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Intelligent detection and localization of mature citrus fruits is a critical

challenge in developing an automatic harvesting robot. Variable illumination

conditions and different occlusion states are some of the essential issues that

must be addressed for the accurate detection and localization of citrus in the

orchard environment. In this paper, a novel method for the detection and

localization of mature citrus using improved You Only Look Once (YOLO) v5s

with binocular vision is proposed. First, a new loss function (polarity binary

cross-entropy with logit loss) for YOLO v5s is designed to calculate the loss

value of class probability and objectness score, so that a large penalty for

false and missing detection is applied during the training process. Second,

to recover the missing depth information caused by randomly overlapping

background participants, Cr-Cb chromatic mapping, the Otsu thresholding

algorithm, and morphological processing are successively used to extract the

complete shape of the citrus, and the kriging method is applied to obtain

the best linear unbiased estimator for the missing depth value. Finally, the

citrus spatial position and posture information are obtained according to

the camera imaging model and the geometric features of the citrus. The

experimental results show that the recall rates of citrus detection under non-

uniform illumination conditions, weak illumination, and well illumination are

99.55%, 98.47%, and 98.48%, respectively, approximately 2–9% higher than

those of the original YOLO v5s network. The average error of the distance

between the citrus fruit and the camera is 3.98 mm, and the average errors

of the citrus diameters in the 3D direction are less than 2.75 mm. The average

detection time per frame is 78.96 ms. The results indicate that our method

can detect and localize citrus fruits in the complex environment of orchards

with high accuracy and speed. Our dataset and codes are available at https:

//github.com/AshesBen/citrus-detection-localization.
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Introduction

Citrus plays an essential role in the fruit industry around
the world, with an annual production of approximately 140
million tons (Zheng et al., 2021; Noorizadeh et al., 2022).
As the cost of fruit harvesting increases and the availability
of skilled labor decreases in China, the traditional manual
harvesting method is no longer practical (Gongal et al.,
2015; Tang et al., 2021). Presently, fruit harvesting has
become increasingly automated for labor-saving and large-
scale agriculture (Onishi et al., 2019). The development of
an automated citrus picking robot is an inevitable trend
for fruit harvesting (Zhuang et al., 2018). In recent work,
the development of automatic fruit picking with a robot
involves two main tasks: (1) fruit detection and (2) fruit
localization via computer vision. The accuracy of fruit
detection and fruit localization directly determines the picking
efficiency of the robot.

Fruit detection using computer vision has been investigated
in numerous recent studies, and most have applied deep
learning methods to achieve good performance and robustness
(Yang et al., 2020; Chen et al., 2021; Yan et al., 2021).
Wan and Goudos (2020) integrated multiclass classification
into Faster R-CNN to detect oranges, apples, and mangoes.
The improved model achieved a 90.72% mAP. Kang and
Chen (2020) proposed a LedNet network with a feature
pyramid network and an atrial space pyramid pool for
mature apple detection; the recall rate and precision were
0.821 and 0.853, respectively. Chu et al. (2021) improved
mask R-CNN by adopting a suppression branch to suppress
the generation of nonapple fruit features. However, their
method has poor detection performance under backlight
conditions. He et al. (2020) developed a deep bounding box
regression forest to describe the characteristics of immature
citrus on three levels, which is beneficial for differentiating
an object from the background. However, the detection
speed is slow (0.759 s per frame), making it challenging to
apply in real-time applications. For the real-time application
of fruit harvesting, the detection speed should be at least
10–15 frames per second (Tu et al., 2020). YOLO series
models have been used in various applications for fast
detection speed with high accuracy (Jiang et al., 2020;
Wang et al., 2021). Xiong et al. (2020) used a YOLO
v2 model to detect green mango and reported a recall
of 89.0%, a precision of 96.1%, and an average detection
time of 0.08 s per frame. Liang et al. (2020) combined
YOLO v3 and U-Net to detect litchi fruits and litchi stems
at night for picking robots under different illuminations;
96.1% precision and 89.0% recall were achieved. However,
the method has not yet been assessed in the daytime.
Wang and He (2021) developed an improved YOLO v5
model to detect apple fruitlets using the channel pruning
method. However, the network architecture must be manually

adjusted during detection. Notably, the target-background
class imbalance is typically the main obstacle encountered in
training convolutional neural networks (Buda et al., 2018).
To address such class imbalance, Lin et al. (2020) designed a
focal loss function to make the network pay more attention
to hard samples in training, but the approach cannot push
the object further from the background. Rahman et al.
(2020) proposed polarity loss to improve focal loss. In the
above studies, various deep learning methods have been
proposed to detect fruit targets and have achieved good
results. However, the detection performance deteriorates in
unstructured growing environments with variable illumination
conditions. For better accuracy, the disparity between citrus
and background under variable illumination conditions and
different occlusion states should be incorporated into the
network structure.

The purpose of fruit localization is to determine the
spatial coordinates of the detected fruit and its location
information, such as posture and shape (Huang et al.,
2019). Many fruit localization methods require a binocular
stereo vision system. The depth map or point cloud image
is captured to obtain three-dimensional (3D) localization
of fruit. Yang et al. (2020) employed a mask R-CNN to
detect citrus objects and branches and matched the color
and depth maps to locate fruits and branches. The average
error in the diameter of the fruit and the branch was
less than 4 mm. However, the distance from the fruit to
the camera was not provided in their work. Nguyen et al.
(2016) used a Euclidean clustering algorithm to segment a
single apple using a point cloud image. The results showed
that the errors in the spatial coordinates and the diameter
of the fruit were slightly less than 10 mm, but the 3D
location information about apples was not the aim of their
work. Xu et al. (2018) proposed the PointFusion structure
to estimate the 3D object bounding box and its confidence
from RGB image and point cloud information. The approach
produces good results in the KITTI and SUN-RGBD datasets,
with 78% AP. Since the information of the depth map or
point cloud is incomplete, fruit localization often requires
the use of empirical knowledge (Liu et al., 2017). Wang
et al. (2017) adopted Otsu’s method and a one-dimensional
filter to remove occluded objects (leaves, branches, fruit
particles, etc.) and employed ellipse fitting to extract a well-
separated mango region. Finally, mango dimensions were
calculated using depth information. Ge et al. (2020) developed
a shape completion method to reconstruct the point clouds
of strawberries; the average error of the center point of
strawberries was 5.7 mm. However, the reconstructed error
is larger in the case of the neighboring overlapping fruits.
Note that an incomplete depth map makes it difficult to
recover the missing depth value lost by variable illumination
or the fruit region being occluded by randomly overlapping
participants, such as neighboring fruits and other background
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objects. Therefore, this paper aims to restore the depth
map with high accuracy for locating fruits in unstructured
orchard environments.

The objective of this work is to develop a novel method
for the detection and localization of mature citrus fruits in
natural orchards using a binocular camera. The pipelines of
the study are to (1) design a new loss function to enhance the
detection performance of the YOLO v5s network architecture
under variable illumination conditions, (2) extract the fruit
region in the RGB image and recover the missing value in
the depth map under different occlusion states of citrus fruit,
and (3) estimate the 3D localization of citrus fruits using the
camera imaging model and the geometric features of citrus
fruits. Our method can provide 3D localization information of
citrus fruits, such as the diameters of citrus fruits in the 3D
direction, the spatial coordinates of citrus fruits, the distance
between citrus fruits and the camera, and the 3D bounding box
of citrus fruits.

Materials and methods

Datasets

A variety of citrus named "Shantanju” was investigated
in the hillside orchard of the Guangzhou Conghua Hualong
Fruit and Vegetable Freshness Co. Ltd., located in Guangzhou,
China (113◦39’2.38’E, 23◦33’12.48’N). A total of 4855 groups
of images were captured in December 2020 and December
2021 before harvest. Image acquisition was performed using
a binocular camera (Model ZED 2, Stereolab’s Co. Ltd, USA)
with a 1920 × 1080 pixel resolution under sunny and cloudy
conditions. The distance between the camera and citrus was set
to approximately 30∼150 cm. Each group of images contains a
left view (RGB image) and a depth map (grayscale image). Note
that the right view images were also captured and used only to
generate the depth map with the left view images. The depth
map is provided with a Z value for every pixel (X, Y) in the left
view image. According to the illumination of the citrus surface,
images are divided into three groups: non-uniform illumination
(non), weak illumination (weak), and well illumination (well).
In total, 2913 images were randomly selected as the training
dataset (train), 971 images were selected as the validation dataset
(validation), and 971 images were selected as the test dataset
(test), the number of citrus samples in each group is shown in
Table 1.

The hand of the harvesting robot is designed to pick citrus
fruits that are in the correct position in front of the camera.
In each left view image, the citrus fruits located near the
center of the image were manually labeled with bounding boxes
using Labelme software. Figures 1A–C provides examples of
citrus images from each illumination group. The bounding
boxes of labeled citrus are annotated with red rectangles.

The corresponding depth maps with labeled citrus are shown
in Figures 1D–F, where the grayscale of color is based on
distance from the camera, i.e., closer objects are darker; further
objects are lighter.

Detection and localization of citrus

An overview of our proposed method for citrus detection
and localization is presented in Figure 2. The main procedure
involves the following steps: Firstly, an improved YOLO v5s is
developed to detect citrus in the 2D bounding box. Secondly,
Cr-Cb chromatic mapping, Otsu threshold algorithm, and
morphology processing are used to extract citrus shape. The
missing depth values are recovered by the kriging method.
Finally, the 3D localization of citrus fruit is realized by geometric
imaging model. Each procedure is described in detail in the
following subsections.

Detection of the 2D bounding box of citrus
fruit

YOLO (You Only Look Once) is a one-stage detection
network that converts object detection into a regression problem
using convolutional neural networks (Wang et al., 2021, 2022).
YOLO v5, the latest version of the YOLO model (Jocher and
Stoken, 2021), has a faster detection speed and higher accuracy
than the previous version. The release of YOLO v5 consists of
four different model sizes: YOLO v5s (smallest), YOLO v5m,
YOLOv5l, and YOLO v5x (largest). The network structures of
these four models are basically the same, but the numbers of
modules and convolution kernels are different. Considering that
the application scenario of this paper requires fast detection
efficiency, the YOLO v5s model is selected as the basic network,
and its structure is shown in Figure 3A. The YOLO v5s network
is divided into three parts. The first part is the backbone
network, which is responsible for the feature extraction of
the target. The second part is PANet, which generates feature
pyramids for object scaling. The third part is the head network,
which conducts the final detection.

In YOLO v5s, binary cross-entropy with a logit loss function
(LossB) is used to calculate the class probability and objectness
score for each sample, as follows:

LossB
(
xi, yi

)
= −yi log (σ (xi))−

(
1− yi

)
log (1− σ (xi)) ,

(1)
where i is the sample index, xi is the predicted likelihood, yi
stands for the ground truth, and σ (·) is the sigmoid function that
maps the prediction xi to the probability for the ground truth. In
object detection tasks, the problem of unbalanced training sets is
considerable (Lin et al., 2020), i.e., the background information
in the dataset used for training is overrepresented compared to
that of the target class. The sum of LossB from the easy samples
over the entire images can overwhelm the overall LossB from
the hard samples. Moreover, the training is inefficient, as most
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TABLE 1 Dataset distribution.

Non Weak Well Total

Images Samples Images Samples Images Samples Images Samples

Train 923 4569 814 2503 1176 4016 2913 11088

Validation 333 1636 255 809 383 1435 971 3880

Test 307 892 269 655 395 1052 971 2599

FIGURE 1

Examples of citrus images captured in three illumination conditions: (A) non, (B) weak, (C) well, (D) depth map of (A), (E) depth map of (B), and
(F) depth map of (C).

locations are easy samples that do not contribute to learning.
Furthermore, in our trial-and-error experiments, the hard
negative samples, i.e., the citrus misclassified as background,
are difficult to distinguish from the background under weak
illumination or obvious occlusion. On the other hand, the hard
positive samples, i.e., the background misclassified as a citrus
target, exhibit similar characteristics to mature citrus due to the
uncontrolled factors in the orchard environment.

To better differentiate citrus from the background under
variable illumination conditions and different occlusion states,
we design a new loss function, the polarity binary cross-entropy
with logit loss (LossPB), to calculate the class probability and
objectness score to penalize the hard samples. In particular,
a penalty function fp (Rahman et al., 2020) is developed to
represent the disparity between the prediction for citrus and
background. LossPB is defined as follows:{

LossPB
(
xi, yi

)
= fp (σ (xi)) LossB

(
xi, yi

)
fp (zi) = 2

1+exp(−γ(zi−zi))
(2)

where zi is the probability of sample i being predicted as the
true class, such as citrus target or background, zi = 1− zi is
the probability of sample i being misclassified as the incorrect

class, and γ is a slope parameter of the sigmoid function fp
(Figure 3B). fp is used to calculate the disparity between the
prediction for the true class and false class based on the value
of zi − zi. If the citrus target is misclassified as background, the
prediction probability zi is greater than, such that a large value of
zi − zi is obtained, and a large penalty will be assigned by fp. In
this case, the penalty value of LossPB is larger than that of LossB,
which helps to suppress the missed detection of citrus. Similarly,
if the background is misclassified as citrus, a large penalty will
be assigned by fp due to the large value of zi − zi, which will
improve the false detection of citrus. On the other hand, if a
citrus target or the background is predicted with a more reliable
probability of zi, the penalty value applied by fp will be closer to 0
due to the small value of zi − zi. In such a case, the penalty value
of LossPB is smaller than that of LossB and is pushed toward zero.
In general, a large penalty is applied to missed detection and false
detection of citrus targets. Thus, fp enforces a large margin to
push predictions zi and zi further apart.

Recall rate (R), precision (P), and Fβ-score (Fβ) are selected
to evaluate the performance of the improved YOLO v5s in the
test dataset:

R =
TP

TP + FN
, (3)
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FIGURE 2

Flow diagram of our proposed method.

FIGURE 3

Citrus detection model based on You Only Look Once (YOLO) v5s: (A) network structure of improved YOLO v5s and (B) function graph of
penalty function fp.

P =
TP

TP + FP
, (4)

Fβ = (1+ β2)
P × R

β2 × P + R
, (5)

where FN is the number of false negatives for the false detection
of citrus samples, FP is the number of false positives for the
missed detection of citrus samples, and TP is the number of
true positives for the detected citrus samples. Fβ uses a positive
real number β to weigh the importance between R and P. In
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FIGURE 4

Examples of color curves of the citrus and background in different color spaces: (A) original RGB image, (B) color intensity on the line on R, G,
and B elements in RGB color space, and (C) color intensity on the line on Cb and Cr elements in YCrCb color space.

this paper, β is set to 1 as F1 by regarding R and P are equally
necessary for our experiment.

Extraction of the citrus fruit region from the 2D
bounding box

Image data captured in a natural orchard always contain
multiple participants, e.g., grass, soil, lawn, leaves, branches,
trunks, and sky. The citrus fruit region is difficult to
extract exactly from the 2D bounding box predicted from
the improved YOLO v5s. Fortunately, these participants
have different color characteristics, so the different targets
can be extracted based on their color information. Here,
the proper color space is beneficial to robustly extract the
citrus fruit region from the background. Zhuang et al.
(2018) and Zhuang et al. (2019) adopted improved R-G
chromatic mapping to extract fruit regions. In this paper,
the input images are converted into the YCbCr color space
for better contrast enhancement between the citrus fruit
region and background.

As shown in Figure 4A, a horizontal red line was drawn
across citrus fruits and the background. The color intensities
of the pixels of the line are represented with the R curve (the
red element of RGB), the G curve (the green element), and
the B curve (the blue element) in Figure 4B. The Cr curve
(the Cr element of YCbCr) and the Cb curve (the Cb element)
are represented in Figure 4C. The intensity difference between
the R curve and G curve is small in both the citrus region
and background, and there are no obvious rules exhibited in

the B curve among the citrus fruit regions and backgrounds.
However, the intensity difference between the Cr curve and
Cb curve values within the citrus region is obviously greater
than that of the background. Thus, Cr-Cb chromatic mapping is
suitable to enhance the disparity between the citrus region and
the background participants.

The Otsu thresholding algorithm is an appropriate method
to segment the potential citrus regions from the background,
where the best threshold value is selected by maximizing
the variance between foreground and background. As shown
in Figure 5, the Cr-Cb chromatic mapping has prominent
bimodal characteristics in the intensity histogram under variable
illumination, where the citrus fruit region contributes to the
high value and background contributes to the lower value.
Therefore, the best threshold value from Otsu is suitable to
segment the citrus fruit region from the background.

The fruit region segmented by Otsu thresholding will not
be complete in terms of shape due to the irregular growth
situations of citrus fruit that are occluded by adjacent fruits,
branches and leaves. To address this problem, the mathematical
morphology operations of erosion, dilation, and hole filling
are subsequently adopted to fill the gaps between detected
regions, remove noise, fill small holes, and smooth the region’s
boundary. Then, the mathematical morphology operation of
convex hull is used to estimate the occluded regions of the fruit
from the partially compact region. In this way, the citrus fruit
can be almost completely segmented from its corresponding
2D bounding box.
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FIGURE 5

Examples of the citrus image after Cr-Cb chromatic mapping and its gray histogram under variable illumination: (A) non, (B) weak, and (C) well.

Recovery of missing depth values
To achieve the 3D localization result of citrus, it is essential

to obtain a complete depth map of the whole citrus fruit region;
however, an incomplete depth map is always obtained for two
main reasons. First, the depth map is sparse in the case of
binocular stereo conditions. The depth value is missing and set
to zero for pixels where no depth information is sensed by the
ZED camera, which may be caused by variable illumination,
camera performance limitation, and shooting angle (Liu et al.,
2017). Second, the depth values can be missing due to the
occluded region estimated from the morphological processing.
To restore the complete depth map of the citrus region, the
kriging method is adopted to predict the missing depth value
by adding the weight of the observed depth value.

Let IO be the citrus region segmented by Otsu thresholding
and IC be the citrus fruit region extracted via the convex hull
operation. We denote by Iin the set of pixels whose depth value
is missing in IC, such that the depth value is zero or the pixel is
located outside of IO. Let IV be the set of pixels whose observed
depth value is available in IO. Therefore, the missing depth value
in Iin can be obtained as follows:

∧

Z (s) =
∑
p∈IV

λp (s)Z
(
p
)
, ∀s ∈ Iin, (6)

where Z(p) is the observed depth value at pixel p and λp(s) is the
weight of Z(p), which depends not only on the distance between
the depth values but also on the position and overall spatial
arrangement of the observed depth value around pixel s. Note
that the kriging method is the best linear unbiased estimator
to restore the missing depth value using observed depth values

FIGURE 6

Coordinate system transformation diagram.

from the incomplete depth map. Therefore, all the missing depth
values in IC will be restored completely.

3D localization of citrus fruit
The 3D localization of citrus determines the spatial position

and posture information, such as citrus diameter in the 3D
direction dx, dy, and dz , the spatial coordinates of citrus
Q0(Xq, Yq, Zq), the distance between the citrus and camera
d, the spatial coordinates of the citrus 3D bounding box
P1, P2, ..., P8, and the corresponding 2D coordinates of the
3D bounding box in the image plane p1, p2, ..., p8. The 3D
coordinates of a point in the real world must be precisely
mapped to the 2D coordinates of a pixel in the imaging plane.
Here, the transformation relation among the camera coordinate
system Oc, the physical coordinate system Oi, and the pixel
coordinate system Op should be analyzed.
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FIGURE 7

Example of 2D and 3D location information of citrus fruit: (A) 2D information of citrus fruit with four endpoints (green points) and center points
Q0 (red points) in Op. (B) Citrus 3D bounding box in Oc with eight vertices.

As illustrated in Figure 6, a physical coordinate system Oi is
depicted with the origin in the imaging plane (unit: millimeter).
The camera coordinate system Oc is created with the optical
center as the coordinate origin. Note that the coordinates of
the object in the real world are represented relative to Oc, and
Oc reaches Oi through perspective projection transformation.
Suppose the coordinates of point P in Oc are (Xp,Yp,Zp), and
the corresponding coordinates projected onto Oi are (xp, yp).
The relationship of point P between Oc and Oi is given by xp = f Xp

Zp

yp = f YpZp
(7)

where f is the camera focal length. As demonstrated in
Figure 6, a pixel coordinate system Op is depicted with the
origin on the top-left vertex of the image (unit: pixel). The
u- and v-axes are parallel to the x- and y-axes of Oi. Let
the point (up, vp) in Op corresponding to the point (xp, yp)
in Oi. The two coordinate values can be obtained as follows:{

up =
xp
du
+ u0

vp =
yp
dv
+ v0

(8)

where (u0, v0) represents the translation of the origin of
Oi relative to the origin of Op and du and dv represent
the actual size of the pixels in the u-axis and v-axis
directions, respectively. According to Eqn. (7) and (8), the
transformed relationship between Op and Oc is given as

Zp

 up
vp
1

 =
 fx 0 u0

0 fy v0

0 0 1


Xp

Yp

Zp

 , (9)

where fx = f
/
du, fy = f

/
dv. Note that f , du, dv,

u0, and v0 are the intrinsic camera parameters that
can be provided from the factory parameters of the
ZED camera, and Zp is the observed depth value
of the depth map.

As shown in Figure 7A, let A, B, C, and D be the
leftmost, topmost, rightmost, and bottom-most endpoints of
the citrus fruit region projected in Oi, respectively, which
have coordinates (uA, vA), (uB, vB), (uC, vC), and (uD, vD).
Denote (XA, YA, ZA), (XB, YB, ZB), (XC, YC, ZC), and
(XD, YD, ZD) as the corresponding spatial coordinates of
points A, B, C, and D in Oc. According to Eqn. (9), the spatial
coordinates of A, B, C, and D are given by

[
Xi

Yi

]
=

[
fx
0

0
fy

u0

v0

] ui
vi
Zi

 , (10)

where i is A, B, C and D. Let dx, dy and dz be the fruit diameter
in the Xc-, Yc-, and Zc-axes, respectively. dx and dy are obtained
according to the spatial coordinates of A, B, C, and D,{

dx = XC − XA

dy = YD − YB
(11)

In 3D perspective projection, the citrus fruit diameter dz
cannot be obtained directly from the image. Fortunately, the
shape of a citrus fruit is similar to an ellipsoid; thus, the
magnitudes of dx, dy, and dz will be highly correlated. In this
paper, dz can be estimated by fitting a quadratic polynomial
function of dx and dy:

d̂z = β0 + β1d2
x + β2d2

y + β3dx + β4dy, (12)

where β0, β1, ..., β4 are the regression coefficients
of a polynomial that can be determined using the
least-squares method.

Let Q0(uq, vq) be the center point of the citrus 2D bounding
box (Figure 7), which indeed corresponds to the center of the
citrus surface. The spatial coordinates (Xq, Yq, Zq) of Q0 in Oc

are obtained using Eqn. (10). Denote by d the Euclidean distance
from Q0 to the origin point, i.e., the distance between the citrus
and camera,

d =
√
X2
q + Y2

q + Z2
q. (13)
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The position and posture information for detected targets
can usually be determined by the 3D bounding box (Xu et al.,
2018). Let P1, P2, ..., P8 be the eight vertices of the citrus
3D bounding box (Figure 7B), which have coordinates of
(Xi, Yi, Zi) for i = 1, 2, ..., 8. In particular, (Xi, Yi, Zi) can
be obtained from the relative geometrical position of Pi to Q0,
e.g., (X1, Y1, Z1) is inferred as follows:

X1 = Xq − dx
/

2
Y1 = Yq + dy

/
2

Z1 = Zq + dz

(14)

To visualize the 3D bounding box of citrus in the
image, the corresponding projected 2D coordinates are
calculated. Let the eight vertex points p1, p2, . .., p8 be the
corresponding P1, P2, ..., P8 projected on Op, which have
coordinates (ui, vi), i = 1, 2, ..., 8. They can be deduced by
Eqn. (9). Therefore, the 3D localization for each citrus is
summarized in Algorithm 1.

Algorithm 1 - Calculation of 3D localization for a citrus fruit.

Input: Citrus fruit region IC and depth map Id .
Output:dx , dy , dz , Q0(Xq, Yq, Zq), d, (ui, vi) and (Xi, Yi, Zi) for
i = 1, 2, ..., 8.
S1: According to IC , 2D coordinates of citrus region extreme points A(uA, vA),
B(uB, vB), C(uC, vC), and D(uD, vD) are obtained.
S2: The spatial coordinates of (XA, YA, ZA), (XB, YB, ZB), (XC, YC, ZC), and
(XD, YD, ZD) are calculated by Eqn. (10).
S3: Citrus fruit diameterdx and dy are calculated by Eqn. (11), and dz is estimated
by Eqn. (12).
S4: According to Id , the spatial coordinates of citrus Q0(Xq, Yq, Zq) are
determined by Eqn. (10).
S5: The distance d between Q0 and the origin point in Oc is obtained by Eqn.
(13).
S6: The spatial coordinates (Xi, Yi, Zi) of citrus 3D bounding box are calculated
by Eqn. (14).
S7: The 2D coordinates (ui, vi) of citrus 3D bounding box are calculated from
(Xi, Yi, Zi) using Eqn. (10).

Results and discussion

The performance of the proposed method was evaluated
on a workstation with an Intel Core i9-9920X processor with
3.50 GHz, 32 GB RAM, and an NVIDIA GeForce RTX 2080
GPU with 8 GB RAM. The operating system is Windows 10,
and the software framework is PyTorch 1.8. All the algorithms
were developed in Visual Studio Code 1.63 and MATLAB
R2020a software.

Performance evaluation of citrus 2D
detection

To evaluate the performance of citrus 2D detection using
our proposed loss function, (LossPB), on YOLO v5s, three

loss functions, LossB, focal loss (LossF) (Lin et al., 2020),
and polarity loss (LossP) (Rahman et al., 2020), were used
for comparison. The YOLO v5s models were trained using
the training dataset, and the hyperparameters of the model
were fine-tuned using the validation dataset. The performance
of the final model was evaluated using the test dataset.
After several trial-and-error training runs, the learning rate
was set to 0.0032, the batch size was set to 32, the IoU
threshold was set to 0.5, the training epoch was 200 and
γ was set to 20. All the input images were resized to
640 × 640 pixels. The network weights of YOLO v5s were
initialized with the weights of the model pretrained on the
COCO image dataset.

The detection results under three illumination conditions
on the test dataset are provided in Table 2. With our proposed
loss function, LossPB, we achieves the best improvement on
the non-uniform illumination than weak illumination and well
illumination, compared to LossB, LossF , and LossP. Specifically,
under non-uniform illumination, the recall of our loss is
99.55%, which is an average improvement of 9.08% over LossB,
7.17% over LossF , and 5.38% over LossP. The precision of our
loss is 95.79%, which is almost the same result as that of
the other three loss functions, while the highest precision of
95.93% is obtained by LossF . The F1-score of our loss is 0.98,
which is the highest.

Under weak illumination, the precision of our loss is 96.13%,
which is 1.33% higher than that of LossB and 1.04% higher than
that of LossF and LossP. The recall of our loss is 98.47%, and
the F1-score is 0.97, both of which are better than those of the
other loss functions. Under well illumination, the F1-score of
our loss is 0.98, an average of 3%, 4%, and 2% higher than that
of LossB, LossF and LossP, respectively. The precision and recall
of our loss are 96.64% and 98.48%, respectively, which are both
the best highest.

Overall, for our loss, the recall is 98.85%, the precision is
96.22%, and the F1-score is 0.98, on average, under the three
illumination conditions, values that are approximately 2–9%
higher than those of LossB, about 1–6% higher than those of
LossF , and approximately 1–4% higher than those of LossP.
In terms of other metrics, the detection time per image (T)
is similar for all loss functions and is consistent with the
requirements of the picking robot (Tu et al., 2020).

Figure 8 shows the citrus samples detected by our loss
function LossPB but not LossB under different illumination
conditions. As listed in Table 2, the recall rate of LossB under
non-uniform illumination is the lowest at 90.47% than other
illumination conditions. On the other hand, the recall rate of
LossPB performed the best at 99.55% over other illumination
conditions. The reason may be twofold: (1) As shown in
Figure 8, the illumination component is uniform on the
surface of a citrus fruit under weak or well illumination
conditions. Therefore, the total number of samples is larger
under weak and well illumination than under non-uniform
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TABLE 2 Detection results of You Only Look Once (YOLO) v5s using different loss functions in the test dataset.

Loss function Illumination P (%) R (%) F1 T (ms) TP FP FN

Our Loss LossPB Non 95.79 99.55 0.98 79.31 888 39 4

Weak 96.13 98.47 0.97 75.49 645 26 10

Well 96.64 98.48 0.98 81.04 1036 36 16

Total 96.22 98.85 0.98 78.96 2569 101 30

LossB Non 95.50 90.47 0.93 81.34 807 38 85

Weak 94.80 91.91 0.93 78.63 602 33 53

Well 96.07 93.06 0.95 83.16 979 40 73

Total 95.56 91.88 0.94 81.33 2388 111 211

LossF Non 95.93 92.38 0.94 79.91 824 35 68

Weak 95.09 91.76 0.93 75.38 601 31 54

Well 96.25 92.78 0.94 82.59 976 38 76

Total 95.85 92.38 0.94 79.75 2401 104 198

LossP Non 95.67 94.17 0.95 79.33 840 38 52

Weak 95.09 94.66 0.95 75.53 620 32 35

Well 96.06 95.06 0.96 81.73 1000 41 52

Total 95.68 94.65 0.95 79.25 2460 111 139

The bold values means the best result on each metrics.

FIGURE 8

The missed detection of citrus samples of You Only Look Once (YOLO) v5s but detected by our proposed loss in different illumination on test
data: (A) non, (B) weak, and (C) well.

illumination, making the YOLO v5s with LossB more likely
to learn citrus with uniform color features. (2) It is likely
that, compared with weak and well illumination, the color
features of a citrus fruit under non-uniform will be hard
to extract by the Yolo v5s with LossB, such that the most
citrus sample cannot be detected. Using our loss function, the

citrus target under non-uniform illumination will be further
pushed from the background. A large penalty is applied
to missed detection from the penalty function fP in the
training process.

Figure 9 shows the detection results for different loss
functions. Specifically, the red bounding box represents
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FIGURE 9

Comparison of detection results using different loss functions: (A) Our loss, (B) LossB, (C) LossF, and (D) LossP.

the predicted output by models, the yellow bounding box
represents the missed detection, and the blue bounding
box represents the false detection. Figure 9A indicates that
the YOLO v5s model with our loss function achieves the
best citrus detection performance under all illumination

conditions, reducing the occurrence of both missed detection
and false detection.

There are several examples of missed detection or false
detection by other loss functions, as presented in Figures 9B–
D. With such loss functions, some background objects, such as
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FIGURE 10

Results of samples under different illumination conditions: (A) RGB image, (B) Cr-Cb chromatic mapping, (C) Otsu segmentation, (D)
morphological operations, where the red point is the center point and the green point is the maximum and minimum point of the citrus fruit, (E)
color map of the original depth map, and (F) color map on depth map restored by the kriging method.

FIGURE 11

Experiment results using the Kriging method: (A) color map of depth values, (B) RGB image of a citrus fruit, (C) color map by setting depth
values zero at random pixels, and (D) color map of restoration by kriging.

immature citrus and yellow insect-attracting boards, can lead
to false detection of the citrus target. It is likely that immature
green citrus has similar texture and shape properties as mature
citrus, and the yellow insect-attracting board has similar color
characteristics as citrus. On the other hand, citrus that is
occluded by leaves, branches, or other backgrounds objects may
be misclassified as background, i.e., missed detection. For such
citrus fruits, it is likely that only a few features can be extracted
from the image, resulting in a hard negative sample that is
difficult to distinguish from the background.

Figure 9A shows that our proposed loss function achieves
the best detection performance. Specifically, the penalty for
false detection is enhanced by the penalty function fP during
the training process, and citrus targets are displaced from the
background. As a result, the probability of missed detection
is reduced substantially, and the detection performance of
citrus is thus improved. Note that LossP uses a penalty

function similar to fP and also achieves better performance
than that of LossF and LossB. Indeed, it was developed
based on LossF . However, LossF cannot push the object
further from the background, which may not be an effective
improvement on our dataset.

Performance evaluation of citrus
region extraction and depth value
restoration

Figure 10 illustrates the results of citrus region extraction
and depth map restoration under variable illumination
conditions. Under the well illumination conditions, the citrus
occluded by leaves is shown in the first row of Figure 10A. The
results of Cr-Cb chromatic mapping and Otsu thresholding are
presented in Figures 10B–C. Image noise, holes, and weakly
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FIGURE 12

Examples of 3D bounding boxes for citrus fruits.

connected regions can exist in the binary image obtained
via Otsu thresholding. The citrus region is likely blurred,
mainly due to the far distance from the camera. The result of
morphological processing is shown in Figure 10D. The image
noise was completely removed, and contour smoothing was
achieved, such that the majority of the citrus region occluded
by the leaves was filled perfectly. As shown in Figure 10E, the
depth map of the extracted citrus fruit region after the convex
hull operation is incomplete, i.e., the area of missing values
covers approximately large than half of the area of the citrus
fruit region, which may be caused by camera performance
limitations. As shown in Figure 10F, the missing depth values
are restored using the kriging method, thereby estimating the
complete depth values of the fruit region.

The results of citrus fruit extraction and depth map
restoration under the non-uniform illumination conditions are
presented in the second row of Figure 10. The shape of the
extracted citrus region is obviously incomplete, which may
result from overexposure to the citrus surface. As shown in
Figure 10D, the incomplete part was restored by morphological

operations. Subsequently, the missing depth values in the citrus
region (Figure 10E) were recovered, as shown in Figure 10F.
Similarly, the results under weak illumination conditions are
illustrated in the third row of Figure 10. The citrus fruit region
occluded by branches is extracted almost completely, as shown
in Figure 10D. Due to the lack of light and other factors, the
depth map of the extracted citrus region is sparse, as shown in
Figure 10E. After using the kriging method, the missing depth
values are effectively restored, as shown in Figure 10F.

To evaluate the accuracy of the kriging method to recover
depth values on the occluded citrus region, an experiment was
conducted by simulating the restoration using the incomplete
depth map. Figure 11 shows the results of using the kriging
method on an extracted citrus region. Figure 11A is the
complete depth map of Figure 11B. Figure 11C shows that
the incomplete depth map was generated by setting the
corresponding depth values to zero with four schemes. About
50% of the pixels are set as missing values. Specifically, the
incomplete depth maps À and Ã were created by setting
the pixels of the central part to zero in the vertical and
horizontal directions. The incomplete depth map Á was created
by setting the pixels of the right part to zero, and Â was
created by setting the interleaving pixels to zero. As shown
in Figure 11D, the missing values are recovered using the
kriging method, such that the depth map of the fruit region is
completely restored.

Compared with the original depth map of Figure 11B,
the average restoration error of depth map À, Á, Â, and
Ã is 2.29, 2.15, 2.08, and 2.31 mm, respectively, such that
the average of the all the restoration errors is 2.21 mm.
The minimum error was performed in the depth map Â,
indicating that the estimate of missing depth value is recovered
with high accuracy when the depth values are only missing
randomly in the depth map. On the other hand, the maximum
error was performed in the depth map À and Ã, indicating
that the restoration error is large when the missing depth
values are in the most discontinuous part of the depth
map. In total, the mean relative error is 1.36%, indicating
that the kriging method effectively restored the depth map
with high accuracy.

Performance evaluation of citrus 3D
localization

Citrus diameter dx, dy, and dz , coordinates of citrus
Q0(Xq, Yq, Zq), the distance between the citrus and camera
d, the 3D coordinates of the citrus 3D bounding box
(Xi, Yi, Zi), and its 2D coordinates (ui, vi) are calculated
using Algorithm 1. Specifically, to obtain the regression
model for dz , as mentioned in Eqn. (12), a total of
137 citrus samples were collected in the orchard. The
diameter dx, dy, and dz of each fruit were measured
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FIGURE 13

Comparison between the measured values and predicted values: (A) d, (B) dx, (C) dy, and (D) dz.

by a Vernier caliper (Pro skit, PD-151). The quadratic
polynomial function fitted for dz is determined as follows:

d̂z = 16.0728+ 0.0028d2
x + 0.0018d2

y + 0.0264dx + 0.4133dy,
(15)

where the root mean square error (RMSE) is 4.51 mm and the
coefficient of determination R2 = 0.940, indicating a good model
for estimating dz .

Figure 12 shows the result of 3D bounding boxes predicted
for each citrus fruit. The boxes are drawn by connecting the
adjacent vertices (ui, vi), for i = 1, 2, ..., 8, with a straight
line. The front face of the 3D bounding box was drawn by
the blue rectangle, the back face of the 3D bounding box
was drawn by the red rectangle, and the side face of the 3D
bounding box was drawn by the yellow line. The citrus fruits
near the center of the image are correctly detected with the 3D
bounding boxes. Moreover, the four edge lines (yellow lines)
of the 3D bounding box disappear in the center of the image,
which is consistent with the principle of parallel perspective
(Cai et al., 2021). Thus, our proposed method achieves accurate
localization results.

To evaluate the localization accuracy of citrus 3D
localization, 22 images of citrus fruits were considered.
The distance between the citrus and the camera d was measured
by a laser rangefinder (UNI-T, UT392B), and citrus diameters

dx, dy, and dz were measured with a Vernier caliper (Pro skit,
PD-151). A scatter plot of the measured values and the values
predicted by our method is presented in Figure 13. Our method
obtains good accuracy for predicting d, dx, dy, and dz : the
closer the measured values and the predicted value are to the
45-degree line, the higher the accuracy. Figure 13A shows the
best prediction and fewer errors between the measured value
and predicted values for d, where all the plotted points lie almost
on the 45-degree line. Furthermore, Figures 13B–D shows that
the predicted values of dx, dy, and dz are generally close to the
45-degree line, indicating that our proposed method is able to
achieve accurate localization results.

Overall, the average error of distance d between the citrus
and camera is 3.98 mm, which is better than the 15 mm achieved
in Wang et al. (2016). The average errors of citrus diameters dx,
dy, and dz were 2.75, 2.52, and 2.11 mm, respectively, which is
almost the same precision as (Yang et al., 2020) and better than
the 10 mm achieved in (Nguyen et al., 2016) and the 4.9 mm
achieved in (Wang et al., 2017).

Our method can accurately locate citrus under variable
illumination and different occlusion conditions in natural
orchards. The distance d can be used to determine the extension
length of the robot hand, and the coordinates of citrus
Q0(Xq, Yq, Zq) can be used to manipulate the robot hand’s the
series of joints or articulations. The diameter dx, dy, dz and
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the 3D bounding box (Xi, Yi, Zi) can be used to finetune the
posture of grasping structures.

Conclusion

This paper aims to address the problem of the lower
detection rate for mature citrus under variable illumination and
occlusion conditions. We proposed a novel method to detect
and localize citrus fruits in natural orchards using binocular
cameras and deep learning. The main conclusions are as follows:

1. A new loss function LossPB for YOLO v5s is proposed to
calculate the loss value for class probability and objectness
score, with a penalty function fp developed to account
for the disparity between citrus and background. As
a result, the citrus detection performance of our loss
function is improved by pushing the citrus further from the
background in the training process, even under variable
illumination and different occlusion conditions. The recall
values of the three groups of illumination conditions were
99.55%, 98.47%, and 98.48%, the precision values were
95.79%, 96.13%, and 96.64%, respectively, and the F1-
scores were close to 0.98. The average detection time was
78.97 ms per image. Compared with the original YOLO
v5s, the performance improvement was 2-9% on average.

2. Based on the detected 2D bounding box for a citrus, the
potential fruit region of mature citrus was segmented
completely using Cr-Cb chromatic mapping, Otsu
thresholding and morphology processing. In particular,
the difference in color intensity between citrus targets
and background objects is enhanced using Cr-Cb
chromatic mapping, which helps to extract the complete
shape of citrus fruit using Otsu thresholding and
morphology processing.

3. To recover the missing depth values in the citrus region
under different occlusion states, the kriging method was
applied based on the spatial proximity among neighboring
points. The experimental results show that the average
error of the restored depth values was 2.02 mm and the
relative error was 1.26%, indicating that the method can
accurately restore the depth map of citrus fruit.

4. Based on the ellipsoid characteristic of citrus fruit, the 3D
localization information of citrus is accurately determined
using the camera imaging model and a restored depth map.
The experimental results show that the average error of
the distance d between the citrus fruit and the camera was
3.98 mm, and the average errors of the citrus diameter dx,
dy and dz were 2.75, 2.52, and 2.11 mm, respectively, which
is better than the results achieved in other research.

Our method can provide 3D citrus position data under
variable illumination and different occlusion conditions in

natural orchards. Future work will focus on few-shot learning
and reduce the number of citrus fruits in the training dataset to
improve citrus detection and localization.
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