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Nitric oxide promotes energy
metabolism and protects
mitochondrial DNA in peaches
during cold storage

Yuanyuan Ren and Shuhua Zhu*

College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
The mitochondria are important organelles related to energy metabolism and

are susceptible to oxidative damage. In this experiment, peaches (Prunus

persica) were treated with distilled water (as the control), 15 mmol L−1 of nitric

oxide (NO), and 20 mmol L−1 of carboxy-PTIO (NO scavenger). The changes in

mitochondrial physiological indicators, energy metabolism process, and

mitochondrial DNA (mtDNA) damage and repair were quantified. Compared

with the control, NO treatment reduced mitochondrial oxygen consumption

and the reactive oxygen species content, increased mitochondrial respiration

control rate, and promoted energy metabolism by influencing the activities of

citrate synthase, aconitase, isocitrate dehydrogenase, and a‐ketoglutarate
dehydrogenase in the tricarboxylic acid cycle and ATPase activity in peach

mitochondria. NO treatment also maintained the relative copy number of

mtDNA and the relative amplification of long PCR in peaches, decreased the

level of 8-hydroxy-2 deoxyguanosine, and upregulated the expression of

PpOGG1, PpAPE1, and PpLIG1. These results indicated that exogenous NO

treatment (15 mmol L−1) could reduce mtDNA oxidative damage, maintain

mtDNA molecular integrity, and inhibit mtDNA copy number reduction by

reducing the reactive oxygen species content, thereby promoting

mitochondrial energy metabolism and prolonging the storage life of peaches

at low temperatures.
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Introduction
As important semi-autonomous organel les , the

mitochondria are integral to numerous metabolic pathways

and play essential roles in plants (Liberatore et al., 2016). The

most basic function of the mitochondria is to carry out energy

metabolism (Bratic and Trifunovic, 2010). The tricarboxylic acid

(TCA) cycle is one of the most important cycles in the

mitochondria: it is the only way for carbohydrates, lipids, and

amino acids to carry out the final chemical reaction in cells and

the “meeting point” for the chemical reactions of these three

nutrients in cells (Lu et al., 2018). It can also provide small

molecule precursors for other metabolisms, such as amino acid

and sugar synthesis (Lu et al., 2018). ATPase powers ATP

synthesis and is responsible for the reversible catalysis of ADP

and Pi to ATP (Dautant et al., 2018).

Mitochondrial DNA (mtDNA) is a genome that exists in the

mitochondria, is independent of the extrachromosomal nucleus,

and is capable of self-replication, transcription, and coding

(Roger et al., 2017). A mitochondrion contains multiple copies

of mtDNA, and the copy numbers of mtDNA can change

depending on the energy requirements of the cells (Barazzoni

et al., 2000), the developmental stage (Niazi et al., 2019), and the

environmental stress (Ahmad et al., 2010; Zhao et al., 2018).

Environmental stresses can cause reactive oxygen species (ROS)

to burst, which will lead to oxidative damage (Li et al., 2018). As

naked DNA lacks protein protection, mtDNA is highly

susceptible to damage by surrounding ROS due to its location

near the electron transport chain (ETC) (Minibayeva et al.,

2012). ROS induces oxidative base lesions and the degradation

of mtDNA, causing mtDNA mutations (Shokolenko et al.,

2009). Also, mtDNA damage directly causes aging that results

in increased ROS, causing autophagy and cell death (Van

Houten et al., 2016; Baumann, 2019). Excessive ROS results in

a massive accumulation of 8-hydroxy-2′-deoxyguanosine (8-

OHdG), considered the most sensitive symbolic product of

DNA oxidative damage (Richter, 1995; Cioffi et al., 2019).

Oxidative damage to the mtDNA also leads to mitochondrial

oxidative phosphorylation dysfunction, impaired cellular energy

metabolism, and altered mitochondrial integrity, which may

trigger apoptosis (Jiao et al., 2014).

DNA damage repair is a complex and delicate regulatory

mechanism in the organism. Base excision repair (BER) is the

major repair pathway in the plant responsible for eliminating

spontaneous hydrolytic, alkylation, deamination, and DNA

oxidative damage, thereby sustaining genomic integrity

(Jeppesen et al., 2011; Kim and Wilson, 2012; Morales Ruiz

et al., 2018). When the damaged or modified bases occur in the

DNA strands, the N-glycosidic bond will be cleaved by damage-

specific DNA glycosylases, then an apurinic/apyrimidinic (AP)

site is generated, finally repaired by various enzymes. The

complete BER pathway has been demonstrated in the
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mitochondria of potato tubers responding to oxidative stress,

and 8-oxoG-DNA glycosylase (OGG1), an apurinic/

apyrimidinic (AP) endonuclease 1 (APE1), and DNA ligase I

(LIG1) are found to participate in the BER pathway (Ferrando

et al., 2019).

As a bioactive molecule, nitric oxide (NO) affects ATP

synthesis in the respiratory chain, mediates free radicals,

inhibits mitochondrial respiration, and regulates many

mitochondrial functions (Poderoso et al., 2019). NO is also a

biologically active ROS scavenger that prevents plants from

suffering severe oxidative threats (Hasanuzzaman et al., 2018).

The mitochondria are not only the target of NO but also the

source of NO, and NO can maintain mitochondrial integrity by

reducing oxidative damage (Jing et al., 2016). NO activates the

antioxidant system to defend against excessive ROS in plants

(Sahay and Gupta, 2017). Moreover, NO, acting as the second

messenger at opportune concentration, protects the

mitochondria in different pathways (Litvinova et al., 2015).

NO treatment has been shown to maintain the mitochondrial

ETC and alleviate mitochondrial oxidative damage in peach fruit

(Wang et al., 2021). This paper reported the regulation by NO on

TCA, ATPase, and mtDNA in peach fruit.
Materials and methods

Plant material and isolation
of the mitochondria

Peaches (Prunus persica) with similar size, no pests, and no

mechanical damage were harvested from Xintai, Shandong,

China. The reagent concentrations and duration of treatment

were determined according to a previous experiment (Jing et al.,

2016), peaches were soaked for 30 min in each treatment, and

three treatments were performed: distilled water, 15 mmol L−1

NO solution, and 20 mmol L−1 c-PTIO (NO scavenger). The

treated peaches stored at 0°C were sampled once a week, and the

phenotypic appearances of peaches after treatment are shown in

the Supplementary Materials. The mitochondria of peaches were

extracted using the Mops-KOH buffer and quantized using

Coomassie brilliant blue solution as described by Jing et al.

(2016), and the purity and integrity of the mitochondria were

determined according to Millar et al. (2001). The total protein

concentration of purified mitochondria with integrity was

adjusted to 100 mg ml−1 for the following experiments.
Determination of mitochondrial oxygen
consumption and mitochondrial
respiratory control ratio

The mitochondrial oxygen consumption was measured as

follows: after incubation for 2 min, the reaction medium (0.7 ml,
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pH 7.4, contained 0.4 mol L−1 mannitol, 0.2 mol L−1 sucrose,

10 mmol L−1 potassium chloride, 10 mmol L−1 magnesium

chloride, and 10 mmol L−1 Tris–HCl) was mixed with the

mitochondria (20 mg). Each dissolved oxygen content curve

was recorded for 10 min in the Oxygraph Plus System

(Hansatech, Britain). Oxygen consumption was obtained with

the slope of the curve and was expressed as mmol O2 min−1

g−1 protein.

The oxygen consumption curve was continuously recorded

after the above solution was mixed with 20 ml of reaction

substrate (a mixture of 2.5 mmol L−1 of sodium malate and

sodium pyruvate) and 5 ml of ADP (60 mmol L−1). The slope of

the curve displayed the ADP respiration rate (state III). The

mitochondrial respiration control rate (RCR) was expressed as

the ratio of the ADP respiration rate (state III) to the ADP-

depleted respiration rate (IV state).
Determination of mitochondrial H2O2,
·OH, and O2

−·contents

The H2O2 content was determined according to Zheng

et al. (2009). The mitochondria (50 mg) were mixed with 0.5 ml

of NH4OH and 0.5 ml of TiSO4 (5%, v/v). After being

centrifuged at 12,000×g for 10 min, the precipitate was mixed

with 1 ml of H2SO4 (2 mol L−1) at 415 nm using

a spectrophotometer.

The ·OH content was measured as described by Giulivi et al.

(1995). The mitochondria (50 mg) were mixed with 2 ml of

deoxyribose (2.5 mmol L−1) and reacted at 37°C for 60 min.

Next, the mixture was boiled for 30 min following the addition of

acetic acid (0.5 ml) and 0.5 ml of 1% thiobarbituric acid and then

immediately cooled on ice for 10 min. The ·OH content was

measured in a spectrophotometer at 532 nm.

The O2
−· content was tested as described by Zheng et al.

(2009). The mitochondria (50 mg) were incubated with 0.5 ml of

10 mmol L−1 hydroxylamine hydrochloride solution for 30 min

at 25°C. a-Naphthylamine (7 mmol L−1) and P-aminobenzene

sulfonic acid (17 mmol L−1) were added for a further 30 min.

The O2
−· content was determined as the absorbance at 530 nm

and expressed as mol g−1 protein.
Determination of energy metabolism-
related enzyme activities

Citrate synthase (CS) activity was determined as the

absorbance change at 412 nm (Schmidtmann et al., 2014). The

mitochondria (50 mg) were incubated with 0.2 mmol L−1 of

acetyl-CoA (10 ml) in 0.1 mL of 1 mmol L−1 DTNB (in

100 mmol L−1 of Tris–HCl, pH 8.0), and the reaction was

started after the addition of 0.2 mmol L−1 of oxaloacetate

(0.1 ml). One unit of CS activity (U) was defined as the
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within 1 min.

Aconitase (ACN) activity was tested as described by

Middaugh et al. (2005). The mitochondria (50 mg) were

incubated at room temperature in a 2-ml reaction containing

100 mmol L−1 of Tris–HCl (pH 7.3), 1 mmol L−1 of DTT,

1 mmol L−1 of phenylmethylsulfonyl fluoride, 10 mmol L−1 of

citrate, and 20 mmol L−1 of malonate. ACN activity was

monitored by following the formation of cis-aconitate at 240 nm.

Isocitrate dehydrogenase (IDH) activity was determined as

described by Jenner et al. (2001). The change rate of absorbance

at 340 nm was monitored in the following mixture:

mitochondrial suspension (50 mg), 0.5 ml of 50 mmol L−1

Tris–HCl [pH 7.6, contained 1.5 mmol L−1 of NAD,

6.3 mmol L−1 of MnCl2, and 0.05% (v/v) Triton X-100]. The

reaction was started by the addition of 15 mmol L−1 of

isocitrate (0.2 ml).

The measurement of a-ketoglutarate dehydrogenase (a-
KGDHC) activity was based on Nulton Persson et al. (2003).

After the mitochondria (0.5 ml) were mixed with 2 ml of

50 mmol L−1 Mops buffer (pH 8.0, contained 5 mmol L−1 of

MgCl2, 40 mmol L−1 of rotenone, 2.5 mmol L−1 of a-
ketoglutarate, 0.1 mmol L−1 of CoA, 0.2 mmol L−1 of thiamine

pyrophosphate, 1 mmol L−1 of NAD+, and 0.1% Triton X-100),

a-KGDHC activity was measured spectrophotometrically at the

rate of NADH production at 340 nm. The activities of H+-

ATPase and Ca2+-ATPase were measured referring to the

method of Jin et al. (2014). The mitochondria (50 mg) were

added to 2-ml reaction reagents (contained 50 mmol L−1 of

potassium chloride and 3 mmol L−1 of magnesium sulfate or

10 mmol L−1 of magnesium chloride) and reacted in a water bath

(30°C) for 30 min. The reaction was stopped by adding 0.1 ml of

50% TCA and 0.1 ml of 2.5% ammonium molybdate, and the

activities of H+-ATPase and Ca2+-ATPase were expressed as the

release of inorganic phosphate (Pi) resulting from the hydrolysis

of ATP at 660 nm.
Determination of the relative mtDNA
copy number

The relative mtDNA copy number was characterized by

examining the amplification of PpNAD1 and ACTIN via qRT-

PCR and calculated using the 2−DDCt method. The primer

sequences used are shown in Table 1.
Quantification of mtDNA damage

Long PCR was performed using an ApexHF HS DNA

Polymerase CL Kit (Accurate Biotechnology, China) in a

MyCycler PCR system (Bio-Rad, USA) for mtDNA damage

evaluation, according to the protocol described previously (Zhou
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et al., 2011). The primers are listed in Table 1. The final long

PCR cycling parameters followed the manufacturer ’s

recommendations: initial denaturation of 1 min at 94°C

followed by 10 s at 98°C, 15 s at 60°C, and 12 min at 68°C for

28 cycles. The PCR cycling parameters for small fragments

underwent the following profiles: initial denaturation of 1 min

at 94°C followed by 10 s at 98°C, 15 s at 60°C, and 30 s at 68°C

for 25 cycles. Each PCR product was quantified using ImageJ.
Determination of the level of
8-OHdG in mitochondrial DNA

The level of 8-OHdG was measured using a double-antibody

sandwich method according to the ELISA kit of 8-OHdG for the

plant (MeiLianShengWu, Shanghai, China). Standard 8-OHdG

was detected within the range of 1.2–40 pg ml−1, and the sample

was diluted 10 times during the experiment. The absorbance was

determined at 450 nm within 15 min after the termination fluid

was added, and the result was expressed as mg g−1 protein.
Determination of the expression of
genes related to BER

Table 1 lists the qRT-PCR primer sequences. Total RNA was

extracted and then reverse-transcribed by an Evo M-MLV RT

Kit (Accurate Biology, China) (Wang and Stegemann, 2010).

The qPCRs were carried out using a SYBR Green Premix Pro

Taq HS qPCR Kit (Accurate Biology, China). The expression

levels were calculated with the 2−DDt formula (PpTUB: the

reference gene).
Statistical analysis

The data for statistical analysis were obtained from at least

three independent experiments. Data were presented as means ±

SD and processed by an analysis of variance (ANOVA), with P
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<0.05 indicating significant differences, based on the least

significant difference (LSD) test.
Results

Changes in the mitochondria
of peaches

The mitochondrial respiratory oxygen consumption of

peaches peaked at week 3 and then declined during storage

(Figure 1A). NO decreased but c-PTIO increased the

mitochondrial oxygen consumption of peaches (P < 0.05). At

week 5, the mitochondrial oxygen consumption of the NO-

treated peach fruit was 75.74% compared with that of the

control and 55.02% compared with that of the c-PTIO-treated

fruit. The mitochondrial RCR decreased in the first week and

remained relatively stable during storage in each treatment

(Figure 1B). The mitochondrial RCR in the NO treatment was

1.15 times higher than that in the control at week 3. c-PTIO

decreased the mitochondrial RCR of peaches (P < 0.05), and

especially at weeks 4 and 5, the mitochondrial RCR was only

74.81% and 70.42%, respectively, compared with that of

the control.
Change in the mitochondrial H2O2, ·OH,
and O2

−· content

The H2O2 content in the mitochondria first increased and

then decreased, and the c-PTIO treatment obviously (P < 0.05)

increased the H2O2 content (Figure 2A). At week 4, the H2O2

content in the c-PTIO-treated mitochondria was 2.49 times

higher than that in the NO-treated mitochondria.

The maximum ·OH content appeared at week 3 in the

control and NO treatment, and the maximum appeared at

week 4 in the c-PTIO treatment (Figure 2B). At week 3, the

·OH content in the NO treatment was 69.13% compared with

that in the control.
TABLE 1 DNA primers used for real-time PCR and long PCR.

Gene Forward primer (5′ to 3′) Reverse primer (5′ to 3′) Product (bp)

PpNaD1 TTTAGTTGTGGGTCATAGGGC TCGTCCATTCGTTGAGTGATC 184

PpACTIN CTGGTATTGTGCTGGACTCTG CCCTCTTTCGGTGAGAATCTTC 146

Pplong AGAGGGCTCTGGTTCAAGC CACTCTTCCTTGCGATGCCT 10,054

Ppshort AGCAGGTTTGTGACGCTCTC ACCACCTCACTCCAAAGAAAGA 250

PpOGG1 CACCACCACCTCCGAAAC GCACCGCCCAAATAGC 138

PpAPE1 GGTGCAGTGCAGGACTCTC TTGGAGCTACTGCAAAGCCT 97

PpLIG1 CTGCGGACTTGACTATTAGCC AGGTTTATCTTCCCGAACACG 113

PpTUB TGACAAGACCGTTGGTGGAG GGAAGAGCTGGCGGTAAGTT 149
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The maximum O2
−· content appeared in week 3 (Figure 2C).

NO treatment inhibited the increase in the O2
−· content

(P < 0.05). In the NO treatment, the O2
−· content was 73.15%

compared with that in the c-PTIO treatment at week 3.
Change in energy metabolism-related
enzyme activities

The CS activity peaked at week 3 (Figure 3A). NO treatment

increased the CS activity except at week 4 (P < 0.05). At week 5,

the CS activity in the NO treatment was 2.82 times higher than

that in the c-PTIO treatment.

The ACN activity in the control was the highest at week 1

(Figure 3B). In the NO treatment, the ACN activity was higher

than in the control at weeks 3 and 5 (P < 0.05). At week 3, the

ACN activity in the NO-treated peach mitochondria was 3.76
Frontiers in Plant Science 05
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peach mitochondria.

The IDH activity decreased rapidly at week 1 and changed

less after that (Figure 3C). Except for week 5, NO treatment

increased the IDH activity (P < 0.05). The IDH activity in the

NO treatment was 4.62 times higher than that in the c-PTIO

treatment at week 2.

The a-KGDHC activity kept increasing during the storage

period in the NO treatment and control except at week 2

(Figure 3D). In the c-PTIO treatment, the trend in a-KGDHC

activity changes was consistent with the other two treatments

during the first 4 weeks, but the activity began to decline at week

5. The a-KGDHC activity in the NO treatment was 1.55 times

higher than that in the control at week 2.

The H+-ATPase activity showed a downward trend during

the storage period except for weeks 1 to 2 (Figure 4A); c-PTIO

treatment inhibited its activity (except week 3) (P < 0.05).
A B C

FIGURE 2

Changes in H2O2 (A), ·OH (B), and O2
−· (C) contents in peach mitochondria. Error bars indicate standard errors (n = 3). Different letters indicate

significant differences among different treatments (P < 0.05).
BA

FIGURE 1

Changes in mitochondrial oxygen consumption (A) and mitochondrial respiratory control ratio (B) in peaches. Error bars indicate standard errors
(n = 3). Different letters indicate significant differences among different treatments (P < 0.05).
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Especially at week 4, the H+-ATPase in the c-PTIO treatment

was only 73.16% compared with that in the NO treatment.

The Ca2+-ATPase activity remained generally decreased

except for the NO treatment at weeks 1 to 2 (Figure 4B). NO
Frontiers in Plant Science 06
treatment maintained the Ca2+-ATPase activity (P < 0.05). The

Ca2+-ATPase activity in the control and c-PTIO treatment was

78.87% and 72.25% compared with that in the NO treatment at

week 2, respectively.
BA

FIGURE 4

Changes in the H+-ATPase (A) and Ca2+-ATPase (B) activities in peach mitochondria. Error bars indicate standard errors (n = 3). Different letters
indicate significant differences among different treatments (P < 0.05).
B

C D

A

FIGURE 3

Changes in the CS (A), ACN (B), IDH (C), and a-KGDHC (D) activities in peach mitochondria. Error bars indicate standard errors (n = 3). Different
letters indicate significant differences among different treatments (P < 0.05).
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Change in the mtDNA of peaches

The relative mtDNA copy number of the peaches firstly

increased and then declined during storage (Figure 5A). NO

postponed the changes of the relative mtDNA copy number, and

at week 5, it was 1.44 times higher than that in the c-PTIO

treatment (P < 0.05).

mtDNA damage gradually increased with storage time, and

NO treatment suppressed the aggravation of the damage

(Figure 5B) (P < 0.05). The relative amplification of long PCR

in the NO treatment was 1.36 times higher than that in the c-

PTIO treatment at week 2.

8-OHdG in the mtDNA in peaches increased, and NO

could dramatically inhibit the growth in the level of 8-

OHdG in mtDNA (Figure 5C) (P < 0.05). Especially at

week 5, the level of 8-OHdG in the NO-treated peaches

was 78.78% compared with that in the control, and in the c-

PTIO treatment, it was 1.10 times higher than that in

the control.
Changes in the expression of genes
related to BER

The expression of PpOGG1 peaked at week 3 in peaches

(Figure 6A). NO treatment upregulated the expression of

PpOGG1 (P < 0.05). The peak value of NO-treated peaches

was 1.17 times higher than that of the control.

The expression of PpAPE1 was higher in the NO treatment

than in others (Figure 6B). At week 2, the expression of PpAPE1

in NO-treated peaches was 1.52 times higher than that in

the control.

NO treatment significantly (P < 0.05) maintained the

expression of PpLIG1 (Figure 6C). In the NO treatment, the

expression of PpLIG1 was 2.18 times higher than that in the c-

PTIO treatment at week 2.
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Discussion

The mitochondria of peaches treated with NO had the

lowest oxygen consumption compared with the other two

treatments. However, the RCR was the highest (Figure 1).

During storage, the mitochondria are continuously energized

and continuously form ROS. The accumulation of ROS causes

damage to the mitochondria, which leads to mitochondrial

apoptosis (Gu et al., 2016). mtDNA damage is due to ROS

accumulation in the organelles, so reducing ROS can reduce

mitochondrial oxidative damage and maintain cell stability

(Shaughnessy et al., 2014). Exogenous NO reduced the ROS

content (Figure 2). Similar results were also found in wheat (Si

et al., 2017), Hami melon (Zhang et al., 2017), cornelian cherry

fruit (Rabiei et al., 2019), and peaches (Huang et al., 2019a). In

summary, NO treatment maintained the quality of the

mitochondria and reduced the ROS content.

The TCA cycle is integral to harvesting energy (Shen et al.,

2019), and its rate is thought to be determined by CS, IDH, and

a-KGDHC (Krebs, 1970; Mastrogiacomo et al., 1996; Huang

et al., 2019b). NO treatment has been shown to relieve seed aging

and promote seed germination by increasing CS activity (Mao

et al., 2018). Moreover, NO treatment alleviates salt stress by

increasing the CS and IDH activities in Brassica napus L. (Zhang

et al., 2021). a-KGDHC is not only the rate-limiting enzyme in

the TCA cycle but also a target of ROS, and NO can increase its

activity by S-nitrosylation (Sun et al., 2007). CS, IDH, and a-
KGDHC were also increased in peach mitochondria treated with

NO in this study, and c-PTIO treatment showed opposite results

(Figures 3A–D). NO is generally considered an inhibitor of

ACN, but with further research, NO is shown to reversibly

inactivate ACN by controlling the loss of Fe–S clusters (Navarre

et al., 2000). NO at a higher concentration than the physiological

concentration is the real reason for the inactivation of ACN. At

the same time, the reaction time and substrate concentration can

affect NO regulation on the ACN activity (Tórtora et al., 2007).
B CA

FIGURE 5

Changes in the mtDNA copy number (A), relative amplification of long PCR (B), and the level of 8-OHdG in mtDNA (C) in peaches. Error bars
indicate standard errors (n = 3). Different letters indicate significant differences among different treatments (P < 0.05).
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In this study, NO treatment showed inhibition first and then

promotion of ACN, which may be due to the combined effect of

time and NO concentration on ACN (Figure 3B). H+-ATPase

hydrolyzes ATP to generate ADP and free phosphate ions to

release energy while establishing a transmembrane

electrochemical gradient and transmembrane proton driving

force. At the same time, ATP is synthesized under the catalysis

of the transmembrane proton electrochemical potential (Olsen

et al., 2009; Esparza and Cuezva, 2018). Exogenous NO has long

been shown to enhance the salt tolerance of wheat seedlings by

increasing the activity of H+-ATPase (Fan et al., 2013). In this

study, the H+-ATPase activity was significantly increased in the

NO treatment (Figure 4A). These data suggested that NO

treatment might increase the level of energy release and

proton electrochemical gradient by increasing the activity of

H+-ATPase and increase the synthesis of ATP through a

sufficient proton electrochemical gradient. Ca2+-ATPase is

related to cell homeostasis: it can use the energy generated by

ATP hydrolysis to regulate the concentration of Ca2+, avoid

excessive accumulation of Ca2+, and then damage the

mitochondria, thereby limiting energy synthesis (Anil et al.,

2008; Jin et al., 2014). The Ca2+-ATPase activity was increased

in the NO-treated peach mitochondria (Figure 4B). This

suggested that NO treatment might maintain ion homeostasis

by increasing the activity of Ca2+-ATPase, thereby maintaining

mitochondrial function and maintaining energy metabolism and

energy supply. The above result revealed that NO treatment

could promote energy metabolism by increasing the rate-

limiting enzyme activity in the TCA cycle and ATPase activity.

The mtDNA copy number can be maintained by

mitochondrial gene expression and ATP (Cadenas, 2018). A

large amount of ROS could be produced when peaches are stored

in a low-temperature condition, which could damage the

mitochondrial integrity of peaches, and the damaged
Frontiers in Plant Science 08
mitochondria would rerelease ROS, exacerbating the damage

to other mitochondria in a vicious circle. mtDNA in the c-PTIO

treatment was highly damaged, with less relative mtDNA copy

number and relative amplification of long PCR, than NO

(Figures 5A, B). It was consistent with the fact that the

increase in the content of organelle-generated ROS could lead

to a decrease in the retention or the degradation of mtDNA. 8-

OHdG, as a marker of mtDNA damage, is formed by the

interaction of HO• with the guanine of the DNA strand

(Valavanidis et al., 2009). The level of 8-OHdG is positively

correlated with ROS, even the degree of DNA oxidative damage

(Fraga et al., 1990; Kondo et al., 2000). NO decreased the level of

8-OHdG in mtDNA, so NO might alleviate the oxidative

damage of mtDNA in peaches (Figure 5C). The above results

showed that NO treatment could protect the mtDNA.

Although the idiographic DNA repair mechanisms are still

poorly understood in plant organelles, the BER pathway is

deemed to remove oxidative damage in plant mitochondria,

such as Arabidopsis (Roldán Arjona et al., 2019), Solanum

tuberosum tubers (Ferrando et al., 2019), and Zea mays

(Kumar et al., 2014). In this research, NO upregulated the

expression of PpOGG1, PpAPE1, and PpLIG1 effectively

compared with the other treatments (Figure 6). The

upregulation of OGG1 coincides with oxidative DNA damage

with a lower background mutation (Wu et al., 2004; Macovei

et al., 2011), and the overexpression of APE1 markedly enhances

BER for maintaining DNA integrity (Dobson et al., 2000).

Experimental evidence indicates that LIG1 is the only ligase

that can have nick-closing functions for plant BER (Foyer and

Noctor, 2003), and the activity of LIG1 increased after mtDNA

suffering from oxidative damage (Ferrando et al., 2019). NO was

better able to repair DNA oxidative damage by increasing the

expression levels of PpOGG1, PpAPE1, and PpLIG1 and further

enhanced the protein expression of BER. These results proved
B CA

FIGURE 6

Changes in the expression levels of PpOGG1 (A), PpAPE1 (B), and PpLIG1 (C) in peaches. Error bars indicate standard errors (n = 3). Different
letters indicate significant differences among different treatments (P < 0.05).
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that NO does protect DNA from oxidative damage and maintain

DNA integrity.
Conclusion

NO reduced mitochondrial oxygen consumption and ROS

content, increased mitochondrial RCR, and promoted energy

metabolism by influencing CS, ACN, IDH, and a-KGDHC

activities in the TCA cycle and ATPase activity in peach

mitochondria. NO also maintained the relative copy number

of mtDNA and the relative amplification of long PCR in peaches,

decreased the level of 8-OHdG, and upregulated the expression

of PpOGG1, PpAPE1, and PpLIG1. These results indicated that

exogenous NO treatment (15 mmol L−1) could reduce mtDNA

oxidative damage, maintain molecular integrity, and inhibit

mtDNA copy number reduction by reducing the ROS content,

thereby promoting mitochondrial energy metabolism and

prolonging the storage life of peaches at low temperatures.
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