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Maize production is constantly threatened by the presence of different fungal

pathogens worldwide. Genetic resistance is the most favorable approach

to reducing yield losses resulted from fungal diseases. The molecular

mechanism underlying disease resistance in maize remains largely unknown.

The objective of this study was to identify key genes/pathways that are

consistently associated with multiple fungal pathogen infections in maize.

Here, we conducted a meta-analysis of gene expression profiles from seven

publicly available RNA-seq datasets of different fungal pathogen infections

in maize. We identified 267 common differentially expressed genes (co-

DEGs) in the four maize leaf infection experiments and 115 co-DEGs in

all the seven experiments. Functional enrichment analysis showed that

the co-DEGs were mainly involved in the biosynthesis of diterpenoid and

phenylpropanoid. Further investigation revealed a set of genes associated

with terpenoid phytoalexin and lignin biosynthesis, as well as potential pattern

recognition receptors and nutrient transporter genes, which were consistently

up-regulated after inoculation with different pathogens. In addition, we

constructed a weighted gene co-expression network and identified several

hub genes encoding transcription factors and protein kinases. Our results

provide valuable insights into the pathways and genes influenced by different

fungal pathogens, which might facilitate mining multiple disease resistance

genes in maize.
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Introduction

Plants live in a challenging environment hosting a wide
array of microbial pathogens, including viruses, bacteria,
fungi, and oomycetes. An increasing number of infectious
crop diseases reduce crop yields greatly and threaten global
food security. To fight off biological threats, plants have
evolved a two-layered defense system (Jones and Dangl,
2006; Zhou and Zhang, 2020; Wang Y. et al., 2022). In the
first layer, pattern recognition receptors (PRRs) on the cell
surface recognize conserved microbial features called pathogen-
associated molecular patterns (PAMPs), leading to PAMP-
triggered immunity (PTI) (Couto and Zipfel, 2016; Gust et al.,
2017). Adapted pathogens have evolved effectors to overcome
PTI. In the second layer, pathogen effectors are directly
or indirectly recognized by intracellular nucleotide-binding
leucine-rich repeat receptors (NLRs), activating effector-
triggered immunity (ETI) (Lolle et al., 2020). PTI and ETI lead
to a suite of shared downstream responses, such as calcium
influx, reactive oxygen species (ROS) burst, phytohormone
modulation, and biosynthesis of a diverse set of secondary
metabolites (Peng et al., 2018). Recent studies showed that PTI
and ETI reinforce each other to confer more robust defense
responses against pathogens (Ngou et al., 2021; Yuan et al.,
2021).

Receptor-like kinases (RLKs), and receptor-like proteins
(RLPs) are the major cell surface localized PRRs. PRRs often lead
to partial disease resistance or quantitative disease resistance,
which has been widely used in crop breeding and tends to confer
durable and multiple disease resistance (Kanyuka and Rudd,
2019). Based on their extracellular domain, PRRs were divided
into leucine-rich repeat (LRR) RLKs, lysin motif (LysM) RLKs,
lectin RLKs, and wall-associated kinase (WAK) subfamilies
(Tang et al., 2017). A significant number of LRR-RLKs or LRR-
RLPs have been characterized to be involved in disease resistance
in Arabidopsis, rice, and tomato (Song et al., 1995; Dixon et al.,
1996; Chinchilla et al., 2007; Boutrot and Zipfel, 2017). The most
well-described LRR-RLK is FLS2 in Arabidopsis, which directly
binds with bacterial flagellin and forms a signaling complex with
its co-receptor BAK1 to activate downstream defense responses
(Chinchilla et al., 2007). The rice Xa21 gene confers resistance to
multiple races of bacterial blight tested (Song et al., 1995; Wang
et al., 1996). In maize, very few LRR-RLKs have been reported
that might be associated with disease resistance, including pan1
and FI-RLPK (Jamann et al., 2014; Block et al., 2021). The WAK-
RLKs have been reported as major players in disease resistance
of cereal crops, such as ZmWAK against maize head smut (Zuo
et al., 2015), ZmWAK-RLK1 against northern leaf blight (NLB)
in maize (Hurni et al., 2015), and Stb6 against septoria tritici
blotch disease in wheat (Saintenac et al., 2018). Typical WAK-
RLK protein includes an extracellular galacturonan-binding
(GUB) domain, an epidermal growth factor (EGF)-like domain,
a transmembrane domain, and an intracellular kinase domain.

WAK-RLKs have been reported to recognize cell-wall derived
molecules, such as oligogalacturonides (OGs), and transmit
signals to the cytoplasm to initiate defense responses (Kanyuka
and Rudd, 2019).

Plants also produce diverse secondary metabolites to
protect against pathogen attack, such as terpenoids and lignin.
Terpenoid phytoalexins zealexins and kauralexins have been
recognized as significant contributors to multiple pathogens
response in maize (Ding et al., 2019). Lignin, which is
synthesized through the phenylpropanoid pathway, has been
reported to play a critical role in providing partial resistance to
one or more pathogens (Dong and Lin, 2021). Activation of rice
4-coumarate:coenzyme A ligase genes (Os4CL3 and Os4CL5) by
OsMYB30 resulting in accumulation of lignin subunits G and
S and inhibiting Magnaporthe oryzae penetration at the early
stage of infection (Li et al., 2020). ZmCCoAOMT2, encoding
a caffeoyl-CoA O-methyltransferase, contributes to multiple
disease resistance through the phenylpropanoid pathway and
lignin accumulation (Yang et al., 2017c). Moreover, natural
variation of a maize F-box gene (ZmFBL41) results in the
inhibition of ZmCAD degradation and accumulation of lignin,
leading to enhanced banded leaf and sheath blight resistance (Li
N. et al., 2019).

Nutrient access is arguably the most limiting factor during
pathogens invasion. An increasing number of studies have
shown that nutrient transporter genes play important roles
in plant disease resistance (Chen et al., 2010; Moore et al.,
2015; Sonawala et al., 2018; Eom et al., 2019). Pathogens may
reprogram host plants’ nutrient metabolism to facilitate their
growth and invasion. Sugar transporters named SWEETs are
hijacked by pathogens for the supply of sucrose to achieve
successful colonization and infection (Eom et al., 2019). Sugar
transport proteins (STPs), which belong to a large subfamily of
the monosaccharide transporter, have been reported to function
in defense response (Yamada et al., 2016; Liu et al., 2021). The
wheat Lr67 gene encoding a hexose transporter confers adult
plant resistance to multiple wheat rust pathogens (Moore et al.,
2015). Amino acid transporters (AATs) are membrane-bound
transporter proteins that mediate the transfer of amino acids
in or out of plant cells, which have been shown to contribute
to susceptibility in plants (Elashry et al., 2013; Berg et al., 2021;
Tünnermann et al., 2022). In cucumber and tomato, CsAAP2A
and SlAAP5A/B have been identified as susceptibility genes for
oomycete pathogens (Berg et al., 2021).

Maize (Zea mays L.) is one of the most widely cultivated
crops, consistently plagued by a variety of fungal diseases,
such as southern leaf blight, northern leaf blight, gray
leaf spot, stalk rot, and ear rot (Yang et al., 2017b). To
defend against pathogens invasion, maize has evolved a
complex array of defense strategies. Hundreds of disease
resistant quantitative trait loci (QTL) have been reported in
maize, but few genes have been cloned and validated (Zhao
et al., 2015; Rossi et al., 2019). The molecular mechanisms
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of multiple disease resistance are largely unknown. Over
the years, large transcriptome profiling studies have been
used to reveal how maize lines responded to different
pathogens infections, while these studies have mostly focused
on a single pathogen. In this study, we chose publicly
available RNA-seq data sets from seven independent maize
pathogen inoculation experiments to investigate the molecular
mechanisms underlying maize response to different pathogen
infections. A set of key pathogen-responsive pathways and genes
were identified using the integrated bioinformatics pipeline.
The results of this study provide valuable insights into the
pathways and genes influenced by different pathogens, which
would facilitate mining multiple disease resistance genes in
maize.

Materials and methods

RNA-seq data sets, mapping, and
differential gene expression analyses

FASTQ files from six published RNA-seq studies were
downloaded from the European Nucleotide Archive database
(Supplementary Table 1). Raw reads were trimmed by fastp and
reads quality was assessed by FastQC. All cleaned reads were
mapped to the B73 reference genome (RefGen_v5) using Hisat2-
2.0.4 with default parameters (Kim et al., 2015). SAMtools was
used to sort and convert SAM files to BAM files. StringTie
was used to assemble the BAM file and measure the expression
levels of genes (Pertea et al., 2016). Transcripts per million
(TPM) values of all data sets were extracted using StringTie. For
differentially expressed genes (DEGs) analysis, a python script
prepDE was utilized to get genes count matrices. DEGs were
determined with a stringent criterion [| log2(fold change)| ≥ 1,
p.adj < 0.05] using the R package DESeq2.

Exploratory data analysis

Principal component analysis (PCA) was performed to
estimate the biological replications of each sample. The common
DEGs (co-DEGs) of the four maize leaf inoculation experiments
and all the seven inoculation experiments were determined
using the R package UpSetR (Conway et al., 2017). Kauralexin
and lignin biosynthesis-related genes were selected as reported
previously (Supplementary Table 2) (Yang et al., 2017a; Ding
et al., 2019). For nutrient transporters analysis, we downloaded
PF00083, PF03083, and PF01490 HMM profiles from Pfam
database, using HMMER software with default parameters to
search for sugar transporters, sweet transporters, and amino acid
transporters (Mistry et al., 2013). For potential PRRs analysis,
hmmscan was used to find conserved protein domains with
default parameters. The selected sequences were then analyzed

with HMMER1 to assure the presence of the membrane-
spanning domain, and the kinase domain.

Gene set enrichment and protein
functional analysis

Gene ontology (GO) term enrichment of gene set was
performed using the R package clusterprofiler with a cut-off
of p < 0.01. GO terms were annotated by eggnog-mapper
software (Huerta-Cepas et al., 2017). Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways enrichment was
performed by KOBAS v3.0 software2 based on the Benjamini
and Hochberg false discovery rate correction. KEGG pathways
with a corrected p-value < 0.05 were defined as significantly
enriched (Xie et al., 2011). PlantTFDB database3 was used
to determine transcription factors (TFs) base on amino acid
sequence similarity (Jin et al., 2017). Hmmscan was used to find
protein kinases (PKs) with default parameters.

Co-expression network analysis

To reveal potential pathogen-responsive modules, the R
package WGCNA was used to construct gene co-expression
network (Langfelder and Horvath, 2008). Normalized TPM
matrix of all the samples was obtained by a python script. An
unsigned type of weighted gene co-expression network analysis
(WGCNA) network was created using the following parameters:
the soft-threshold value was set to 13, the threshold for merging
of modules was set to 0.25 and the minimum module size was
set to 30. WGCNA edge weight (ranging from 0 to 1) > 0.1 was
exported and visualized using Cytoscape 3.8.2 (Shannon et al.,
2003).

Quantitative reverse transcription PCR
validation of representative candidate
genes

Maize inbred line B73 was inoculated with Cochliobolus
heterostrophus on leaves, Fusarium graminearum on roots,
and Fusarium verticillioides on ears, respectively. For
C. heterostrophus inoculation experiment, maize inbred
line B73 was grown at 26 ± 1◦C with 16 h of light and 8 h
of darkness. The fourth leaves were spray-inoculated with
C. heterostrophus spores suspension (5 × 104ml−1) in 0.05%
agar and a 0.05% Tween 20 as described before (Belcher et al.,

1 https://www.ebi.ac.uk/Tools/hmmer/

2 http://kobas.cbi.pku.edu.cn/kobas3/

3 http://planttfdb.gao-lab.org/
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2012). Leaf samples were collected at 0, 2, and 6 hpi. Each
sample was pooled from three plants. For F. graminearum
inoculation experiment, B73 was germinated at 26 ± 1◦C with
16 h of light and 8 h of darkness until roots were 6–8 cm long.
The primary roots were soaked in the F. graminearum spore
suspension (6 × 106ml−1) in 3% liquid mung bean broth and
incubated at 26◦C with 50 rpm rotation (Ye et al., 2013). The
inoculated seedling roots were harvested at 0, 2, and 18 hpi.
Each sample was pooled with six plants. For F. verticillioides
inoculation experiment, B73 was grown in the field and the
ears were harvested 15 days after pollination. Each kernel was
cut in the middle, with one half being soaked in sterile distilled
water and the other half being soaked in the suspension of
F. verticillioides spores (5 × 106ml−1), and incubated for 1 h
at 26◦C with 50 rpm rotation as reported before (Yao et al.,
2020). The kernel halves soaked in distilled water were sampled
at 0 hpi. Thereafter, all kernel halves were transferred to potato
dextrose agar medium and cultured at 28◦C. The inoculated
ears were harvested at 0, 2, and 6 hpi. Each sample was pooled
with nine kernels from three ears. In each of the experiments, 0
hpi represents before inoculation. We conducted two biological
replicates for each experiment and all samples were frozen in
liquid nitrogen immediately and stored at -80◦C until RNA
extraction.

Total RNA from all samples was extracted using Plant
RNA Kit (Omega Bio-tek, United States). The quality and
concentration of RNA were determined with a Nanodrop
spectrophotometer. The cDNA was synthesized using the
FastKing RT Kit (Tiangen, China). Quantitative reverse
transcription-PCR (qRT-PCR) was performed on a QuantStudio
7 Flex Real-Time PCR System (Thermo Fisher, America) with
a SuperReal PreMix Plus kit (SYBRGreen) (Tiangen, China).
Primer sequences of representative co-DEGs were designed
using Primer 5.0 and listed in Supplementary Table 3. The
maize gene ZmEF-1α was used as an internal reference gene
to normalize the relative expression of candidate genes. Each
expression analysis was carried out for two biological replicates
with three technical replicates for each biological replicate. The
relative expression level of each gene was calculated using the
2−11Ct method.

Results

Source and overview of RNA-seq
datasets

To identify key genes that might play important roles
in maize disease resistance, a comparative transcriptomic
meta-analysis was performed using seven published RNA-
seq datasets. Four datasets were generated from maize leaves
inoculated with Cochliobolus heterostrophus (causal agent
of southern leaf blight) (Ding et al., 2019), Exserohilum

turcicum (causal agent of northern leaf blight) (Yang et al.,
2019), Cercospora zeina (causal agent of gray leaf spot)
(Swart et al., 2017), or Colletotrichum graminicola (causal
agent of anthracnose leaf blight) (Hoopes et al., 2019). The
other three datasets include maize root samples infected
with Fusarium graminearum (causal agent of Gibberella stalk
rot) (Liu et al., 2016) and maize kernels inoculated with
Aspergillus flavus (causal agent of Aspergillus ear rot) or
Fusarium verticillioides (causal agent of Fusarium ear rot)
(Shu et al., 2017) (Table 1). We chose 34 RNA-seq data
generated from relatively susceptible accessions inoculated with
different fungal pathogens or mock (Supplementary Table 1).
The detailed information of the RNA-seq data used in this
study is summarized in Table 1. The overall workflow from
data mining to candidate genes identification is illustrated in
Figure 1.

RNA-seq data analyses

A total of 1.7 billion high-quality reads were obtained
after removing low-quality reads, and then mapped to the
maize B73 reference genome (B73_RefGen_v54). Sample
relationships were estimated using principal component
analysis (PCA). A very clear separation among tissues was
observed (Figure 2). The replicates of each sample clustered
together based on the first principal component (PC1) and
the second principal component (PC2), suggesting the high
reproducibility of the dataset (Figure 2). We normalized
gene expression level as transcripts per million (TPM). To
reduce the influence of lowly expressed genes, we filtered
the gene if its average TPM value was ≤ 1. In total, 25,646
genes were detected across all the samples (Supplementary
Table 4).

Pairwise contrasts between the pathogen- and control-
treated samples in each experiment were applied to identify
differentially expressed genes (DEGs). As a result, we found
10,532, 2,164, 1,949, 6,197, 2,867, 2,957, and 1,875 DEGs in
C. heterostrophus inoculation group (C.h_group), E. turcicum
inoculation group (E.t_group), C. zeina inoculation group
(C.z_group), C. graminicola inoculation group (C.g_group),
F. graminearum inoculation group (F.g_group), A. flavus
inoculation group (A.f_group), and F. verticillioides inoculation
group (F.v_group), respectively (Supplementary Table 5).
Among them, 267 common DEGs (co-DEGs) were determined
in the four maize leaf inoculation groups (Figure 3A and
Supplementary Table 6), and 115 co-DEGs were determined in
all the seven inoculation groups (Figure 3B and Supplementary
Table 6). It is worthy to mention that C.h_group had much more
DEGs than the other groups, suggesting that maize plants might

4 https://www.maizegdb.org/
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TABLE 1 Main features of RNA-seq datasets used for meta-analysis.

Name Pathogens Biological replicates Library layout Inoculation time BioProject accession References

C.h_group C. heterostrophus 4 single-end 24hpi PRJNA491716 Ding et al., 2019

E.t_group E. turcicum 3 single-end 72hpi PRJNA392457 Yang et al., 2019

C.z_group C. zeina 3 paired-end Field PRJNA369690 Swart et al., 2017

C.g_group C. graminicola 2 paired-end 24hpi PRJEB10574 Hoopes et al., 2019

F.g_group F. graminearum 2 paired-end 18hpi PRJNA308408 Liu et al., 2016

A.f _group A. flavus 2 single-end 72hpi PRJNA418364 Shu et al., 2017

F.v_group F. verticillioides 2 single-end 72hpi PRJNA418364 Shu et al., 2017

FIGURE 1

A flowchart showing the meta-analysis procedure used for the identification of genes and pathways putatively involved in multiple pathogens
responses in maize.

respond to C. heterostrophus very fast and 24 hpi is a relatively
late time point.

Dynamic transcriptome in maize
response to multiple pathogens
invasion

Plant immunity requires large-scale transcriptional
reprogramming for proper immune output. In this study, we

focused on the DEGs identified in the seven inoculation
groups to view dynamic transcriptome responses for
different pathogens. Gene Ontology (GO) enrichment
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways analyses were performed to annotate the DEGs
from each group. As expected, GO terms related to
plant-pathogen interactions were significantly enriched
(p < 0.01), including photosynthesis, response to hydrogen
peroxide, hormone metabolic process, secondary metabolic
process, response to chitin, response to calcium ion, and
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FIGURE 2

Principal component analysis of RNA-seq data. The treatment conditions and fungi are indicated by different symbols/colors in the plot.

carbohydrate derivative transport (Supplementary Table 7).
We hypothesized that maize may employ similar defense
mechanisms to combat different pathogens. To test the
hypothesis, we selected 267 co-DEGs from the four maize
leaf inoculation groups and 115 co-DEGs from all the
inoculation groups to perform KEGG pathways analyses
separately. The KEGG pathways that were most strikingly
enriched among the co-DEGs included biosynthesis
of secondary metabolites, diterpenoid biosynthesis,
and phenylpropanoid biosynthesis (Figures 3C,D and
Supplementary Figures 1, 2).

Potential pattern recognition receptors
in maize response to multiple
pathogens invasion

To investigate potential PRR genes in maize response to
multiple pathogens invasion, we scanned all the DEGs with
the plant PRR domains by using hmmsan (Mistry et al., 2013).
As a result, 115 LRR-RLKs, 3 LysM-RLKs, 34 lectin-RLKs, 34
WAK-RLKs, 13 LRR-RLPs, 2 LysM-RLPs, 1 lectin-RLP, and
1 WAK-RLP were identified from all the DEGs. Differential
expression analysis showed that most of the RLKs and RLPs were

up-regulated after pathogens infection. Among them, 63 LRR-
RLKs, 2 LysM-RLKs, 23 Lectin-RLKs, 27 WAK-RLKs, 9 LRR-
RLPs, and 2 LysM-RLPs were found to respond to at least two
pathogens (Supplementary Table 8), including ZmWAK-RLK1
(Zm00001eb360640), which has been reported as a quantitative
disease resistance gene against northern leaf blight caused by
E. turcicum (Hurni et al., 2015; Yang et al., 2019). Notably,
two LRR-RLKs (Zm00001eb170460 and Zm00001eb293660),
two Lectin-RLKs (Zm00001eb058940 and Zm00001eb325300)
and five WAK-RLKs (Zm00001eb124900, Zm00001eb126150,
Zm00001eb156230, Zm00001eb177830, and Zm00001eb334620)
were found to be up-regulated by all the seven pathogens
inoculation. In addition, we found that the majority of the
identified RLKs and RLPs showed similar expression patterns
for different pathogens infections (up-regulated or down-
regulated).

Phenylpropanoid and diterpenoid
biosynthesis genes in response to
multiple pathogens invasion

Plants dynamically synthesize specialized metabolites to
protect themselves against biotic attack, one such class of
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FIGURE 3

Differentially expressed genes (DEGs) in the four maize leaf infection experiments and in all the seven infection experiments. (A) Venn diagram
showing the overlap of DEGs among the four maize leaf infection experiments. (B) UpSet diagram showing the overlap of DEGs among all the
seven infection experiments. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the co-DEGs among the four maize leaf
infection experiments. (D) KEGG analysis of the co-DEGs among all the seven infection experiments. Abscissae represents the enrichment
factor of each pathway and ordinate represents -log10 (P-value). Values in parentheses represent the number of components in each pathway.

metabolites are diterpenoids which have been identified as
significant contributors to pest and pathogen resistance in
maize (Block et al., 2019). In this study, we found several
co-DEGs are involved in kauralexin and gibberellic acid
(GA) biosynthesis pathways according to the result of KEGG
pathways analysis (Supplementary Figure 1). To visually view
expression changes of the genes involved in these two pathways,
we selected the kauralexin and GA biosynthesis-related genes
that had been reported previously, including maize ent-copalyl
diphosphate synthase genes (ZmAN1 and ZmAN2) (Schmelz
et al., 2011), ent-kaurene synthase genes (ZmKSL2, ZmKSL5,
and ZmTPS1), kaurene oxidase genes (ZmKO1 and ZmKO2)
and cytochrome P450 monooxygenase gene ZmCYP71Z16
(Supplementary Table 2) (Ding et al., 2019). In maize, ZmAN1,

ZmTPS1, ZmKSL5, and ZmKO1 are major enzymes involved
in GA metabolism (Fu et al., 2016). In the present study,
transcript levels of ZmAN1, ZmTPS1, ZmKSL5, and ZmKO1
were down-regulated or unchanged after inoculation in all
the groups (Figures 4A,B). Four kauralexin biosynthesis-
related genes ZmAN2, ZmKSL2, ZmCYP71Z16, and ZmKO2
were significantly up-regulated in all the seven inoculation
groups (Figures 4A,B). These results suggested that maize GA
metabolism was minimized and the kauralexin pathway was
rapidly activated to protect maize against different pathogens
invasion.

Lignin is a key component in plant secondary cell wall and
plays a crucial role in plant innate immune defense system
(Ma et al., 2018; Rossi et al., 2019). Accumulating evidences
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FIGURE 4

Expression patterns of kauralexin and gibberellic acid (GA) biosynthesis related genes. (A) Heat map of expression of kauralexin and GA
biosynthesis related genes after inoculation with Cochliobolus heterostrophus. For each gene, the transcripts per million (TPM) value of four
biological replicates is shown. (B) Heat map of expression of kauralexin and GA biosynthesis related genes after inoculation with all the seven
independent pathogens. For each gene, average log2 TPM of each treatment is shown.

have suggested that rapid synthesis of lignin could effectively
protect plants from pathogen invasion (Li C. et al., 2019). In
this study, we also found a large number of DEGs involved in
phenylpropanoid metabolism and lignin biosynthesis pathways
(Supplementary Figure 2). We selected phenylpropanoid
metabolism and lignin biosynthesis-related genes as reported
previously to demonstrate the expression changes of these
genes (Figure 5A and Supplementary Table 2) (Yang et al.,
2017a). As expected, most phenylpropanoid metabolism and
lignin biosynthesis-related genes expressions were up-regulated
after inoculation with different pathogens (Figure 5B). We also
observed several genes specific for lignin biosynthesis were
down-regulated after pathogen infections, such as ZmCAD6 and
Zm4CL1 (Figure 5B) (Rossi et al., 2019; Xiong et al., 2019).

Nutrient transporter-related genes in
maize in response to multiple
pathogens invasion

Nutrient access is arguably the most limiting factor
of pathogen invasion. Earlier studies of plant-pathogen
interactions have identified a number of nutrient transporter
genes (NTRs) participating in plant disease resistance. Based
on recent studies (Chen et al., 2010; Moore et al., 2015;
Sonawala et al., 2018; Eom et al., 2019), we chose two types
of sugar transporter proteins and amino acid transporter

proteins to demonstrate NTRs in maize response to multiple
pathogens invasion, including maize SWEETs, STPs, and AATs.
As illustrated in Supplementary Figure 3, more down-regulated
DEGs were found in SWEETs after pathogens inoculation,
with nine SWEETs being found to respond to at least two
pathogens. Among those, ZmSWEET2 (Zm00001eb342040), a
gene related to sugar allocation in maize was significantly up-
regulated by four pathogens (Sosso et al., 2015) (Supplementary
Figure 3). By contrast, STPs and AATs showed more up-
regulated DEGs after pathogens infection (Supplementary
Figures 4, 5), with 33 AATs and 33 STPs being found to respond
to at least two pathogens. Notably, an amino acid transporter
gene (Zm00001eb261480) and two sugar transporter genes
(Zm00001eb098100 and Zm00001eb377440) were significantly
up-regulated by all the seven selected pathogens in this study
(Zhao et al., 2012).

Identification and functional
annotation of weighted gene
co-expression network analysis
modules associated with
maize-pathogen interactions

To identify maize-pathogen interactions associated
modules and genes, we performed WGCNA using 25,646
expressed genes. The result of the module-trait relationships
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FIGURE 5

Expression patterns of lignin biosynthesis related genes. (A) A model of lignin biosynthesis. PAL, phenylalanine ammonia lyase; C4H, cinnamate
4-hydroxylase; 4CL, 4-coumarate CoA ligase; HCT, hydroxycinnamoyl CoA; CCR, cinnamoyl CoA reductase; CCoAOMT, caffeoyl CoA
O-methyltransferase; F5H, ferulate 5-hydroxylase; COMT, caffeic acid O-methyltransferase; CAD, cinnamyl alcohol dehydrogenase.
(B) Log2(Fold Change) of maize lignin biosynthesis-related genes, the seven inoculation groups are indicated by different symbols in the plot.

showed that module ‘salmon’ consisting of 516 genes is
highly correlated with pathogens infection (Supplementary
Figure 6, Supplementary Table 9), indicating that this module
might play an important role in maize-pathogen interactions.
To further explore this gene set, we focused on the genes
encoding for transcription factors (TFs) and protein kinases
(PKs), which might play key roles in the signaling network.

For identification and visualization of TFs and PKs, the
genes with WGCNA edge weight >0.10 were exported and
visualized using Cytoscape. As a result, a total of 21 TFs and
23 PKs were identified, most of which were considered as hub
genes of the network based on the number of interactions
(Figure 6). Importantly, eight protein kinases were identified
as LRR-RLKs. It is also interesting to note that six transcription
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FIGURE 6

Co-expressed genes with edge weight >0.10 in module “salmon.” Each node represents a gene. Co-expressed genes are connected with a gray
edge. Node size represents the number of co-expressed genes. PK, protein kinase; LRR-RLK, leucine-rich repeat receptor-like kinase; TF,
transcription factor.

factors were identified as WRKY TFs, including WRKY64
(Zm00001eb159340), WRKY8 (Zm00001eb203940), WRKY114
(Zm00001eb275080), WRKY83 (Zm00001eb286490), WRKY82
(Zm00001eb294180), and WRKY115 (Zm00001eb368640).
Among these TFs, WRKY82 and WRKY115 have been reported
to act as regulatory genes in the maize phenolic pathway
(Yang et al., 2017a).

Validation of representative common
differentially expressed genes by
quantitative RT-PCR

We have identified a bunch of interesting co-DEGs that may
be involved in multiple pathogens response. To validate the
expression profiles from RNA-seq datasets, we inoculated maize
inbred line B73 with C. heterostrophus on leaves, F. graminearum
on roots, and F. verticillioides on ears, respectively.
Ten representative co-DEGs were picked for qRT-PCR
verification, including three LRR-RLKs (Zm00001eb170460,
Zm00001eb293660, and Zm00001eb153630), two WAK-
RLKs (Zm00001eb334620 and Zm00001eb156230), one ATP
binding cassette (ABC) transporter (Zm00001eb357950), one
glutathione transferase 23 (Zm00001eb315490), one peroxidase

(Zm00001eb140320), one P450 (Zm00001eb043620), and one
WRKY transcription factor (Zm00001eb112840). We found that
most of the selected co-DEGs could be induced by all the three
pathogens. All the 10 genes were significantly up-regulated
by C. heterostrophus at 2 hpi and by F. verticillioides at 6hpi,
while 9 of them were induced by F. graminearum at 2 hpi
(Figure 7). The expression levels of the selected co-DEGs
determined by qRT-PCR were in agreement with the changes in
RNA-seq data except for Zm00001eb293660, whose expression
was down-regulated by F. graminearum at 18 hpi (Figure 7),
indicating that our analyses were accurate and reproducible.
We hypothesize that the candidate genes identified here may be
responsible for multiple disease resistance in maize.

Discussion

Maize encounters different fungal pathogens throughout
their lifetime. To cope with pathogen challenges, maize employs
a variety of exquisite mechanisms to appropriately activate
defense response. Until now, only a few genes have been
identified and validated to confer disease resistance in maize
(Yang et al., 2017b). Transcriptomics analysis of a susceptible
plant-pathogen interaction can gain insights into both host
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FIGURE 7

Quantitative reverse transcription-PCR (qRT-PCR) validation of representative co-DEGs. Data are represented as the mean ± SD from two
biological repeats. C.h, Cochliobolus heterostrophus; F.g, Fusarium graminearum; F.v, Fusarium verticillioides.

defense responses and pathogen manipulation targets. In this
study, we presented a meta-analysis of RNA-seq in maize
induced by various fungal pathogens. We identified 115 co-
DEGs in response to all the seven pathogens and 267 co-
DEGs for the four pathogens infecting maize leaf. Diterpenoid
and phenylpropanoid biosynthesis pathways were activated
upon different pathogen invasions. Potential PRR, amino acid
transporter, sugar transporter, transcription factor, and protein
kinase genes that were induced by at least two pathogens were
identified. This study highlights possible candidate genes that
may be involved in multiple disease resistance in maize.

PAMP-triggered immunity (PTI) constitutes the first layer
of plant immunity which has the potential to fend off diverse
pathogens (Couto and Zipfel, 2016). Upon pathogen invasion,
PTI was strongly activated, resulting in rapid and selective
transcriptional reprogramming, induction of ROS, callose
deposition, and production of hormones and antimicrobial
compounds (Peng et al., 2018). In this study, we also found
a considerable number of potential PRRs were highly induced
by different pathogens, especially some WAK-RLKs. There are
7 WAK-RLKs, 4 LRR-RLKs, 3 lectin-RLKs, and 1 LysM-RLK
were identified in the 267 co-DEGs (Supplementary Table 6).
WAK-RLKs have been reported to confer quantitative disease
resistance in different crops, such as maize (Hurni et al., 2015;
Zuo et al., 2015), rice (Hu et al., 2017), and cotton (Wang et al.,
2020). We identified a WAK-RLK gene Zm00001eb360640,
which was induced by five pathogens selected in the study

(Supplementary Table 8). This gene has been characterized
by different groups which accounts for a major QTL for
northern leaf blight resistance in maize (Hurni et al., 2015; Yang
et al., 2021). There are 14 other WAK-RLKs showing enhanced
expression by at least four pathogens, suggesting their probable
roles in disease resistance. Very few LRR-RLKs have been
reported to be involved in disease resistance in maize. In this
study, 13 out of 115 identified LRR-RLKs were up-regulated by
at least four pathogens. Two LRR-RLKs (Zm00001eb293660 and
Zm00001eb153630) identified as hub genes in the co-expression
network module “salmon” were also included in the 267 co-
DEGs (Figure 6). The mutants of Zm00001eb293660 displayed
enhanced susceptibility to C. heterostrophus, but increased
resistance to F. graminearum (Block et al., 2021). The functions
of these potential PRRs in maize disease resistance need to be
further investigated in the future.

We also found 7 genes out of 267 (5 of 115) co-
DEGs encode chitinase, two of which (Zm00001eb167710
and Zm00001eb167720) locate on chromosome 3 as a cluster
(Supplementary Table 6). Zm00001eb167710 was also included
in the co-expression network module “salmon,” which might
be a key chitinase gene. Chitinases belong to four recognized
families of pathogenesis-related (PR) proteins (PR-3, PR-4,
PR-8, and PR-11) that have long been appreciated for their
conserved role in the degradation of pathogen cell walls (Cletus
et al., 2013; Sánchez-Vallet et al., 2015). Sixteen of the 267
(8 of 115) co-DEGs were cytochrome P450 genes, which are
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widespreadly involved in the diversification and functional
modification of plant natural products, hormone regulation,
plant defense, etc. (Liu et al., 2020; Pandian et al., 2020).
Previous studies indicated that several P450 genes were involved
in disease resistance in rice and barley (Ameen et al., 2021;
Zhang et al., 2021; Wang A. et al., 2022), implying their
potential roles in maize disease resistance. Interestingly, we also
found that 8 of 267 (4 of 115) co-DEGs belong to the ABC
transporter superfamily. The wheat gene Lr34, encoding an ABC
transporter, confers partial resistance to multiple fungal diseases
(Krattinger et al., 2009). Arabidopsis PEN3/PDR8 encoding an
ABC transporter has also been reported to be involved in disease
resistance (Stein et al., 2006). In addition, two AATs and three
STPs were identified in the co-DEGs (Supplementary Table 6).
It would be interesting to determine the function of these genes
in different disease resistance in maize in the future.

The secondary metabolic process was one of the most
highly enriched GO terms among the DEGs. The production
of antimicrobial compounds are critical components of plant
immunity. Earlier studies have found kauralexins as significant
contributors to protect against fungal pathogens in maize
(Ding et al., 2019). Upon pathogen invasion, maize kauralexin
pathway could be rapidly activated to enable the biosynthesis
of ent-kaurene-related antibiotics, while at the same time
the production of GA metabolic precursors were minimized
to avoid dysregulated phytohormone signaling induced by
pathogens (Lu et al., 2015). Our meta-analysis showed ent-
kaurene synthesis-related genes were commonly up-regulated
in seven inoculation groups (Figure 4B). We speculate
that kauralexin pathway may positively respond to multiple
pathogens in maize.

The plant cell wall is a dynamic barrier that many pathogens
will first encounter. Lignin is one of the main components
of plant cell wall biopolymer. Phenylpropanoid biosynthesis
pathway was highly enriched in our analysis (Figure 3C).
Maize genes encoding gateway enzymes of the phenylpropanoid
pathway such as phenylalanine ammonialyases (PALs) and
cinnamate-4-hydroxylases (C4Hs) (Dong and Lin, 2021) were
highly induced by most pathogens (Figure 5B). But for the
downstream enzymes of phenylpropanoid pathway, some of
the genes were not significantly induced or even down-
regulated by pathogens, such as Zm4CL1. Mutation of this gene
affects lignin synthesis and increases the cell wall digestibility,
implying that over-expression of Zm4CL1 might enhance
maize disease resistance (Xiong et al., 2019). Among those
genes, ZmCCoAOMT2 and ZmCAD have been reported to
confer quantitative disease resistance to southern leaf blight,
gray leaf spot, and banded leaf and sheath blight in maize,
respectively (Yang et al., 2017c; Li N. et al., 2019). Knockdown
of Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl
transferases (HCTs) led to the redirection of metabolic flux to
the biosynthesis of flavonoids (Hoffmann et al., 2004). These
results suggest that phenylpropanoid metabolism and lignin

biosynthesis-related genes might be good targets for genetic
engineering to improve broad-spectrum disease resistance in
maize.

Phytohormones play important roles in plant disease
resistance. The biosynthesis and metabolism of salicylic acid
(SA) and jasmonic acid (JA) have profound importance in
plant immunity (Borrego and Kolomiets, 2016; Zhang and Li,
2019). Increasing evidence indicates that SA is well-integrated
into both PTI and ETI (Zhou and Zhang, 2020). We also
found maize SA marker genes ZmPR1 (Zm00001eb299370) and
ZmPR5 (Zm00001eb032600) were highly induced by different
pathogens (Supplementary Table 6). Interestingly, several other
PR5 genes that have been annotated as thaumatin-like protein
genes were identified in the co-DEGs. Plant immunity requires
large-scale transcriptional reprogramming, where TFs and PKs
play critical roles. Our co-expression network analysis showed
that some TFs and PKs were closely related to pathogen
induction. More importantly, most of these genes act as the
hubs of the network (Figure 6). A homeobox transcription
factor (Zm00001eb015500) displayed close interaction with
many hub genes. Recent studies suggest that TFs and PKs are
key regulators in coordinating yield and immunity (Wang et al.,
2018; Wu et al., 2020). These genes may be putative candidates
for maize disease resistance.

In conclusion, our analysis revealed the importance of
phenylpropanoid and diterpenoid biosynthesis pathways in
maize disease resistance. Further understanding of the identified
candidate genes including PRRs, NTRs, TFs, and PKs, will
facilitate disease resistance breeding in maize.
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