10 were 4.84% and 3.57%, respectively, and
5.20% and 4.20%, respectively, in group PD10. Arthrobacter
(3.74%) and RB41 (2.32%) were the dominant genera in
the D40 group after 40 days of drought stress treatment,
while Komagataeibacter (8.80%) and Lactobacillus (6.63%)
were the dominant genera in the PD40 group. The top
10 genera with significant differences in average relative
abundance were screened (Supplementary Figure 2A). The
results showed that PAM significantly increased the relative
abundance of Komagataeibacter and Lactobacillus, making
them the dominant bacteria, and thus improving the synthesis
efficiency of cellulose and the conversion efficiency of nitrogen
(Chen et al., 2016).

Legthophora (19.97%), Gibberella (18.16%), Pichia (8.90%),
and Dekkera (7.21%) were the dominant fungi in the non-PAM-
treated soil in the absence of drought stress treatment. Besides,
Gibberella (20.29%), Mortierella (5.58%), and Fusarlum (4.84%)
were the dominant genera in PAM-treated soil. Gibberella
(27.33%), Fusarlum (16.89%), and Mortierella (6.52%) were the
dominant genera in the rhizosphere soil of the D10 group after
10 days of drought stress treatment. Gibberella (30.08%), Pichia
(11.59%), Dekkera (7.89%), and Mortierella (6.76%) were the
dominant genera in the rhizosphere soil of the PD10 group.
Furthermore, Gibberella (19.15%), Pichia (8.60%), Mortierella
(7.12%), and Dekkera (6.61%) were the dominant genera in
the rhizosphere soil of the D40 group after 40 days of drought
stress treatment. Gibberella (32.31%), Mortierella (11.88%), and
Fusarium (7.75%) were the dominant genera in the rhizosphere
soil of the PD40 group. These results suggest that PAM increased
the relative abundance of Gibberella and Mortierella. The top
10 groups with the highest relative abundance and significant
differences were also screened at the genus level. Fusarium
had the highest relative abundance. Moreover, the relative
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FIGURE 3

Effects of PAM and ABA on soil microbial alpha diversity. (A) Chao index of bacterial communities; (B) Shannon index of bacterial communities;
(C) Chao index of fungal communities; (D) Shannon index of fungal communities. CK: severe desertified soil grew grass without PAM and ABA
treatment; D10, D40: severe desertified soil grew grass with 10 or 40 days drought; P0: severe desertified soil grew grass with PAM but without
drought; PD10, PD40: severe desertified soil grew grass with 10 or 40 days drought; AD40: severe desertified soil grew grass with 40 days
drought and ABA treatment; PAD40: severe desertified soil grew grass, with 40 days drought, PAM, and ABA treatment. *p < 0.05 and **p < 0.01.

abundance of Fusarium and Myrothecium was increased
significantly in group D10 (Supplementary Figure 2B).

Effect of abscisic acid on microbial community
composition

Analysis of D40, AD40, PD40, and PAD40 showed that
the relative abundance of dominant bacterial groups was
decreased by 2.98% (Actinobacteria), 2.15% (Chloroflexi), and
2.55% (Acidobacteria) in non-PAM-treated soil (AD40) when
compared with D40. After ABA-PAM treatment, the relative
abundance of dominant bacterial groups was significantly
reduced in PAD40 compared with D40, AD40, and PD40.
In contrast, ABA-PAM increased the relative abundance
of dominant populations Proteobacteria and Firmicutes
(Figure 4A and Supplementary Table 5).

The relative abundance of Komagataeibacter and
Lactobacillus in rhizosphere soil was significantly increased

after ABA (AD40) and ABA-PAM (PAD40) treatments at the
genus level compared with the control group D40, making
them the dominant genera (Figure 4B). The top 10 genera
with significant differences in average relative abundance
were also screened (Figure 5). The relative abundance of
Komagataeibacter and Lactobacillus was higher in ABA-
PAM (PAD40) and ABA alone (AD40) groups than in the
control group (PD40). Besides, the relative abundance of
Komagataeibacter and Lactobacillus was higher in the ABA-
PAM group than in the ABA alone group (Figure 5A). The
effect of ABA on fungi is shown in Figure 4C. ABA (AD40)
significantly decreased the relative abundance of Ascomycota
by 7.15%, while it increased the relative abundance of other
phyla compared with D40, AD40, and PD40.

Abscisic acid (ABA) significantly increased the relative
abundance of Gibberella (32.45%), Mortierella (8.88%), and
Fusarium (5.99%) compared with the control group (PD40),

Frontiers in Plant Science 08 frontiersin.org

https://doi.org/10.3389/fpls.2022.973665
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-973665 August 29, 2022 Time: 16:23 # 9

Tang et al. 10.3389/fpls.2022.973665

FIGURE 4

Relative abundance of the rhizosphere microbial communities of ABA treated samples at phylum and genus level. (A) Bacteria phylum level; (B)
bacteria genus level; (C) fungi phylum level; (D) fungi genus level. D40: severe desertified soil grew grass with 40 days drought; PD40: severe
desertified soil grew grass with 40 days drought; AD40: severe desertified soil grew grass with 40 days drought and ABA treatment; PAD40:
severe desertified soil grew grass, with 40 days drought, PAM, and ABA treatment.

FIGURE 5

Community differences of bacteria (A) and fungi (B) at the genera level caused by ABA (95% confidence interval). D40: severe desertified soil
grew grass with 40 days drought; PD40: severe desertified soil grew grass with 40 days drought; AD40: severe desertified soil grew grass with
40 days drought and ABA treatment; PAD40: severe desertified soil grew grass, with 40 days drought, PAM, and ABA treatment.

thus making them the dominant bacteria (Figure 4D). Pichia
(22.8%), Dekkera (16.61%), and Gibberella (15.60%) were
the dominant genera after ABA-PAM (PAD40) treatment.

ABA-PAM significantly increased the relative abundance of
Pichia and Dekkera, while it decreased that of Gibberella.
Among the 10 genera with the highest average relative
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FIGURE 6

Effect of ABA-PAM on the collinear network of soil microorganism. (A,B) Bacteria; (C,D) fungi; (A,C) ABA-PAM absent; (B,D) ABA-PAM added.

abundance and significant difference, ABA-PAM decreased the
relative abundance of Fusarium (Figure 5B).

Single-factor collinear network analysis
A species correlation network map was used to reveal the

relationship between species and reflect the overall trend. The 50
bacterial genera with the highest total abundance were analyzed
using a single-factor correlation network. Actinobacteria and
Proteobacteria accounted for 35.4 and 25%, respectively, of
all nodes without PAM addition. However, PAM altered the
proportions to 37.1 and 34.3%, respectively (Supplementary
Figure 3). Actinobacteria and Proteobacteria accounted for 43.5
and 26%, respectively, without ABA addition, and the whole
network diagram was divided into two modules. There were
no corresponding values of “Diameter” and “Average shortest
path length,” and the network had no connectivity. However,
ABA treatment changed the proportions to 38.8 and 28.6%,
respectively (Figure 6). There was a connection between the
two separated modules, the network is more stable, indicating
that ABA enhanced the connectivity between bacterial genera,

thus improving the drought stress resistance. Actinobacteria
formed the largest proportion of all nodes under the control
group and ABA-PAM treatments, accounting for 42% of all
network nodes, and was the dominant phylum in the treatments
(Supplementary Figure 4). The number of nodes with Node
Degree of 15–30 in the control group was 20, and that with
Node Degree of 16–31 in the ABA-PAM group was 32, which
indicated that the connectivity among bacterial genera in ABA-
PAM treatment was higher, the network was more complex and
stable, and the interaction among microorganisms was stronger.

A single-factor correlation network analysis was performed
on 50 fungal genera with the highest total abundance.
Ascomycota accounted for the largest proportion of all nodes
in control and ABA-PAM groups, accounting for 88% of all
network nodes, and was the dominant microflora in the two
treatments. However, ABA-PAM treatment had a more complex
and stronger inter-species interaction correlation networks. The
number of nodes with Node Degree 16–24 in the control
group was 10, while that with Node Degree of 16–24 in the
ABA-PAM treatment group was 23. These results indicate
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that ABA-PAM treatment enhances linkage of fungi in the
microflora; making the network more complex and stable,
thus enhancing the resistance from the interaction between
microorganisms to drought stress.

Discussion

The northwest plateau of Sichuan is located in the eastern
part of the Qinghai-Tibet Plateau. It is an essential water
conservation area in the upper reaches of the Yangtze and
Yellow Rivers, with a special ecological niche and important
ecological functions. The Zoige grassland is located in the
northwest plateau of Sichuan Province and has scarce rainfall.
Human activities and global warming have caused drought
in the grassland ecosystem, rapidly increasing desertification,
thus affecting the ecological environment and economic
development of the area (Meng et al., 2013). Therefore,
improving soil water holding and the resistance of surface plants
can effectively alleviate the degradation of high-cold grasslands.

A water retention agent is a high molecular polymer made of
strong absorbent resin with ultra-high water absorption ability.
It is insoluble in water, can quickly absorb a large amount of
water, thus enhancing soil water holding capacity. Besides, it
slowly releases its absorbed water when water shortage occurs
in its surroundings, thus improving soil physical and chemical
structure and increasing water utilization rate (Schröfl et al.,
2012). In recent years, polyacrylamide has been a popular soil
water retention agent due to its stable performance, long water
retention cycle, natural decomposition without residues, and
low cost. As one of the six phytohormones, ABA regulates
plant seed germination, growth and development, and fruit
ripening. Besides, it promotes resistance to stress caused by
abiotic factors (Apel and Hirt, 2004; Wasilewska et al., 2008;
Umezawa et al., 2010). Plants can enhance resistance under
adversity stresses by increasing the activity of antioxidant
enzymes, increasing endogenous ABA synthesis, and reducing
MDA levels. Such strategies protect against plant damage (Atici
et al., 2005). ABA can significantly improve the expression of
various transcription factors and genes associated with signaling
pathways, such as salicylic acid, jasmonic acid, and ethylene,
significantly increasing the content of endogenous ABA to
improve plant stress resistance (Xiong and Zhu, 2003; Souza
et al., 2013; Wang et al., 2013). In addition, ABA enhances
plant resistance by closing plant pores to reduce vaporization
and maintain moisture in plants (Jiang and Zhang, 2002; Castro
Neto, 2003; Peeva and Cornic, 2009). ABA also regulates the
expression of many genes associated with plant dehydration
tolerance, such as late-embryonic redundant proteins with high
hydrophilicity, and can protect biomolecules and maintain
moisture in dehydrated cells (Jiang and Zhang, 2002).

A strong root system is essential for plant growth and
development. The growth of the root system is closely related

to soil moisture conditions. ABA-PAM combined treatment
increased the soil moisture content under drought stress. As
a result, plants did not seek water through root elongation,
explaining the shorter root length and increased root surface
area and water absorption in the ABA-PAM group than in the
control group. ABA also increased the metabolic rate and height
of plants compared with the control group. Exogenous ABA
enhances ABA synthesis in the plant and the redistribution
within the plant under drought stress to promote the closure of
the stoma, thereby reducing the loss of water (Wang et al., 2011)
and significantly increasing the fresh weight of the leaves.

Adversity stress induces several reactive oxygen species
(ROS) production, causing a series of harmful biochemical
reactions. Plants form an antioxidant protection system to
remove ROS in the long-term evolution to prevent ROS damage
in the body, thus improving plant resistance (Anjum et al.,
2017). Studies have shown that ABA enhances the activity
of phenylalanine ammonialyase (PAL), superoxide dismutase
(SOD), polyphenol oxidase (PPO), and peroxidase (POD) in
tomatoes with Alternaria solani (Song et al., 2011). CAT, POD,
and SOD activities in the leaves were significantly increased
after ABA-PAM treatment under drought stress. Therefore,
ABA-PAM treatment improves ROS removal in plants, protects
enzymes involved in anabolic correlation in the body, and
improves drought stress resistance. Malondialdehyde (MDA)
is a membrane fat peroxidation product that can indirectly
reflect the degree of damage to a plant cell membrane. Increased
MDA content indicates an increased degree of membrane
damage. ABA-PAM treatment significantly reduced MDA and
H2O2 content compared with the control group, indicating
that ABA-PAM treatment reduces the damage caused by toxic
substances to plant cells. Plants quickly synthesize various
osmotic regulatory substances, including proline and betaine,
to resist osmotic stress when affected by abiotic factors, such
as drought and high salt (Yoshiba et al., 1997). Proline
is the most widely distributed osmotic regulatory substance
(Zhang et al., 1997; Knipp and Honermeier, 2006; Singh and
Singh, 2006; Vendruscolo et al., 2007; Dobra et al., 2010). Several
studies have shown that proline removes ROS either by itself or
by stimulating CAT, PPO, SOD, and POD activities (Han, 2006).
Proline works in synergy with antioxidant systems, such as CAT,
POD, SOD, to regulate ROS balance in cells (Rodriguez and
Redman, 2005). Proline accumulation is positively correlated
with plant tolerance to abiotic stress (Knipp and Honermeier,
2006; Slama et al., 2006; Trovato et al., 2008). In this study, ABA-
PAM treatment promoted the accumulation of grass proline and
enhanced plant resistance to drought.

Soil enzymes are mainly involved in the circulation of
matter and energy and are susceptible to environmental
factors. Soil sucrase can break down sucrose into glucose and
fructose for plants and microorganisms and is an important
indicator of soil fertility (Pancholy and Rice, 1973). ABA-
PAM combined treatment increased SC activity, enhancing soil
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fertility. Phosphatase can hydrolyze organophosphorus in soil
into inorganic phosphorus and can be used as an indicator of
soil phosphorus conversion and plant phosphorus absorption
(Wang, 2008; Nannipieri et al., 2011). PAM and ABA-PAM
decreased ACP activity. However, ABA had no significant effect
on ACP activity. ABA and ABA-PAM decreased NP activity,
while PAM had no significant effect on NP activity. Therefore,
PAM inhibits ACP activity, while ABA inhibits NP activity.
Phosphorus can improve the root ratio surface area of the plant,
reduce the respiratory rate of the root system, and increase the
potential of root water under drought stress. This enhances
the absorption and utilization of water and nutrients of the
root system, improves the moisture condition in the plant, and
increases the resistance to plant stresses (Zhang and Li, 1996).
The combined action of ABA-PAM enhances soil moisture
content and plant drought resistance. Plants do not need extra
phosphorus to resist adversity, resulting in reduced phosphatase
activity and the breakdown of organophosphorus in the soil.
The activity of soil UE, as a key enzyme in urea hydrolysis,
reflects the inorganic nitrogen supply capacity of the soil. Soil
proteases are involved in protein hydrolysis in soil, providing
nitrogen sources for plant growth (Jian et al., 2016). ABA-PAM
significantly increased UE and ALPT activities. ABA and PAM
had different effects on the activities of various enzymes in
this study. Besides, ABA-PAM treatment enhances soil enzyme
activity to a certain extent, improves nutrient supply and
conversion levels in root systems under drought stress, and
promotes forage grass growth.

The high Chao1 index and Shannon index indicate
more species in the sample and higher species diversity
of the sample, respectively (Grice et al., 2009). PAM
and ABA had no significant effect on the Chao1 and
Shannon indexes of bacteria. However, ABA-PAM treatment
decreased bacteria’s Chao1 and Shannon indexes. ABA-
PAM treatment reduced the richness of bacteria and the
diversity of species in the root-soil. Moreover, ABA-PAM,
PAM, and ABA had no significant effect on Chao1 and
Shannon indexes of fungi, fungal diversity, and richness.
Therefore, these results show that ABA and PAM changed
the physical and chemical properties of the soil, promoting
plant growth, and thus affecting the production of root
secretions, thus decreasing bacterial abundance and diversity.
The spearman correlation coefficients were also calculated
between the physiological characteristics and the rhizosphere
dominant microorganisms of sample D40, AD40, PD40,
and PAD40, results showed that most of the abundance
changes of rhizosphere dominant microorganisms were
correlated to the changes of physiological characteristics
(Supplementary Figure 5).

Increased Proteobacteria can effectively fix nitrogen
sources. Some members of Actinobacteria regulate symbiotic
nitrogen fixation and phosphorus solution (He et al.,
2009; Tu et al., 2015; Cui et al., 2018; Zhao et al., 2020),

Chloroflexi can produce energy through photosynthesis but
cannot regulate nitrogen fixation. Moreover, Chloroflexi
has a potential phosphorus biolysis function (Kragelund
et al., 2007; Yu et al., 2016). Bacteroidetes have a strong
metabolic capacity for complex organic compounds, proteins,
and lipids (Hill et al., 2007). ABA and PAM made the
Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria,
Firmicutes dominant in the root-soil. This improved the
soil environment, maintained the balance of root nutrient
absorption and microenvironment, and enhanced the drought
stress resistance of the plants. The increase in the relative
abundance of Firmicutes and Proteobacteria may have inhibited
the growth of Actinobacteria, Chloroflexi, and Acidobacteria,
decreasing their relative abundance. The dominance of
Komagataeibacter and Fusarium gradually declined as
drought stress time increased, while Komagataeibacter
abundance significantly increased in PAM and ABA groups.
These results indicate that drought causes the decline of
Komagataeibacter and Fusarium, while PAM and ABA
increase the relative abundance of Komagataeibacter and
Fusarium in the soil.

Rhizosphere soil fungi were classified into eight phyla, 31
classes, 92 orders, and 205 families. Ascomycota, Zygomycota,
and Basidiomycota were the dominant groups in soil fungi.
Basidiomycetes and ascomycetes play different roles in
the decomposition of soil organic matter. For instance,
basidiomycetes degrade the refractory lignocellulose in plant
litter, a dominant compound in the soil with high lignin
content. However, ascomycetes mainly decomposes the
rotten complex organic matter in the soil (Lienhard et al.,
2014; De Araujo et al., 2017; Yao et al., 2017). Therefore,
drought stress can increase the lignin content of plants,
change the quality of litter input into the soil, increase the
difficulty of degradation, and increase the relative abundance
of ascomycetes (García-Palacios et al., 2016; Risch et al., 2019),
explaining why ascomycetes had the highest relative abundance
in all fungal communities. Although the addition of ABA
and PAM reduced the drought stress effect, ascomycetes
was still the dominant class in the fungal community.
Moreover, the addition of ABA, PAM or ABA-PAM can
increase the relative abundance of fungi in rhizosphere soil
at the phylum and genus levels. ABA and PAM treatment
mainly altered the structure instead of rhizosphere soil fungal
community composition.

Wang simulated soil drought stress through pot water
control experiment and found that nitrogen-fixing bacteria
can decrease under prolonged drought stress, indicating that
drought stress can reduce the content of nitrogen-fixing bacteria
in the soil (Wang et al., 2005). ABA and PAM treatment
increased the relative abundance of nitrogen-fixing bacteria
Proteus in the soil. Proteus can effectively fix nitrogen and slow
down the impact of drought stress on plants. Some members of
actinomycetes have symbiotic nitrogen fixation and phosphorus
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removal function (He et al., 2009; Tu et al., 2015; Cui et al., 2018;
Zhao et al., 2020). Actinomycetes have high tolerance to drought
(Zheng, 2021). This study revealed that Curvularia viridis can
produce energy through photosynthesis, but cannot fix nitrogen.
Moreover, it has good biological phosphorus hydrolysis ability
(Kragelund et al., 2007; Yu et al., 2016). Bacteroidetes have
a strong metabolic capacity for complex organics, proteins
and lipids (Hill et al., 2007). ABA and PAM combined
treatment increased the dominance of Actinomycetes, Proteus,
Curvularia, Acidobacteria, and Firmicutes in rhizosphere soil.
This enhanced soil phosphorus solubilization and nitrogen-
fixation, improved soil environment, and maintained the
balance of root nutrient absorption and microenvironment, thus
enhancing plant resistance to drought stress.

Conclusion

When the Poa pratensis seedlings were treated with drought
and ABA-PAM simultaneously, the fresh leaf weight and root
surface area were increased, while root length was reduced.
The leaf enzyme activity of CAT and SOD, and content of
proline and chlorophyll increased, MDA content decreased. The
sucrase, urease, and alkaline protease activities in rhizosphere
soil increased, while acid phosphatase and neutral phosphatase
enzyme activities decreased. ABA-PAM combined treatment
improved the rhizosphere microbial community and forage
drought resistance by altering the abundance of various
dominant microorganisms in the rhizosphere soil, resulted in a
more complex and stable network between different rhizosphere
microbial communities of forage grass. All these results imply
that ABA-PAM combined treatment can improve the drought
resistance of forages.
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SUPPLEMENTARY FIGURE 1

Relative abundance of the rhizosphere microbial communities of PAM
treated samples at phylum and genus level. (A) Bacteria phylum level; (B)
bacteria genus level; (C) fungi phylum level; (D) fungi genus level. CK:
severe desertified soil grew grass without PAM and ABA treatment; D10,
D40: severe desertified soil grew grass with 10 or 40 days drought; P0:
severe desertified soil grew grass with PAM but without drought; PD10,
PD40: severe desertified soil grew grass with 10 or 40 days drought.

SUPPLEMENTARY FIGURE 2

Community differences of bacteria (A) and fungi (B) at the genera level
caused by PAM. CK: severe desertified soil grew grass without PAM and
ABA treatment; D10, D40: severe desertified soil grew grass with 10 or
40 days drought; P0: severe desertified soil grew grass with PAM but
without drought; PD10, PD40: severe desertified soil grew grass with 10
or 40 days drought.

SUPPLEMENTARY FIGURE 3

Effect of PAM on the collinear network of soil microorganism. (A,B)
Bacteria; (C,D) fungi; (A,C) PAM absent; (B,D) PAM added.

SUPPLEMENTARY FIGURE 4

Effect of ABA on the collinear network of soil microorganism. (A,B)
Bacteria; (C,D) fungi; (A,C) ABA absent; (B,D) ABA added.

SUPPLEMENTARY FIGURE 5

Correlation analysis between physiological characteristics and
rhizosphere microbes. Spearman correlation coefficients were
calculated between the physiological characteristics and rhizosphere
dominant microorganisms for sample D40, AD40, PD40, and PAD40.
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