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Aluminum (Al) toxicity significantly restricts crop production on acidic

soils. Although rice is highly resistant to Al stress, the underlying resistant

mechanisms are not fully understood. Here, we characterized the function of

OsNIP1;2, a plasma membrane-localized nodulin 26-like intrinsic protein (NIP)

in rice. Aluminum stress specifically and quickly induced OsNIP1;2 expression

in the root. Functional mutations of OsNIP1;2 in two independent rice lines

led to significantly enhanced sensitivity to Al but not other metals. Moreover,

the Osnip1;2 mutants had considerably more Al accumulated in the root cell

wall but less in the cytosol than the wild-type rice. In addition, compared

with the wild-type rice plants, the Osnip1;2 mutants contained more Al in

the root but less in the shoot. When expressed in yeast, OsNIP1;2 led to

enhanced Al accumulation in the cells and enhanced sensitivity to Al stress,

suggesting that OsNIP1;2 facilitated Al uptake in yeast. These results suggest

that OsNIP1;2 confers internal Al detoxification via taking out the root cell

wall’s Al, sequestering it to the root cell’s vacuole, and re-distributing it to the

above-ground tissues.
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Highlights

- OsNIP1;2 facilitates internal aluminum (Al)
detoxification in rice.

- OsNIP1;2 expression is specifically induced by Al.
- OsNIP1;2 is critical for resistance to Al toxicity in rice.

Introduction

Aluminum (Al) is prevalent in the earth’s crust (Liu et al.,
2014; Kochian et al., 2015). Al has no known biological function,
but the Al3+ ions released from acid soils are highly harmful to
plants. Al stress restricts root growth, inhibits nutrient uptake
from the root, and causes severe yield losses for crops grown on
acid soils (Liu et al., 2014; Kochian et al., 2015; Singh et al., 2017).
Moreover, the problem of Al toxicity on crop plants has been
intensified worldwide by heavy applications of acid-forming
nitrogenous fertilizers (Guo et al., 2010) and the frequent
deposition of acid rain caused by deteriorating environments
due to global climate changes. Although neutralizing soil acidity
by liming could alleviate Al toxicity to plants, the process is
costly, time-consuming, and less effective (Sade et al., 2016).
Therefore, exploring the potential of plants to cope with Al stress
is a practical and feasible approach to fighting against Al toxicity
(Yuan et al., 2011).

Plants use several resistance mechanisms to withstand
Al stress, including the external (exclusion) and the internal
tolerance mechanisms. For example, many plants release
organic acids from the root upon exposure to Al3+ ions. The
released organic acids chelate the toxic Al3+ ions and thus
decrease Al toxicity in the rhizosphere, the most commonly
used exclusion mechanism in plants. In contrast, the internal
tolerance mechanism involves detoxifying Al toxicity in the
plant via closeting Al in the vacuole of the root cell and/or
transporting it from the vulnerable root to the less-sensitive
shoot tissues (Liu et al., 2014; Kochian et al., 2015).

Recent research has confirmed the cell walls in the root
apical region as one of the most vulnerable targets for Al toxicity
in plants (Sivaguru and Horst, 1998; Ma et al., 2004; Jones
et al., 2006; Sivaguru et al., 2013). Therefore, decreasing Al
accumulation in the cell wall of the root apex is critical for plants’
resistance to Al toxicity (Xia et al., 2010; Famoso et al., 2011;
Wang et al., 2017).

Altering or modifying root cell-wall components could
prevent Al accumulation in the root cell wall (Yang et al.,
2008, 2011; Zhu et al., 2012). Another means to decrease
the root-cell-wall Al content is to transport the Al to the
cytosol through plasma-membrane (PM)-localized transporters.
For instance, the PM-localized Nrat1 (Nramp aluminum
transporter 1) facilitates the transport of Al in the root
cell wall to the cytosol (Xia et al., 2010), playing a critical

role in Al resistance in rice (Xia et al., 2010; Li et al.,
2014). Moreover, we recently demonstrated that AtNIP1;2,
an aquaporin (AQP) of the nodulin 26-like intrinsic protein
(NIP) subfamily, is a critical component for Al resistance
in Arabidopsis. AtNIP1;2 mediates moving the root-cell-wall
Al to the root cytosol and subsequent Al translocation to
the above-ground tissues (Wang et al., 2017, 2018, 2020,
2021).

Here, we further investigated the involvement of the NIP
subfamily members in Al detoxification and resistance in rice.
We report that OsNIP1;2, the closest homolog of AtNIP1;2,
facilitates lowering the root-cell-wall Al concentrations
and promotes root-to-shoot Al translocation. Furthermore,
functional mutations of OsNIP1;2 sensitized the transgenic rice
plants to Al toxicity. In conclusion, OsNIP1;2 is vital for Al
resistance and detoxification in rice.

Materials and methods

Phylogenetic analysis

The ClustalW method with the MEGA 6.06 software was
used to align the AtNIP1;2 and rice NIP sequences. A test
neighbor-joining phylogenetic tree was built with the same
software based on the alignment.

Plant material and growth conditions

Oryza sativa L. ssp. indica “Minghui86” (“MH86”) served
as the transformation host and the wild-type (WT) control.
Rice seeds were sterilized for 15–20 min with 20% bleach,
then germinated at 30◦C for 5 days in the dark. The
seedlings with uniform growth were selected and transferred
to the control (-Al) growth solution (pH 4.2) overnight to
adapt to the low pH condition. Then 10 seedlings for each
treatment were transferred to hydroponic growth solutions
containing different concentrations of AlCl3 (10, 20, 40, 60,
80, 120, 160 µM) with the light/temperature condition of 14 h
day/10 h night at 30/25◦C (day/night). The growth solution
contained the macronutrients (mM): KCl, 1.0; NH4NO4,
1.5; CaCl2, 1.0; KH2PO4, 0.045; MgSO4, 0.2; MgNO3, 0.5;
MgCl2, 0.155; and the micronutrients (µM): MnCl4, 11.8;
H3BO3, 33.0; CuSO4, 0.8; ZnSO4, 3.06; Na2MoO4, 1.07;
Fe-HEDTA,77.0. The pH of the solutions was maintained
at pH 4.2 by 2 mM Homo-PIPES (homopiperazine-N, N’-
bis-2-ethanesulfonic acid). Representative rice seedlings were
chosen for root growth phenotyping and image taking
after 7-days growth in a hydroponic solution (pH 4.2)
containing 0 or 60 µM AlCl3. Root growth was determined
by measuring the root length of individual seedlings prior
to and after the 7-day Al treatment (50 µM). Relative
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root growth (RRG%) was expressed as the root growth of
individual plants under Al treatment (+Al) normalized to
the average root growth under the control condition (-
Al).

For testing rice plants’ responses to other metal toxicity,
WT (cv. MH86, Indica) and rice plants were treated for 24 h
in growth solutions (pH 4.2) containing (in µM) CdCl2, 20;
ZnSO4, 100; AlCl3, 50; or LaCl3, 5 (Huang et al., 2012). Then,
the root growth of the primary roots of individual lines was
determined.

Construct preparation and rice
transformation

The CRISPR-P program was used to predict the two
target sites with the PAM (protospacer adjacent motifs)
sequences in the exon I and II of OsNIP1;2 (Lei et al.,
2014). Subsequently, single guide RNA (sgRNA) sequences
targeted the selected OsNIP1;2 sequences were cloned into the
vector VK005-01, which contains a maize ubiquitin promoter
for Cas9 expression and a rice U6 promoter for sgRNA
expression (Viewsolid Biotech, Beijing, China). The primer
sequences for the two OsNIP1-2 targets are sgRNA1F: 5′-
CAGTGGTCCAAGGAGGCCGTCGT-3′ and sgRNA1R: 5′-A
CACGACGGCCTCCTTGGACCA-3′; sgRNA2F: 5′-CAGACC
CTGCCTGCTGAAGAACG-3′ and sgRNA2R: 5′-AAC CGTT
CTTCAGCAGGCAGGGT-3′. The constructs were transformed
into Agrobacterium tumefaciens (EHA105) and then introduced
into rice calli of “MH86” with the previously reported methods
(Hiei et al., 1994).

Genotypic analysis for rice
CRISPR-Cas9 lines

Leaf genomic DNAs were extracted with CTAB
(cetyltrimethylammonium bromide) (Stewart, 1993). The
Cas9/sgRNA T-DNA insertion in the transgenic plants was
examined by PCR amplification with the following primer pairs,
Cas9F: 5′-GGGAGATCCAGCTAGAGGTC-3′ and Cas9R:
5′-GGAAGGAGGAAGACAAGG-3′. The sgRNA target region
of OsNIP1;2 was amplified with the following target-specific
primer pairs (OsNIP1-2T1F/R and OaNIP1-2T2F/R), OsNIP1-
2T1F: 5′-TGCCGAAGCCTGCTGCTTTC-3′ and OsNIP1-2T
1R: 5′-CGCAAGTTTGGCAAACCACTTG-3′, OsNIP1-2T2F:
5′-GATGGCGGTGGTGGTCGAC-3′, and OsNIP1-2T2R: 5′-G
ACTCAATCAGAACACGGTTG-3′, respectively. The PCR
products were sequenced. The resulting sequences were
decoded with a decoding tool (Liu et al., 2015), and the
mutation types and frequency were analyzed. DNA sequences
were aligned with the MEGA 6.06 software.

RNA preparation and gene expression
quantification

Seedlings of the WT (indica) and Osnip1;2-1, Osnip1;2-
2 mutants were treated with various Al concentrations (0–
120 µM) for the indicated duration or different metals. Root
tips (0–3 cm) and other tissues (root, stem, leaf, panicle, or seed)
were collected in liquid N2 and stored at−80oC.

Total RNAs were extracted with an RNeasy Mini Kit
[QIAGEN China (Shanghai) Co., Ltd., Shanghai, China] and
used to synthesize first-strand cDNAs with the SuperScript
III First-Strand Synthesis System [Invitrogen China (Shanghai)
Co., Ltd., Shanghai, China].

OsNIP1;2 expression was investigated by RT-qPCR with a
7500 Fast Real-Time PCR System (Applied Biosystems). The
expression of target genes was calibrated with an endogenous
18S rRNA. The RT-qPCR primer sequences for OsNIP1;2
are 5′-CTCCTTCTTCCTCATGTTCG-3′ and 5′-CCTGCGAA
GAGCACGTTCA-3′.

Subcellular localization of OsNIP1;2 in
plant cells

The coding sequence of OsNIP1;2 without the stop codon
was amplified from a cDNA plasmid using the primers 5′-
TCGCGGATCCAAA ATGGCGGTGGTGGTCGAC-3′ and 5′

-ATGGCTCGAG ACTCCTACGCGAGCTCCTC-3′ (the
underlined sequences represent the BamHI and XhoI cutting
sites, respectively). The PCR sequences were then cloned into
the pGPTV.GFP.Bar vector in front of the GFP coding sequence.
The resultant pGPTV-OsNIP1;2-GFP construct was introduced
into A. tumefaciens strain GV3101 and then transiently
expressed in tobacco leaf epidermal cells with an infiltration
method. The plasma membrane marker 35S:PIP2;1-RFP (pm-
rk-CD3-1007) was described previously (Nelson et al., 2007).
The fluorescent images were obtained with a Leica SP5 confocal
scanning laser microscope. The nuclei of the tobacco leaf cells
were stained with DAPI (4′,6′-diamidino-2-phenylindole) and
visualized with the confocal microscope.

OsNIP1;2 expression, localization, and
function in yeast

Al sensitivity assays
For Al sensitivity evaluation, the pYES2-OsNIP1;2

construct was generated with Hind III and XbaI double
enzyme digestion of the pYES2 vector, and the PCR
amplified product from the OsNIP1;2 cDNA with primers
5′-TCGCAAGCTTAAAATGGCGGTGGTGGTCGAC-3′ and
5′- ATCCTCTAGACTAACTCCTACGCGAGCTCC -3′ (the
underlined were HindIII and XbaI restriction sites, respectively).
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The resulting pYES2-OsNIP1;2 construct and the pYES2 empty
vector were introduced into a wild-type yeast strain (BY4741).
Three independent colonies from each transformation event
were selected to represent 3 biological replicates for the
following experiments.

Individual yeast colonies were grown in a liquid SD-Ura
medium to the stationary phase. Yeast cells were collected by
centrifuging (5,000 × g) for 5 min and washed three times
with a succinic acid-buffered LPM (low-pH, low-magnesium)
medium (pH 4.2). The washed cells were grown at 30◦C in a
new LPM medium containing 2% galactose for GAL promoter
induction. After 6-h growth, the yeast cells were collected by
centrifuge at 5,000 g for 5 min. Then, the cell pellets were diluted
to OD630 = 0.2 with an LPM growth medium containing 2%
galactose. Then, 10 µl of fivefold serially diluted cell suspensions
were placed onto the LPM solid media (pH 4.2) containing
0, 150, or 300 µM AlCl3 and grew at 30◦C for 3 days. LPM
contained the below macronutrients (mM): KCl, 5; (NH4)2SO4,
40; NaCl, 2; CaCl2, 0.1; KH2PO4, 0.01; MgSO4, 0.25; and the
micronutrients (µM): FeCl3,1; KI, 0.5; H3BO3,10; MnSO4, 2.5;
Na2MoO4, 1; ZnSO4, 1.5; and amino acids (mg/L): Glu, 0.075;
Tyr, 0.03; Ade, 0.02; Ura, 0.02; Val, 0.15; Phe, 0.05; Ser, 0.4; Leu,
0.03; Ile, 0.03; Arg, 0.02; Lys, 0.03; Trp, 0.02; His, 0.02; Met, 0.02;
Asp, 0.0625; Thr, 0.2; and 2% Galactose and Vitamins (ng/L):
Riboflavin, 20; Folic acid, 0.2; p-aminobenzoic acid, 20; Biotin,
0.2; Calcium pantothenate, 40; Pyridoxine hydrochloride, 40;
Niacin, 40; Inositol, 200; Thiamine hydrochloride, 40.

Subcellular localization of OsNIP1;2 in yeast
To detect OsNIP1;2 subcellular localization in yeast,

the coding sequence of GFP protein was PCR amplified
from the pGPTV.GFP.Bar vector with primers 5′-
ATCCGCGGCCGCCATGAGTAAAGGAGAAGAACTTTTC-
3′ and 5′-TCGCTCTAGATTTGTATAGTTCATCCATGCCATG-
3′ (the NotI and XbaI cutting sites were underlined). Then the
GFP sequence was sub-cloned into pYES2 to form the
pYES2-GFP vector. Next, the OsNIP1;2 coding sequence
was amplified from the rice cDNAs with primers 5′-TCGC
GGTACCAAAATGGCGGTGGTGGTCGAC-3′ and 5′- ATCC
GCGGCCGCCTAACTCCTACGCGAGCTCC-3′ (the KpnI
and NotI enzyme sites were underlined, respectively). Then,
individual PCR fragments were subcloned into the pYES2-GFP
construct, in-frame with the GFP coding sequence. Finally, the
resulting pYES2-OsNIP1;2-GFP construct was introduced into
the yeast cells, and the subcellular localization of OsNIP1;2 was
observed by a confocal microscope (Leica SP5).

Short-term Al uptake assays in yeast
The yeast lines pYES2-GFP and pYES2-OsNIP1;2-GFP were

inoculated in a liquid LPM medium (pH 4.2) and grown
at 30◦C to a mid-exponential phase. Then, yeast cells were
harvested by centrifuge at 5,000 × g for 5 min and washed
three times with the LPM medium. The cell pellets were
resuspended in an LPM medium containing 2% galactose

and grown at 30◦C for 2 h to induce the GAL-promoter-
driven GFP or OsNIP1;2 gene expression. The pre-cultured
yeast cells were resuspended at OD600 = 3.0 in the uptake
medium, i.e., the LPM medium (pH 4.2) supplemented
with different possible OsNIP1;2 transport substrates at final
concentrations of 0 or 50 µM AlCl3: 150 µM ligands. The
Al-ligands tested included 0 or 50 µM AlCl3, Al-Malate,
Al-Citrate, Al-oxalate, Al-succinate, Al-fumarate, Al-aconite,
Al-cysteine, Al-histidine, Al-glutathione, Al-phytochelatin, Al-
metallothionein.

After incubation in the uptake media for 4 h, yeast cells were
harvested by centrifuge (5,000× g) and washed three times with
deionized water (ddH2O) (MilliQ; Millipore). The cell pellets
were dried in a 55◦C oven for 2 days. The Al concentrations of
each digested sample were determined by inductively coupled
plasma mass spectrometry (ICP-MS) using an Agilent 7500
Series ICP mass spectrometer. Three biological replicates for
each line and each treatment were conducted.

Measurement of Al concentrations in
the roots and shoots

For quantifying Al and other elements, 5-days-old seedlings
of the WT (indica), Osnip1;2-1, and Osnip1;2-2 were grown in
a growth medium (pH 4.2) containing 50 or 100 µM Al for
8 h. Then, the seedlings were rinsed with a 0.5 mM CaCl2
solution three times and ddH2O twice. Shoot and root samples
were collected, dried, and digested with pure HNO3. ICP-AES
(inductively coupled plasma-atomic emission spectrometry,
Thermo Fisher, iCAP 7500 Series) was used to determine the
mineral elements of the samples. Each treatment contained
three biological replicates.

Determining Al concentrations in root
cell sap and root cell wall

Seedlings (5-days-old) were grown in an LPM medium (pH
4.2) containing 50 or 100 µM Al for 8 h. Then, the root apices
(0–3 cm) were cut and washed three times with 0.5 mM CaCl2
and twice with ddH2O. Next, the apoplastic solution of the root
segments was removed via centrifuging at 3,000 g and 4◦C for
10 min with the Ultra free-MC Centrifugal filter unit (Millipore)
(Xia et al., 2010). Then the samples retained in the filter units
were sored at -80◦C. To separate the root cell sap from the root
cell wall, the frozen samples with the filter units were thawed at
37◦C and then centrifuged at 20,600 × g for 10 min. The cell-
sap samples were collected from the centrifuge tubes while the
cell-wall samples remained in the filter units. The root-cell-wall
samples were washed three times with 70% ethanol to remove
membrane fractions and then digested with 1 mL of 2 N HCl
with gentle shaking for 24 h. Al concentrations were measured
by ICP-AES.
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Analyzing K and Al concentrations in
xylem sap

Five seedlings (5-days-old) of the Osnip1;2-1 and Osnip1;2-
2 mutants and the WT (indica) were pre-treated in an LPM
medium (pH 4.2) containing 50 or 100 µM Al for 8 h. Then,
plants’ culms were removed, and the xylem-sap exudates were
collected in a high humidity environment, with the first droplets
excluded to avoid contamination. A micropipette was used to
measure the volumes of the collected xylem-sap samples. The
unit volume’s K and Al concentrations of the samples were
determined by ICP-MS.

Results

Sequence alignment, phylogenetic
analysis, and isolation of Osnip1;2
mutants

There are 10 NIP members in the rice genome (Oryza
sativa) (Bansal and Sankararamakrishnan, 2007). Phylogenetic
analysis (Supplementary Figure 1) and sequence alignment
(Supplementary Figure 2) indicated that AtNIP1;2 and its
closest homolog, OsNIP1;2, share 63.7% amino-acid sequence
identity.

Aquaporins (AQPs) share highly conserved structural
features (Hove and Bhave, 2011), containing two highly
conserved constrictions in the pore region thought to specialize
AQPs’ functions (de Groot and Grubmuller, 2001; Forrest and
Bhave, 2007). The first constriction consists of two highly
conserved NPA (asparagine-proline-alanine) motifs in the inter-
helical loop B (LB) and loop E (LE) (Supplementary Figure 2).
The second constriction is the so-call ar/R (aromatic/arginine)
region, which contains four residues located in helix 2 (H2),
H5, LE1, and LE2 (Supplementary Figure 2; de Groot and
Grubmuller, 2001; Wallace and Roberts, 2004; Forrest and
Bhave, 2007).

The plant’s unique NIP members could be further classified
into NIP-I and NIP-II subgroups (Wallace and Roberts, 2004;
Wallace et al., 2006). Members of the NIP-I subgroup have
a conserved ar/R tetrad sequence of Trp (W), Val/Ile (V/I),
Ala (A), and Arg (R), and an invariable NPA triad sequence
for the NPA1motif. However, for the NPA2 motifs, the triad
sequence of a NIP-I member could be variable as NPA, NPG,
or NPV (Mitani et al., 2008). OsNIP1;2 and AtNIP1;2 are NIP-I
members and share a conserved ar/R tetrad sequence of WVAR
(Supplementary Figure 2). However, they have different triad
sequences in the NIP2 motif, i.e., NPG in AtNIP1;1 and NPA in
OsNIP1;2 (Supplementary Figure 2).

To evaluate the biological function of OsNIP1;2 in rice, a
CRISPR/Cas9 system was used to generate Osnip1;2 mutants.

Through Agrobacterium-mediated genetic transformation, 27
tissue-cultured plantlets were obtained, among which 25
plantlets showed edited OsNIP1;2 sequences, indicating an
editing efficiency of 92.6%.

Four types of plantlets could be identified by sequence
decoding in the T0 generation, including those with
homozygous, monoallelic heterozygous, biallelic heterozygous,
and non-editing. First, an online CRISPR-P tool was used
to screen five potential off-target sites carrying three to five
mismatched bases1 (Supplementary Table 1). No off-target
effects were identified in selected putative loci against sgRNA1
and sgRNA2 (Supplementary Table 1). Then, two homozygous
mutant lines, with one nucleotide deletion in target 1 or one
nucleotide insertion in target 2, which led to the shift of open
reading frame and mutated OsNIP1;2, were designated as
Osnip1;2-1 and Osnip1;2-2 (Supplementary Figures 3, 4) and
chosen for further characterization.

Phenotypic analysis of Osnip1;2
mutant lines

Root growth of the wild-type (WT), Osnip1;2-1, and
Osnip1;2-2 plants was comparable under the -Al (control)
condition (Figure 1A). However, root growth of Osnip1;2-1
and Osnip1;2-2 showed more potent root-growth inhibition by
500 µM Al than the WT (Figure 1A). Moreover, such a root-
growth inhibition in the two Osnip1;2 mutant lines were Al-dose
dependent (Figures 1A,B), indicating that OsNIP1;2 plays a
crucial role in Al tolerance in rice.

The responses of the Osnip1;2 mutants to toxic levels
of other metal ions, including La3+, Zn2+, and Cd2+, were
examined to investigate the sensitive specificity to Al stress.
The results indicated that the WT and mutants showed no
difference in growth inhibition by 20 µM CdCl2, 5 µM LaCl3,
or 60 µM ZnSO4 (Figure 1C). Therefore, the Osnip1;2 mutants
are specifically sensitive to Al toxicity.

OsNIP1;2 expression is induced by Al
stress

RT-qPCR analyses showed OsNIP1;2 transcript levels were
significantly higher in the root, stem, and leaf than in the
seed and panicle (Figure 2A). Time-course RT-qPCR analyses
indicated that OsNIP1;2 transcripts were rapidly up-regulated
in the root, peaked at 4 h after Al treatment, and remained
high after 24 h (Figure 2B). Furthermore, increased Al
concentrations in the treatment solutions were associated with
enhanced OsNIP1;2 expression in the root (Figure 2C). In

1 http://skl.scau.edu.cn/offtarget/
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FIGURE 1

Mutations in OsNIP1;2 sensitize the rice mutants to Al stress.
(A) Growth phenotypes of the WT [Oryza sativa L. ssp. Indica
“Minghui86” (“MH86”)] and two Osnip1;2 mutant lines under Al
stresses. Seedlings were grown in a hydroponic solution (pH 4.2)
containing 0 or 60 µM AlCl3 for 7 days. (B) Relative root growth
of WT and Osnip1;2 mutants treated with different Al
concentrations for 2 days. (C) Root length (cm) of the WT and
two Osnip1;2 mutant lines under various metal stresses (50 µM
AlCl3; 20 µM CdCl2, 100 µM ZnSO4, or 5 µM LaCl3 for 24 h.
Data in panels (B,C) are mean ± SD of 10 biological replicates.
Scale bar = 1 cm. Asterisks indicate significant differences
between WT and Osnip1;2 mutants (*P < 0.05).

addition, OsNIP1;2 expression was induced by Al3+ ions but not
responsive to Zn2+, Cd2+, and La3+ (Figure 2D).

OsNIP1;2 is localized to the plasma
membrane

The subcellular localization of OsNIP1;2-GFP was evaluated
by transient co-expression of OsNIP1;2-GFP and the red
fluorescence protein (RFP)-PIP2;1, a PM marker protein, in
tobacco (Nicotiana benthamiana) leaf epidermal cells (Nelson
et al., 2007). The RFP-PIP2;1 signal was localized in the
plasma membrane of N. benthamiana cells, overlapping with
OsNIP1;2:GFP (Figure 3A). In addition, the DAPI-stained
nucleus was enclosed by the OsNIP1;2-GFP fluorescence in the
cytoplasm (Figure 3B). These results demonstrated OsNIP1;2 as
a PM-localized protein.

OsNIP1;2 affects Al distribution in rice

Al accumulation in the root cell wall can be visualized
by hematoxylin staining. When the roots of WT, Osnip1;2-1,

FIGURE 2

Patterns of OsNIP1;2 gene expression in rice. (A) Detection of
OsNIP1;2 expression in the seed, root, stem, leaf, and panicle by
RT-qPCR analysis. (B) Time-course RT-qPCR analysis of
OsNIP1;2 expression in the WT roots exposed to 50 µM AlCl3.
(C) OsNIP1;2 expression in the WT root treated with different Al
concentrations. (D) RT-qPCR analysis of OsNIP1;2 expression in
the WT roots in response to different metal ions. The WT plants
(5-days-old) were treated for 6 h with 50 µM AlCl3; 20 µM
CdCl2; 5 µM LaCl3; or 100 µM ZnSO4. Asterisks indicate
significant differences between CK and AlCl3 treatments
(**P < 0.01).

and Osnip1;2-2 seedlings were stained with hematoxylin after
Al treatment, the Osnip1;2-1 and Osnip1;2-2 plants showed
much stronger hematoxylin staining in the root apex than the
WT plants (Figure 4A). These results suggest that OsNIP1;2
facilitates Al removal from the root cell wall.

Furthermore, compared with the WT plants, the Al-treated
Osnip1;2 mutants had significantly lower Al concentrations in
the root cell sap (Figure 4B). In contrast, the root-cell-wall
Al concentrations were considerably higher in the Osnip1;2
mutants than in WT plants (Figure 4C). These results indicate
that OsNIP1;2 participates in removing the Al in the root cell
wall to the cytosol.

We measured Al concentrations of the root and shoot after
Al treatment to further evaluate the role of OsNIP1;2 in the root-
to-shoot Al distributions. Compared with the WT, the Osnip1;2-
1 and Osnip1;2-2 mutants possessed remarkably higher and
lower Al concentrations in the root (Figure 5A) and shoot,
respectively (Figure 5B). These results indicated that OsNIP1;2
plays a vital role in Al translocation to the shoot in rice.

The role of OsNIP1;2 in loading Al to the xylem was
examined by evaluating Al concentrations in the root xylem
exudates. The results indicated that Al concentrations of the
root xylem exudates were considerably lower in the Osnip1;2-
1 and Osnip1;2-2 mutants than in the WT (Figure 5C), while
the K concentrations were comparable among the WT and the
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FIGURE 3

The OsNIP1;2 protein was localized to the plasma membrane of Nicotiana benthamiana epidermal cells. (A) The OsNIP1;2-GFP (green) fusion
protein was colocalized with the PM marker PIP1;2:RFP (red) when transiently expressed in the tobacco epidermal cell. (B) The nucleus (blue) of
a tobacco epidermal cell expressing 35S:OsNIP1;2:GFP was stained with DAPI. The image was observed under a confocal laser microscope.
Scale bar: 10 µm.

FIGURE 4

Aluminum distribution in rice root. (A) Hematoxylin staining
indicated aluminum accumulation in the WT and Osnip1;2
mutants’ root cell walls. Scale bar, 100 µm. (B) The Al
concentration in the root cell sap. (C) The Al concentration in
the root cell wall. WT, Osnip1;2-1, and Osnip1;2-2 plants
(5-days-old) were exposed to 50 or 100 µM AlCl3 (pH 4.2) for
8 h. The root-cell-sap Al concentrations (B) and the
root-cell-wall Al contents (C) were determined by ICP-AES.
Data are the average of three biological replicates. ∗∗P < 0.01
between WT and individual Osnip1;2. FW, fresh weight.

Osnip1;2 mutants (Figure 5D). Furthermore, compared to the
WT, 43 and 68% decreases in Al concentrations were observed
in the root cell sap (Figure 4A) and the root xylem exudate

FIGURE 5

Al distribution in Rice. Total Al concentrations in the root (A),
shoot (B), xylem sap (C), and the K concentration in the xylem
sap (D). Plants were grown in the nutrient solution for 5 days
and then exposed to 50 or 100 µM AlCl3 for 8 h. Then, Al
concentrations were measured using ICP- AES. Data are the
average of three biological replicates. **P < 0.01 between WT
and individual Osnip1;2 lines. DW, dry weight.

(Figure 5C), respectively, in the Osnip1;2 mutants. The extra
percentage decreases in Al concentrations in the xylem sap of the
Osnip1;2 mutants could be attributed to the impaired function
of OsNIP1;2 in loading Al to the xylem of the root cells.

Taken together, our results suggested that OsNIP1;2
involves removing Al from the root cell wall and promotes
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Al translocation to the shoot by facilitating Al loading
to the root xylem.

Decreased Al tolerance by
heterologous expression of OsNIP1;2
in yeast

We transferred the pYES2-GFP (control) and pYES2-
OsNIP1;2-GFP (OsNIP1;2) constructs to the wild-type (BY4741)
yeast cells. When expressed in the yeast cell, the OsNIP1;2-
GFP fusion protein was detected at the plasma membrane
under a confocal microscope (Figure 6A). This result was
consistent with the OsNIP1;2 subcellular localization observed
in Nicotiana benthamiana epidermal cells (Figure 3).

We compared the Al sensitivity of the transformed yeast
lines to test if OsNIP1;2 could contribute to Al resistance in
yeast. Without Al treatment, the OsNIP1;2-expressing line and
the control (empty vector) line displayed similar cell-growth
rates (Figure 6B). In contrast, expressing OsNIP1;2 in yeast led
to remarkably more sensitivity of the yeast line to Al stress
(Figure 6B).

Short-term (up to 8 h) Al uptake by OsNIP1;2 were tested
in the presence of Al3+ (Figure 6C) or Al3+ complexed with
different cellular ligands, including citrate (Cit), malate (Mal),
oxalate (Oxa), succinate (Suc), fumarate (Fum), aconite (Aco),
cysteine (Cys), histidine (His), glutathione (GSH), phytochelatin
(PC), and metallothionein (MT) (Supplementary Figure 5).
In a short-term (up to 8 h) time-course assay, significant
OsNIP1;2-mediated Al uptake activities were observed in the
OsNIP1;2-expressing yeast cells after incubation in the uptake
solution containing 50 µM AlCl3 for 4 h (Figure 6C). This result
suggested that OsNIP1;2 facilitated Al uptake in yeast.

To test the effects of different cellular ligands on OsNIP1;2-
mediated Al uptake, we performed a short-term (4 h) Al uptake
assay for the yeast lines (BY4741) carrying the pYES2-GFP or
pYES2-OsNIP1;2-GFP construct in the presence of Al3+ or Al3+

conjugated with different cellular ligands mentioned above.
The pYES2-OsNIP1;2-GFP line showed significantly enhanced
Al uptake activities in the presence of Al3+ and the Al-Cys
conjugated complex in the uptake solution but not with other
Al-ligands (Supplementary Figure 5). This result suggests that
the Al-Cys complex could be a transport substrate for OsNIP1;2.

Discussion

OsNIP1;2 is probably an aluminum
transporter

Aquaporin members can transport various small molecules,
including B, As, glycerol, Al-malate complexes, and Zn
complexes (Wang et al., 2017, 2022; Singh et al., 2020). OsNIP1;2

is one of the 10 members of the NIP subfamily in rice (Bansal
and Sankararamakrishnan, 2007). Expressing OsNIP1;2 caused
the yeast cells to be more susceptible to Al toxicity (Figure 6B).
In addition, the yeast cells expressing OsNIP1;2 displayed
enhanced Al uptake activities when grown in the liquid medium
supplemented with AlCl3 or the Al-Cys complex (Figure 6C and
Supplementary Figure 5). As the OsNIP1;2 is localized to the
PM in the yeast cell (Figure 6A), it is reasonable to assume that
OsNIP1;2 can facilitate Al transport and uptake into yeast cells.

Our previous results suggested that the aluminum-malate
(Al-Mal) complex could be a transport substrate for AtNIP1;2
(Wang et al., 2017). As the AtALMT1-facilitated malate release
system accounts for most of Al resistance in Arabidopsis
(Hoekenga et al., 2006; Liu et al., 2009), AtNIP1;2 plays a critical
complementary role in removing the Al-Mal complex from the
root cell wall for Arabidopsis plants to achieve higher overall Al
resistance (Wang et al., 2018, 2020).

OsNIP1;2 is the closest sequence homolog of AtNIP1;2
(Supplementary Figure 2) and is involved in Al transport,
translocation, and resistance in rice (Figures 1, 4, 5). However,
OsNIP1;2 appeared not to facilitate Al-Mal transport in
yeast (Supplementary Figure 5). Instead, an Al-Cys transport
activity was observed for the OsNIP1;2-expressing yeast line
(Supplementary Figure 5). Although AtNIP1;2 and OsNIP1;2
share a high degree of sequence homology in overall sequences,
especially in the ar/R region and NPA motifs (Supplementary
Figure 5), a single amino acid difference in the NPA2
constriction (Supplementary Figure 5) might change the
transport substrate preferences for these two transporters.

Aquaporin transporters are believed to facilitate
transporting polar but non-charged small molecules. However,
a significant but minor Al transport activity was also observed
for the yeast line carrying OsNIP1;2 in the presence of Al3+ ions
(Figure 6 and Supplementary Figure 5). As yeast cells secrete
cellular ligands into the growth media (Kutralam-Muniasamy
et al., 2015), the external ligands and Al3+ could form Al-ligand
complexes in the uptake medium, which could be taken up by
OsNIP1;2. Therefore, the Al taken up by OsNIP1;2 in the Al3+

condition (Figure 6 and Supplementary Figure 5) could be in
the form of Al-ligands but not as Al3+ ions. Further studies are
required to distinguish these possibilities and to identify the
identity of the ligand.

OsNIP1;2 facilitates removing
aluminum from the root cell wall and
promotes its translocation to the shoot

The cell walls in the root apex are a significant target of Al
toxicity. The reason is that Al toxicity disrupts the root cell walls’
integrity, structure, and function in the root tip, as evidenced by
the distorted and swollen cells in the root apex (Ma et al., 2004;
Horst et al., 2010; Sivaguru et al., 2013). Therefore, reducing the
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FIGURE 6

Functional analysis of OsNIP1;2 in yeast. (A) Subcellular localization of OsNIP1;2 in yeast. The yeast cells expressing the OsNIP1;2:GFP fusion
protein (green) were stained with the red CellMask Plasma Membrane Staining reagent (Thermo Fisher Scientific) and observed under a
confocal laser microscope (Scale bar: 1 µm.). Arrows point to the tonoplast. (B) Ten microliters of yeast cell suspension with an OD of 0.2 and
four serial 1:5 dilutions were spotted on LPM agar plates supplemented with 0, 150, or 300 µM AlCl3. The pYES2-GFP (GFP) or the
pYES2-OsNIP1;2-GFP (OsNIP1;2-GFP) yeast lines were used for the growth experiments. (C) OsNIP1;2-mediated Al uptake in yeast. Gene
expression of GFP or NIP1;2-GFP in yeast cells was induced by 2% galactose for 2 h. Al uptake was determined by analyzing the differences in Al
contents of the AlCl3-treated (50 µM) yeast lines for 0–8 h. Data are the average of three biological replicates. Asterisks mark significant
differences between two yeast lines (*P < 0.05, **P < 0.01).

cell wall’s Al concentrations in the root apices could alleviate Al
toxicity and thus improve plants’ Al resistance.

Decreases in Al accumulation in the root cells could be
achieved by lowering the binding capacity to Al via modifying
cell-wall components, such as reducing the polysaccharide
concentrations and/or increasing degrees of pectin methylation
(Yang et al., 2008, 2011). Another means is to remove Al from
the root cell wall for further detoxification inside the cell (Xia
et al., 2010; Wang et al., 2017). The Al could be sequestered
into the vacuole of the root cell or moved to xylem parenchyma
for uploading to xylem for translocation to the less vulnerable
shoot via the xylem stream. Our previous results indicate that
AtNIP1;2 functions as a bi-directional channel, facilitating the
Al uptake from the root cell wall and subsequent Al uploading
to the xylem sap (Wang et al., 2017).

Loss-of-OsNIP1;2 functions impaired Al removal from the
root cell wall (Figure 4) and subsequent Al translocation to
shoot (Figure 5), which made the mutant plants susceptible to
Al toxicity (Figure 1). The results indicate that the PM-localized
OsNIP1;2 is a crucial component of the internal detoxification
mechanism in rice.

The roles of OsNrat1 and OsNIP1;2 in
removing aluminum from the root cell
wall

In plants, members of the Nramp (natural resistance-
associated macrophage protein) transporters are localized to
membranes of different subcellular compartments, facilitating

the transport of divalent and trivalent metal ions, including
Fe2+, Zn2+, Cd2+, Mn2+, As2+, and Al3+, in monocots and
dicots plants (Williams et al., 2000; Mäser et al., 2001; Pittman,
2005; Ding and Cai, 2017). Recently, Nrat1 (Nramp aluminum
transporter1) has been suggested to facilitate transporting the
root cell walls’ Al3+ ions to the cytosol in rice (Xia et al., 2010;
Li et al., 2014). Then, the cytosolic Al could be transported to
the vacuoles of the root cells by OsALS1 or other unknown
transporters.

In contrast, members of the aquaporin superfamily are
channel proteins and are believed to transport polar but non-
charged small solutes (Forrest and Bhave, 2007; Maurel et al.,
2008). However, our recent studies suggest that some members
of the aquaporin subfamilies could be involved in transporting
divalent metal ions, Zn2+, and trivalent valent metal ions, Al3+,
complexed with cellular ligands such as glutathione (GSH) and
malate, respectively (Wang et al., 2017, 2022). The metal-ligand
complexes are presumably neutrally charged; thus, they could be
transport substrates for aquaporin transporters.

Under adverse conditions, plant roots secrete various
metabolites into the rhizosphere. The root exudates could adjust
soil pH to solubilize mineral nutrients and make them more
accessible to plants; chelate toxic compounds; facilitate the
formation of beneficial microbiota communities, or function
as toxic compounds for pathogens (Bertin et al., 2003; Bais
et al., 2006; Badri and Vivanco, 2009; Baetz and Martinoia,
2014; Zhao et al., 2019; Vives-Peris et al., 2020; Upadhyay
et al., 2022). For instance, under Al toxicity, plant roots secrete
various organic acids (OAs), i.e., malate, citrate, and oxalate,
into the rhizosphere (Sasaki et al., 2004; Magalhaes et al., 2007;
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Liu et al., 2009, 2012; Matonyei et al., 2014; Kochian et al., 2015;
Qiu et al., 2019). The OAs and Al3+ form OA-Al complexes in
the rhizosphere, which are inaccessible to root cells and thus
non-toxic to plants. However, our studies indicated that the
OA-Al complexes retained in the root cell wall could be toxic,
and they need to be removed from the root cell wall to reach
a higher resistance level for plants (Wang et al., 2017, 2020).
Although root OA exudation could not explain Al resistance in
rice (Famoso et al., 2011), the Al complexed with other cellular
ligands in the root cell wall could be harmful to the root cells and
needs to be removed.

Thus, although structurally distinct, the putative Al3+

transporter, Nrat1, and Al-ligand transporter, NIP1;2, are
functionally overlapped but complementary in the same
biochemical process to clean out the Al retained in the root cell
wall under the acid soil condition.

Conclusion

In this report, we have demonstrated that the OsNIP1;2
gene expression is explicitly induced in the rice root by
Al stress. Moreover, the impaired OsNIP1;2 caused the
mutant rice plants to be more vulnerable to Al toxicity.
Thus, OsNIP1;2 is required for Al resistance in rice. In
addition, phenotypic observations indicated that the OsNIP1;2
facilitates Al removal from the root cell wall and subsequent
redistribution to the above-ground tissues. In addition to the
hypersensitive phenotypes to elevated Al concentrations in
the medium, the OsNIP1;2-expressing yeast cells accumulated
higher amounts of Al in the cells and were sensitive to
Al toxicity. In conclusion, OsNIP1;2 reduces root cell wall’s
Al concentrations and promotes Al redistribution from the
root to the above-ground tissues, vital for achieving internal
detoxification of Al in rice.
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