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Despite the wide use of computer vision methods in plant health monitoring,

little attention is paid to segmenting the diseased leaf area at its early stages. It

can be explained by the lack of datasets of plant images with annotated disease

lesions. We propose a novel methodology to generate fluorescent images of

diseased plants with an automated lesion annotation. We demonstrate that a

U-Net model aiming to segment disease lesions on fluorescent images of plant

leaves can be efficiently trained purely by a synthetically generated dataset. The

trained model showed 0.793% recall and 0.723% average precision against an

empirical fluorescent test dataset. Creating and using such synthetic data can

be a powerful technique to facilitate the application of deep learning methods

in precision crop protection. Moreover, our method of generating synthetic

fluorescent images is a way to improve the generalization ability of deep

learning models.

KEYWORDS

synthetic data, semantic segmentation, plant disease, precision agriculture, deep
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1 Introduction

Being a severe environmental and health issue, the unsustainable usage of chemicals

in agriculture induced to development of early disease detection methods and precision

spraying (Lefebvre et al., 2015). Various non-invasive and non-destructive imaging

techniques, particularly thermal, multispectral, hyperspectral, and chlorophyll

fluorescence, can identify infection before visible symptoms appear (Mutka and Bart,

2015; Singh et al., 2020). Plants experiencing biotic and abiotic stress exhibit changes in

chlorophyll fluorescence emission (Baker, 2008). Thus, chlorophyll fluorescence imaging

(CFI) is a well-established, effective tool for comprehensively examining the development

and effects of bacterial, fungal, and viral infections on leaves of many cultivated plants
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(Rousseau et al., 2013; Rousseau et al., 2015a; Méline et al., 2019;

Pérez-Bueno et al., 2019; Méline et al., 2020; Valcke, 2021). CFI

has potential use for monitoring the damaging effect of diseases

on plants from the laboratory to the field scale (Ivanov and

Bernards, 2016). Coupled with semantic segmentation, CFI can

be deployed to target location, size, and the disease state at an

early stage of its progress (Ampatzidis, 2018; Singh et al., 2020).

Moreover, automatic estimation of the diseased plant area can

describe the disease ’s epidemiological characteristics,

understand disease dynamics, assess its propagation speed, and

thus facilitate management decisions.

One needs a large annotated image dataset with labeled

diseased plant tissues to produce a precise model for automatic

disease segmentation. The colossal effort of dataset annotation is

ongoing, as highlighted in recent reviews on computer vision for

scoring plant diseases (Singh et al., 2020; Abade et al., 2021; Li

et al., 2021; Liu and Wang, 2021). Moreover, the international

community in computer vision for plant pathology makes an

additional effort by publicly sharing annotated datasets (Lu and

Young, 2020). Notice that most available annotated datasets of

diseased plants are in standard RGB color imaging and for

disease stages when symptoms differ from healthy tissues quite

well, by color and contrast. Several challenges exist for disease

annotation in CFI at the earlier stages, such as (a) detection by

the eye of the disease spots in noisy monochromatic images; (b)

extremely tiny size of disease lesions; (c) a large number of

scattered lesions to annotate. So far, to the best of our

knowledge, only one annotated dataset of fluorescent images

of diseased Arabidopsis thaliana plants is currently available

(Pavicic et al., 2021). However, the automated annotation of

Botrytis cinerea fungal disease was performed for disease severity

exceeding 8%. Thus, the high human labor cost of manual

annotation results in the lack of annotated fluorescence images

of diseased plants suitable for disease segmentation (Lu and

Young, 2020).

One way to circumvent this difficulty is to simulate a

synthetic dataset with automated annotation. Using a synthetic

dataset for the model training alleviates the annotation cost and

augments the dataset, thus improving the model’s ability to

generalize (Douarre et al., 2019; Abbas et al., 2021). This

approach has been widely used in plant disease classification

(Sun et al., 2020; Abbas et al., 2021; Cap et al., 2022). In contrast,

in disease detection and segmentation, there are still only a few

examples of the synthetic datasets (Douarre et al., 2019; Zhang

et al., 2021). Additionally, since RGB cameras dominate plant

disease monitoring (Iqbal et al., 2018), having the more

affordable cost (Mavridou et al., 2019), image analysis methods

are adapted for this type of imaging, which results in the creation

of RGB synthetic datasets. However, RGB imaging is unsuitable

for early disease diagnosis and is sensitive to illumination

condit ions that can significant ly al ter color-based

segmentation accuracy (Iqbal et al., 2018; Mavridou et al., 2019).
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To fill this gap, our goal was twofold: (1) to develop a novel

methodology for generating fluorescent images of plants with an

automated disease lesion annotation; (2) to illustrate the efficacy

of the trained model on the synthetic dataset for segmentation

lesions on an empirical CFI dataset of Arabidopsis thaliana

infected by the bacterium Pseudomonas syringae pv. tomato.

This traditional way of transfer learning from synthetic images

to real ones is called the sim2real transfer. The first generation of

sim2real on fluorescence imaging was proposed in 2019 on

healthy Arabidopsis thaliana plants for leaf segmentation

(Sapoukhina et al., 2019). Here, we extended this approach to

the case of disease lesion segmentation. First, we analyzed the

principal statistics of the empirical CFI dataset to derive some

relationships that fluorescent synthetic data should respect.

Second, we created a synthetic dataset under derived

conditions. Third, we trained the U-Net model on synthetic

data to segment disease lesions and transferred the model to the

empirical CFI dataset. Finally, we discussed the conditions for

successful sim2real transfer.
2 Materials and methods

2.1 Bacterial strain and culture conditions

A strain of Pseudomonas syringae pv. tomato (accession

CFBP 7438) was obtained from CIRM-CFBP (INRAE Angers).

This accession is a Rifampicin resistant variant strain obtained

from strain DC3000. Bacteria were cultured on KB

supplemented with Rifampicin (100 mg/ml) to avoid any other

contaminating bacteria. To produce the bacterial inoculum, we

resuspended bacterial cells in sterile water to an OD600 = 0.5.

Then, aliquots of the bacterial inoculum were diluted and plated

on KB agar supplemented with Rifampicin to check that the

concentration reached approximately 108 cfu.ml −1.
2.2 Plant material and inoculation

After sowing, rosettes of Arabidopsis thaliana ecotype Col0

were grown on peat (Tray substrate Klasmann-Delimann France

SARL, CS 71012, 38807 Bourgoin-Jallieu, France) and watered

with fertilized water (N/P/K: 15/10/30, EC= 1.2 S). Plants were

kept under short days conditions (photoperiod of 8h day and

16h night, the intensity of incident light was set to 150 mE). The
temperature was set at 21°C on days and 19°C during nights.

Relative humidity was set to 60% during the development of

rosettes (until three weeks after sowing), then raised to 95% after

inoculation until the end of the experiment. Three weeks after

sowing, plants were inoculated by spraying either sterile water

(mock) or a bacterial suspension at OD600 = 0.5 and kept for

15days to develop disease symptoms.
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To ensure that the observed symptoms were due to

inoculation, the development of populations of strain DC3000

on A. thaliana Col0 was checked at the end of the experiment:

mock and bacteria-inoculated rosettes were harvested and

weighed. Total bacterial population sizes were quantified by

macerating the rosettes in 10 ml of sterile water using a

Stomacher 80 (Seward, London) for 2 min at maximum

power. Every sample and appropriate dilutions were plated on

KB supplemented with Rifampicin at 100 $\mu$g/ml. Therefore,

we checked that populations of Pseudomonas syringae DC3000

reached 3.5 106 cfu.g −1 of leaf tissues at the end of

the experiment.
2.3 Chlorophyll fluorescence imaging
and image acquisition

Visible disease symptoms do not provide complete

information about plant health, and they are not the best

indicator for estimating plant disease severity at the earlier

stages of the infection. Plants experiencing biotic and abiotic

stresses exhibit changes in chlorophyll fluorescence emission

(Baker, 2008), which can be observed with fluorescence imaging.

One of the most widely studied parameters based on

chlorophyll fluorescence is Fv/Fm , also known as the

maximum quantum efficiency of photosystem PSII (Baker,

2008). This parameter is calculated from Fm , the maximum

fluorescence of a dark-adapted leaf, and Fv , the difference

between Fm and the minimum fluorescence from a dark-

adapted leaf, F0 . Up to now, the Fv/Fm=(Fm−F0)/Fm
parameter, has played an important role in plant stress

research. It represents the maximum potential capacity of PSII

reaction center, transforming the photon energy absorbed by

PSII into photochemical energy. While non-stressed plants

maintain a consistent Fv/Fm value, various studies have shown

that plants experiencing biotic or abiotic stresses have decreased

Fv/Fm values (Berger et al., 2006; Matous et al., 2006; Baker, 2008;

Rolfe and Scholes, 2010; Wang et al., 2018), and changes in this

parameter occur before visible disease symptoms occur (Rolfe

and Scholes, 2010). Furthermore, healthy tissues were reported

to yield Fv/Fm values around 0.84 for numerous plant species

(Maxwell and Johnson, 2000; Rousseau et al., 2013; Pavicic et al.,

2021). Thus, using Fv/Fm decrease as an indicator of plant stress,

(Rousseau et al., 2013) developed a thresholding approach to

segment diseased areas of bean leaflets infected by a common

bacterial blight. The same approach was used by (Pavicic et al.,

2021). The authors defined the pixel value threshold of Fv/

Fm≤0.75 as the cutoff for symptomatic pixels of Arabidopsis

leaflets infected with a Botrytis strain.

Since dark adaptation for Fv/Fm measurements makes it

difficult to translate to agricultural fields, other photosynthetic

parameters and a combination of CFI with other imaging

techniques have been studied for the detection of plant
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diseases (Bauriegel and Herppich, 2014; Mutka and Bart, 2015;

Ivanov and Bernards, 2016). Despite its limitations, the Fv/Fm
measurement remains state-of-the-art for studying plant-

pathogen interactions under laboratory conditions. In this

study, we exploit the Fv/Fm decay property to simulate

diseased pixels on Arabidopsis plant images and thus create a

synthetic dataset of fluorescent images of diseased plants.

Real-Fluo-Healthy and Real-Fluo-Diseased datasets

described further were acquired with the PSI Open FluorCam

FC 800-O (PSI, Brno, Czech Republic), capturing chlorophyll

fluorescence images and estimating the maximum quantum

yield of PSII, Fv/Fm , on rosettes of Arabidopsis thaliana

ecotype Col0. The system sensor was a CCD camera with a

pixel resolution of 512 by 512 and a 12-bit dynamic range. The

system included 4 LED panels divided into two pairs. One pair

provided an orange actinic light with a wavelength of around 618

nm, with an intensity varying from 200 to 400 mmol m-2 s-1. It

provided a 2s pulse that allowed measuring the initial fluorescent

state, F0 . The other pair provided a saturating pulse during 1s in

blue wavelength, typically 455 nm, with an intensity of up to

3000 mmol m −2 s −1 . The saturating pulse allowed us to collect

the maximum fluorescence, Fm . CFI was used in a dark-adapted

mode after a dark period of 45 min to produce maps with the

fluorescent quantum efficiency Fv/Fm=(Fm−F0)/Fm . We used a

typical acquisition protocol, namely quenching analysis (Kolber

et al., 1998), to measure F0 and Fv/Fm parameters. First, the

parameter F0 was measured using a modulated light of 0.1 mmol

m −2 s −1 . Then orange actinic light with intensities of 80 mmol

m −2 s −1 was used during the light-adapted period of 60 s. The

illumination protocol also involved 6 pulses of 0.8 s duration of

blue saturating light with an intensity of 1500 mmol m −2 s −1 : 5

pulses during the light-adapted period and 1 pulse during the

dark-relaxation period. Such an intensity of the saturating light

pulse was chosen as it resulted in a ratio (Fm−F0)/Fm of 0.82

measured on healthy plants and being close to the optimal value

of 0.83 (Björkman and Demmig, 1987).
2.4 CVPPP dataset

To design plant shapes in Synthetic-Fluo-Diseased dataset,

we used the open dataset provided in the Leaf Segmentation

Challenge held as part of the computer vision problems in plant

phenotyping CVPPP workshop (Minervini et al., 2016). CVPPP

dataset consists in 27 RGB images of tobacco plants and 783

RGB images of Arabidopsis wild and mutant plants. We

considered only the Arabidopsis dataset in this study. All

images are hand-labeled to obtain ground truth masks for

each leaf in the scene, as described in (Minervini et al., 2015).

These masks are image files encoded in PNG where each

segmented leaf is identified with a unique integer value,

starting from 1, where 0 is the background. We used plant

labels of CVPPP dataset to produce binary masks of plant shapes
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on which further we added texture of Gaussian noise

simulating CFI.
2.5 Real-Fluo-Healthy dataset

To derive the principle measurements of CFI on healthy

plants, we acquired 49 fluorescent images of Arabidopsis

inoculated with sterile water (mock), named further as an

empirical Real-Fluo-Healthy dataset. We emphasize that the

dataset included only healthy plants.

Plants were imaged in chlorophyll fluorescence for 12 days

after inoculation to obtain F0, Fm tiff images. We analyzed the

distribution of the F0 and Fm parameters for Real-Fluo-Healthy

images, deriving mF0, sF0, mFm, sFm at each developmental stage

(Table 1). These values were used further to simulate fluorescent

quantum efficiency, Fv/Fm=(Fm−F0)/Fm, of healthy pixels

of plants.
2.6 Real-Fluo-Diseased dataset

Four weeks after seedlings, Arabidopsis thaliana ecotype

Col0 plants were inoculated with the bacterial Pseudomonas

syringae pv. tomato strain DC3000 as described in Section 2.2.

There were 18 dishes with four Arabidopsis thaliana plants per
Frontiers in Plant Science 04
dish, inoculated with DC3000 bacterial strain. Each dish was

imaged in chlorophyll fluorescence every two days after

inoculation to obtain F0, Fm, and Fv/Fm tiff images. The

dynamics of symptoms growth were followed till the eighth

day after inoculation. It resulted in 108 images of size 512 x 512

containing four plants. The disease lesions were annotated with a

thresholding approach based on the probability of

misclassification of a healthy pixel into the class of diseased

pixels (Rousseau et al., 2013). Thus, we created an empirical

Real-Fluo-Diseased dataset used further to understand the effect

of disease on the fluorescence parameter values. The dataset

included only diseased plants.

Considering separately healthy (h) and diseased (d) pixels,

we analyzed values of the mean and standard deviation of F0, Fm
parameters for eight consecutive days (Table 2). As it was said

before (Section 2.3), Fv/Fm shows a significant decrease with

aggravation of the disease symptoms. Thus, we calculated the

differences between parameter values for healthy and diseased

plant pixels as follows:

DmF0
=
m(d)
F0

− m(h)
F0 

m(h)
F0

,DsF0
=
s (d)
F0

− s (h)
F0

s (h)
F0

,

DmFm =
m(h)
Fm

− m(d)
Fm

m(h)
Fm

,DsFm
=
s (h)
Fm

− s (d)
Fm

s (h)
Fm

(1)

The found relationships among healthy and diseased pixels

(1) allowed estimating the ranges for Di∈[min{Di}, max{Di}],

where i∈{mF0, sF0, mFm, sFm} (Table 3). Further, we used these

parameter variations induced by disease to generate a random

set of parameters describing the fluorescence of diseased pixels.

With parameter values obtained earlier in Section 2.5 for the

healthy pixels, mF0,sF0,mFm,sFm , we obtain:

m rð Þ
F0

= mF0 1 + D rð Þ
mF0

� �
,  m rð Þ

Fm
= mFm 1 − D rð Þ

mFm

� �
,  

s rð Þ
F0

= sF0 1 + D rð Þ
sF0

� �
,  s rð Þ

Fm
= sFm 1 − D rð Þ

sFm

� �
,

(2)

where a random (r) value of D(r)
i ∈ ½minfDig,maxfDig�,

i∈{mF0, sF0, mFm, sFm} .
TABLE 1 Mean, m , and standard deviation, s , for chlorophyll
fluorescence F0, Fm estimated on images from Real-Fluo-Healthy
dataset at different dates after emergence of first leaves (cotyledons).

Time mF0 sF0
mFm

sFm

Day 1 92.48 33.89 636.95 217.8

Day 5 104.84 33.24 711.33 200.27

Day 6 106.67 32.88 735.35 195.82

Day 7 101.21 31.11 735.91 192.7

Day 8 104.88 33.19 710.82 199.74

Day 11 107.99 29.46 785.74 183.04

Day 12 111.12 29.5 800.9 179.16
TABLE 2 Mean, m, and standard deviation, s, for chlorophyll fluorescence F0, Fm estimated on the healthy (h) and diseased (d) tissues of the plants
over 18 dishes from Real-Fluo-Diseased dataset at different dates after the emergence of cotyledons.

Time Healthy Pixels Diseased Pixels

m(h)
F0

s (h)
F0

m(h)
Fm

s (h)
Fm

m(d)
F0

s (d)
F0

m(d)
Fm

s (d)
Fm

Day 0 62.86 15.25 418.49 88.84 56.08 18.36 257.26 89.57

Day 2 64.76 16.33 432.51 95.46 66.99 21.06 299.42 93.2

Day 5 67.17 16.79 438.92 96.36 74.87 21.67 302.2 89.98

Day 6 67.4 17.14 444.77 99.07 77.42 21.81 308.15 89.77

Day 7 68.79 17.4 447.74 99.96 75.1 22.18 305.9 91.56

Day 8 67.26 16.99 441.19 98.53 71.9 22.34 304.12 92.37
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To analyze disease symptoms growth, we calculated severity,

S , and the plant size, P :

S =
d

H*W
*100%, (3)

P =
p

H*W
*100%, (4)

where d is the number of diseased pixels, p is the number of

plant pixels, H and W are the image ’s height and

width, respectively.

To create a dataset for model testing, we used Real-Fluo-

Diseased dataset. We divided every original image with four

plants into four resized 128 x 128 images that were finally added

to the dataset. Thus, we obtained 432 fluorescent images of

diseased Arabidopsis thaliana plants.
2.7 Synthetic-Fluo-Diseased dataset

We used plant labels of CVPPP dataset to produce binary

masks of leaves for every Arabidopsis image as it is shown in

Figure 1. In CVPPP labels, every leaf was determined by its

consistent color. So we used getcolor() function from Python
Frontiers in Plant Science 05
Imaging Library (1.1.7 version) to derive the list of colors used to

depict leaves separately. Then for every color from the list, we

selected pixels belonging to the same leaf and created its binary

mask. The resulting leaf masks of size 128 x 128 pixels were then

used to simulate fluorescence images of Arabidopsis plants.

For every leaf, we performed the following steps:

1. We produced two binary masks: a lesions mask using a

speckle algorithm (Goodman, 2007) and a healthy leaf mask.

2. We produced a noisy field, x(h) , with randomly sampled

parameters (mF0, sF0) from Table 1, learned earlier from the Real-

Fluo-Healthy dataset:

x hð Þ = 1 −
N mF0 ,s

2
F0

� �

N mFm ,s
2
Fm

� � , (5)

where N (mi,s 2
i ) is a Gaussian noise realization. Using the

mask for healthy leaf tissue, we cut from the noisy field, x(h) , a

synthetic fluorescent healthy leaf part.

3. Using expressions (2), we generated a random set of

parameters, fm(r)
F0
,m(r)

Fm
,s (r)

F0
,s (r)

Fm
g, that produced a noisy field,

x(d), describing diseased pixels:

x(d) = 1 −
N m(r)

F0
,s (r)2

F0

� �

N m(r)
Fm
,s (r)2

Fm

� � , (6)

where N (mi,s 2
i ) is a Gaussian noise realization. From the

noisy field, x(d) , we cut synthetic fluorescent lesions by applying

the binary lesion mask.

4. We assembled healthy and diseased parts into a synthetic

fluorescent diseased leaf.

5. We added the resulting simulated fluorescent leaf to the

other leaves obtained earlier. We copied the corresponding

lesions mask to the GT binary mask of the disease spread.
TABLE 3 Estimated ranges for Di, i∈{mF0, sF0, mFm, sFm} for diseased
pixels.

DmF0
DsF0

DmFm
DsFm

min 0.07 0.27 0.3 0.06

max 0.12 0.32 0.32 0.09
FIGURE 1

Algorithm generating a synthetic fluorescent diseased plant and its lesion annotation. Iterations over the leaves with steps 1 - 5 are described in
the text.
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Repeating these five steps, we obtained a synthetic

fluorescent diseased plant and an automatic annotation of

disease lesions (Figure 1).

To augment the number of images in the synthetic dataset,

we produced n synthetic fluorescent examples for every GT label

from CVPPP dataset. The resulting Synthetic-Fluo-Diseased

dataset included only diseased Arabidopsis thaliana plants.
2.8 U-Net model

Most computer vision models treating images of diseased

plants focus on disease classification or disease detection and not

on segmentation of plant diseased tissues (Abade et al., 2021).

Moreover, the predominance of RGB imaging significantly

affected the development of color-based semantic

segmentation approaches. Among deep learning architectures

used for the segmentation of disease spots in RGB images, PSP

Net, U-Net, and DeepLab v3+, or transformer-based

architecture, could be considered as the most suitable for

monochromatic CFI. Here, since we did not focus on

providing a new architecture nor claim any optimality on the

choice of a model, we used a standard U-Net model

(Ronneberger et al., 2015) for segmentation of disease lesions

on the Arabidopsisplants.

The segmentation of the lesions was considered to be a pixel-

wise classification where the pixel of the lesion should be

detected among the other pixels of the image. Each pixel was

therefore classified among three mutually exclusive classes:

healthy pixels, diseased pixels, and background. It means that

a three-component one-hot vector labeled every pixel.

The U-Net model (Ronneberger et al., 2015) was used

originally for the pixel-wise classification of biomedical images

(2). U-Net architecture is divided into the contracting/

downsampling path, the bottleneck, and the expanding/

upsampling path. The encoder-decoder type architecture with

skipped connections combines low-level feature maps with

higher-level ones and enables precise pixel classification. A

large number of feature channels in upsampling part allows

propagating context information to higher resolution layers. The

model’s output was a three-channel label that indicated the class

of every pixel, as shown in Figure 2.

All activation functions in the convolutional layers were

rectified linear units, ReLU (He et al., 2015). The last layer before

the prediction was a softmax activation with three classes.

Images and labels from all datasets were resized to 128 x 128

pixels. Using ground truth (GT) labels, we created three-channel

labels. To reinforce the learning of the lesion class, which was

highly unbalanced, we replaced the encoder with an InceptionV3

backbone pre-trained on ImageNet (Yakubovskiy, 2019). The

decoder was not changed from the original description

(Ronneberger et al., 2015). We empirically found that the best
Frontiers in Plant Science 06
performances were obtained when all skipped connections were

kept, in accordance with the intrinsic multiscale nature of plants

(Rousseau et al., 2015b).
2.9 Model training

In addition to the data augmentation techniques used to

simulate fluorescent images from CVPPP RGB dataset (Section

2.7), we applied a standard data augmentation strategy to reduce

overfitting and improve model generalization. For this data

augmentation, we used Albumentations library (Buslaev et al.,

2020). While the data augmentation strategies of Section 2.7

focused on contrast and noise distribution, here we generated

geometrical transformations such as horizontal flip, vertical flip,

and random rotation at 90 degrees and applied them to a 0.7

shuffled training dataset. The values of three transformations were

all randomly selected from their range. Moreover, when an image

was transformed, its annotation image was transformed similarly.

In addition, since the transformation parameters were randomly

selected, it was necessary to generate a random number. To ensure

the generated data is the same in each epoch during the training

process, we fixed the value of the random seed as 42. As a result,

9317 training data pairs were generated from 5481 training

samples and transformation methods.

It was shown that for high levels of imbalance, loss functions

based on overlap measures appeared to be more robust (Sudre

et al., 2017). Through all of our experiments, we minimized dice

loss:

D y, y*ð Þ = 2oijyijy
*
ij + ϵ

oijyij +oijy
*
ij + ϵ

, (7)

where y is a model prediction with values yij , y* is a ground
truth label with values y*ij and ϵ=0.001 is used here to ensure the

coefficient stability by avoiding the numerical issue of dividing

by 0.

In the optimization process, the Adam method was applied

with the learning rate lr=0.003 , and the other parameters were

consistent with those in the original manuscript (Kingma and

Ba, 2014). Our training procedure consisted of splitting the data

into 80% and 20% training and cross-validation respectively. We

shuffled the dataset examples at the beginning of each epoch and

used a batch size of 16 examples. We also implemented batch

normalization before each activation. The hardware used for

training the model was a GPU server equipped with an Intel

Core i9-9900K CPU and an NVIDIA TITAN V GPU. We

implemented our model with a high-level neural network API

called Keras (Chollet et al., 2015) with the 241 Tensorflow

(Abadi et al., 2015) backbend running on the Ubuntu 18.03

operating system.
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2.10 Model testing

To verify the model’s performance, we used a Test dataset

including Real-Fluo-Diseased images (Section 2.6). To assess the

quality of pixel-wise segmentation, we computed (1) True

Positives (TP ): the number of diseased pixels present in both

prediction and GT mask; (2) False Positives (FP ): the number of

diseased pixels present in prediction but absent in GT mask; (3)

False Negatives (FN ): the number of diseased pixels absent in

prediction but present in GT mask. Knowing these numbers, we

can estimate Recall:

R =
TP

TP + FN
, (8)

that describes the fraction of correctly classified diseased

pixels compared to the total number of diseased pixels in GT

mask. Moreover, Precision value:

P =
TP

TP + FP
, (9)

gives us the fraction of correctly classified diseased pixels

among all predicted diseased pixels. And finally, F1 -score gives

us a global assessment of the model performance:

F1−score =
TP

TP + 0:5 FP + FNð Þ : (10)

The formula for the standard F1-score is the harmonic mean

of the Precision and Recall. A perfect model has an F1 -score of 1.
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2.11 Model training strategies

For each experiment, we changed the dataset composition

(synthetic or empirical images) for learning, fine-tuning, or

testing. Then, we applied a standard scheme of sim2real transfer:

A Train: empirical. Test: empirical.

It was a reference to see what the model could learn from a

small empirical dataset of fluorescent plant images. At this stage,

the analysis of model errors allowed us to choose the pre-

processing strategy for forming the Test dataset from Real-

Fluo-Diseased images.

A Train: empirical. Test: empirical pre-processed.

It was a reference to see how much model precision we

gained using the chosen pre-processing strategy.

B Train: synthetic. Test: empirical pre-processed.

At this stage, we performed the model training on Synthetic-

Fluo-Diseased dataset and tested the model on the pre-processed

Real-Fluo-Diseased. This training strategy validated the quality

and relevance of the created Synthetic-Fluo-Diseased dataset.

Furthermore, the error analysis of the model allowed us to

establish the criteria for sim2real transfer strategy

described below.

C Train: synthetic + n pre-processed empirical examples. Test:

n pre-processed empirical examples.

Here, we used the first sim2real transfer strategy. It consisted

of injection of some empirical images from Real-Fluo-Diseased

for which the model failed to correctly segment disease lesion

into the Synthetic-Fluo-Diseased dataset and training the model
FIGURE 2

U-Net architecture. Each blue box corresponds to a multi-channel feature map. Blue arrows indicate convolution layers. Gray arrows indicate
the merging of the context and localization information done by concatenating the features from the contracting path with the corresponding
ones in the expansion path. Red arrows indicate max-pooling. Green arrows mean upsampling. Input fluorescent image had 128x128 pixels, and
the model’s output was a three-channel binary image: healthy pixels, diseased pixels, and the background.
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from scratch on this mixed dataset. Then, we tested the model on

the other Real-Fluo-Diseased images not used for the training.

D Train: synthetic. Fine-tune: n pre-processed empirical Test:

n pre-processed empirical examples.

We applied the second sim2real transfer strategy to make the

model recognize better the contrast between diseased and

healthy pixels. This strategy consists of the model pre-training

on the Synthetic-Fluo-Diseased dataset and further fine-tuning

the model classifier layer on some empirical examples. Further,

we tested the model on the not-seen examples from the Real-

Fluo-Diseased dataset.

Note that strategies (A-D) used only images of

diseased plants.
3 Results

3.1 Pre-processing strategy for a Test
dataset

The model training and testing on Real-Fluo-Diseased

dataset (Section 2.11, strategy A) revealed that the model

failed to segment disease lesions correctly if lesions looked like

scattered corrupted pixels and severity was less than 0.24%. The

majority of such images were from the first post-inoculation day,

when disease severity varied from 0.012% to 0.24%, with a mean

of 0.055%. Several studies showed that in pre-symptomatic

detection of plant diseases, differences between healthy and

diseased plant tissues become statistically significant from the

second day after inoculation (Boureau et al., 2002; Grishina et al.,

2021). Thus, we proposed to pre-process the dataset in two steps:

1) we applied morphological operations to eliminate corrupted

pixels and to uniform lesions if they included small holes; 2) we

eliminated images with S≤0.24% . As a result, our final Test

dataset contained 153 examples with a severity mean of 1%.
3.2 Principle statistics of Real-Fluo-
Healthy dataset, Real-Fluo-Diseased and
Synthetic-Fluo-Diseased datasets

The resulting mean value and standard deviation of the both

chlorophyll fluorescence parameters F0 and Fm for Real-Fluo-

Healthy dataset are given in Table 1. The order of magnitude of

the mean value and standard deviation of F0 and Fm remained in

the same range in our experiment. Figure 3A shows a Real-Fluo-

Healthy image example of the maximum quantum yield Fv/Fm
and its values distribution.

As shown in Figure 3B, Real-Fluo-Diseased dataset has

disease symptoms of extremely small size. The mean disease

severity of the dataset equals 0.42%, and maximum severity -

4.2% (Figure 4A). The plants of Real-Fluo-Diseased dataset have

the mean size of 39.5%, some images have minimum plant size
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of 1.9% (Figure 4A). Figure 3B shows that for the considered

maximum quantum yield Fv/Fm image of a diseased plant, the

mean values of Fv/Fm are higher for the healthy pixels than for

diseased ones. Table 2 confirms this state.

Analyzing values of F0 and Fm parameters obtained

separately for healthy and diseased pixels (Table 2), we

concluded that:

• For healthy and diseased pixels, mean and standard

deviation values of F0 are less than Fm values:

m hð Þ
F0

< m hð Þ
Fm
,s hð Þ

F0
< s hð Þ

Fm
,m dð Þ

F0
< m dð Þ

Fm
,s dð Þ

F0
< s dð Þ

Fm
:

• The presence of disease lesions on the leaves increases mF0 ,
sF0 and decreases mFm, sFm . It gives:

m hð Þ
F0

< m dð Þ
F0
,s hð Þ

F0
< s dð Þ

F0
,m dð Þ

Fm
< m hð Þ

Fm
,s dð Þ

Fm
< s hð Þ

Fm
:

• Consequently, m(d)
Fv=Fm

< m(h)
Fv=Fm

, s (h)
Fv=Fm

< s (d)
Fv=Fm

. Note that

this conclusion about the relationship between Fv/Fm for healthy

and diseased pixels is consistent with previous studies (Maxwell

and Johnson, 2000; Matous et al., 2006; Baker, 2008; Rousseau

et al., 2013; Pavicic et al., 2021).

The obtained ranges for Di∈R values (1), where i∈{mF0, sF0,
mFm, sFm} , are summarized in Table 3:

As can be seen from the Figures 3B, C, that distributions of

mean and standard deviations of Fv/Fm for considered images

from Synthetic-Fluo-Diseased and Real-Fluo-Diseased differ. It is

not the only difference between synthetic and empirical datasets.

Figure 4 shows that plants on the images from Synthetic-Fluo-

Diseased are smaller than in Real-Fluo-Diseased dataset, while

the disease severity is higher. The small plant size came from the

CVPPP dataset used to simulate plant shapes for the synthetic

images. We kept such a difference in plant size to make the

trained model more general and to be able to recognize disease

lesions even on tiny plants. If we compare the values of Fv/Fm
over images in both datasets (Figure 5), we will see that

Synthetic-Fluo-Diseased and Real-Fluo-Diseased datasets differ

a lot. Figure 5A shows that in Real-Fluo-Diseased datasets, Fv/Fm
mean values of healthy and diseased pixels does not overlap

while in Synthetic-Fluo-Diseased their do overlap. The values of

standard deviations of Fv/Fm is higher for Synthetic-Fluo-

Diseased in comparison with Real-Fluo-Diseased.
3.3 Segmentation scores for the dataset
augmentation strategies

Table 4 shows the model performance results tested under

conditions of the defined earlier training strategies. The model

training/testing on empirical fluorescent images showed that the

model could distinguish lesion pixels from healthy ones.

Moreover, the model’s error analysis showed that the model

had difficulties segmenting both the very tiny disease lesions,

with overall severity of less than 0.24%, and the lesions with
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corrupted pixels. Thus, we developed a two-stage pre-processing

strategy for the Test dataset described in Section 3.1. The second

line in the Table 4 shows the model performance 100% gain for

the pre-processed Test dataset. Thus, we validated the pre-

processing strategy and applied it to training strategies (B-D).

Table 4 shows that the model trained on the synthetic data

recognizes disease lesions quite well on the empirical fluorescent

images. Therefore, we can conclude that the developed approach

of simulating CFI captures the principle features of fluorescent

images of diseased plants. The analysis of the model errors

showed that the lesion segmentation with F1−score<0.7%

corresponds to images with m(d)
Fv=Fm

> 0:76. If we compare

distributions of m(d)
Fv=Fm

for synthetic and empirical images in

Figure 5, we will see that there is a lack of images with m(d)
Fv=Fm

>

0:76 in the Synthetic-Fluo-Diseased dataset. Thus, we decided to

inject 73 empirical images into the synthetic dataset, that is, a

quarter of the images with m(d)
Fv=Fm

> 0:76, to test a sim2real

transfer strategies (C, D).
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The presence of 73 empirical fluorescent images in the

Synthetic dataset slightly improved the F1-score. Figure 6

illustrates the best model result of lesion segmentation on

Real-Fluo-Diseased images. It means that our criteria for

sim2real transfer were chosen right. However, the number of

empirical images should be increased to give a more pronounced

gain of the model precision in lesion segmentation. The results

of the model fine-tuning are close to the results of the model

training from scratch. Thus, both sim2real transfer strategies can

be applied to improve the model’s precision.
Discussion

In this paper, we proposed a novel methodology to generate

fluorescent images of diseased Arabidopsis plants with an

automated lesion annotation. Using the U-Net neural network,

we demonstrated that created synthetic dataset could be
A

B

C

FIGURE 3

Fluorescent image examples from (A) Real-Fluo-Healthy, (B) Real-Fluo-Diseased and (C) Synthetic-Fluo-Diseased datasets with corresponding
Fv/Fm histograms for healthy (h) and diseased (d) pixels.
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A

B

FIGURE 4

Plant size and severity distributions of (A) Real-Fluo-Diseased and (B) Synthetic-Fluo-Diseased datasets.
A

B

FIGURE 5

Distributions of mean and standard deviation of Fv/Fm for healthy (h) and diseased (d) pixels of images from (A) Real-Fluo-Diseased and (B)
Synthetic-Fluo-Diseased datasets.
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successfully used for disease segmentation on empiric

fluorescent plant images at the early disease stages. Creating

and using such synthetic data can be a powerful technique to

facilitate the application of deep learning methods in precision

crop protection.

Our method of generating fluorescent synthetic images is an

essential contribution to the availability of various datasets in

digital plant phenotyping, which serve to verify models’

robustness and generalization. Despite some synthetic and

empirical set otherness, the U-Net model, trained on the

synthetic data, showed 0.793% recall and 0.723% average

precision for disease segmentation on the empirical fluorescent

dataset. One could try to improve this segmentation score by

using other neural network architectures, for example, an

improved DeepLab v3+ (Yuan et al., 2022). Also important to

note that we did not use domain adaptation between the

empirical and synthetic datasets. Such compensation for the

possible discrepancy between the two domains could be

investigated in the latent space of the segmentation algorithm.

It would constitute a viable way to increase model performance.

We demonstrated that the extremely tiny size of disease

lesions on the first post-inoculation day was the main difficulty

for precise lesion segmentation. The low model performance

could indicate that the Fv/Fm ratio is not a good indicator of

diseases symptoms at such an early infection stage. Indeed, a

general drawback of the Fv/Fm parameter is the lack of specificity

as it is influenced by many similar abiotic or biotic stress factors

(Belin et al., 2013; Kalaji et al., 2017; Kim et al., 2019; Pérez-

Bueno et al., 2019; Valcke, 2021; Zhang et al., 2022). This can be

overcome by combining several CFI parameters (Méline et al.,
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2020) or by combining CFI with other imaging techniques

(Bauriegel and Herppich, 2014; Wang et al., 2018; Pavicic

et al., 2021). The U-Net model failed to segment disease

lesions with overall disease severity of less than 0.24%.

Usually, studies of automated disease quantification operate

with plants at later disease stages, when minimum severity

exceeds 8% (Lin et al., 2019; Pavicic et al., 2021; Yuan et al.,

2022). At these stages, CFI imagining techniques allow

estimating disease severity with a thresholding approach, using

the Fv/Fm threshold (≤0.75) to consider a pixel as diseased

(Rousseau et al., 2013; Pavicic et al., 2021).

Our approach is generic and applicable to any crop after

obtaining an accurate estimation of the Fv/Fm statistics on the

diseased and healthy parts of the plants. Currently, some

technical challenges of CFI, such as dark adaptation for Fv/Fm
measurements, make it difficult to translate to agricultural fields.

However, some studies illustrate the application of CFI to detect

fungal diseases under field conditions (Bauriegel and Herppich,

2014; Ivanov and Bernards, 2016). New light-adapted

chlorophyll fluorescence parameters were developed and used

(Ivanov and Bernards, 2016). Moreover, combining with the

other imaging technologies is another means for the wide-scale

use of CFI (Bauriegel and Herppich, 2014; Wang et al., 2018).

The use of a synthetic dataset was investigated here with

fluorescence imaging. Other imaging modalities are commonly

used to monitor plant-pathogen interactions. This includes

passive or active thermography, multispectral reflectance

imaging in various wavelength ranges, and coherent speckle

imaging (Mohammad-Razdari et al., 2022). It would be

interesting to revisit and extend the approach of this paper to
TABLE 4 Performance metrics on test samples for various training strategies (Section 2.11).

Training strategy Precision Recall F1-score

A Train: emp. (530). Test: emp. (107) 0.448 0.306 0.347

A Train: emp. (530). Test: emp.-proc. (38) 0.800 0.685 0.725

B Train: synth. (9317). Test: emp.-proc. (153) 0.723 0.793 0.744

C Train: synth. + 73 emp.-proc. (9441). Test: emp.-proc. (133) 0.813 0.648 0.766

D Train: synth. (9317). Fine-tune: 73 emp.-proc. Test: emp.-proc. (133) 0.853 0.648 0.752
fron
The number of training examples in brackets is given after applying a standard data augmentation procedure.
FIGURE 6

The best result of lesion segmentation on pre-processed Real-Fluo-Diseased with the model trained on the Synthetic-Fluo-Diseased dataset.
Precision = 0.982, Recall = 1.000, F1-score = 0.925.
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these plant imaging modalities. The physics of each of them

differs from fluorescence imaging. Therefore the image

production model would have to be adapted. The rest of the

statistical methodology proposed in this article to train neural

networks on synthetic datasets would remain unchanged.

In conclusion, the proposed method of generating

fluorescent images of diseased plants makes a valuable tool for

deepening our understanding of host-pathogen interactions and

thus facilitating the development of durable resistance strategies.

Moreover, it can contribute to developing highly efficient models

for segmenting disease lesions that can be used for intelligent

crop treatment technologies, reducing the amount of

sprayed fungicides.
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Berger, S., Benediktyová, Z., Matous,̌ K., Bonfig, K., Mueller, M. J., Nedbal, L.,
et al. (2006). Visualization of dynamics of plant–pathogen interaction by novel
combination of chlorophyll fluorescence imaging and statistical analysis:
differential effects of virulent and avirulent strains of p. syringae and of oxylipins
on A. thaliana. J. Exp. Bot. 58, 797–806. doi: 10.1093/jxb/erl208
Björkman, O., and Demmig, B. (1987). Photon yield of O2 evolution and
chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse
origins. Planta 170, 489–504. doi: 10.1007/BF00402983

Boureau, T., Routtu, J., Roine, E., Taira, S., and Romantschuk, M. (2002).
Localization of hrpA-induced Pseudomonas syringae pv. tomato dc3000 in infected
tomato leaves. Mol. Plant Pathol. 3, 451–460. doi: 10.1046/j.1364-
3703.2002.00139.x

Buslaev, A., Parinov, A., Khvedchenya, E., Iglovikov, V. I., and Kalinin, A. A.
(2020). Albumentations: Fast and flexible image augmentations. Information 11,
125. doi: 10.3390/info11020125

Cap, Q. H., Uga, H., Kagiwada, S., and Iyatomi, H. (2022). LeafGAN: An
effective data augmentation method for practical plant disease diagnosis. IEEE
Transactions on Automation Science and Engineering 19, 1258–1267. doi: 10.1109/
TASE.2020.3041499

Chollet, F., et al. (2015) Keras. Available at: https://keras.io.

Douarre, C., Crispim-Junior, C. F., Gelibert, A., Tougne, L., and Rousseau, D.
(2019). Novel data augmentation strategies to boost supervised segmentation of
plant disease. Comput. Electron. Agric. 165, 104967. doi: 10.1016/
j.compag.2019.104967

Goodman, J. W. (2007). Speckle phenomena in optics: Theory and applications
(Bellingham, Washington 440 USA: SPIE Press).

Grishina, A., Sherstneva, O., Grinberg, M., Zdobnova, T., Ageyeva, M.,
Khlopkov, A., et al. (2021). Pre-symptomatic detection of viral infection in
tobacco leaves using pam fluorometry. Plants 10, 2782. doi: 10.3390/
plants10122782
frontiersin.org

https://doi.org/10.15454/U2BWFJ
https://doi.org/10.1016/j.compag.2021.106125
https://doi.org/10.1016/j.compag.2021.106279
https://doi.org/10.32473/edis-ae529-2018
https://doi.org/10.1146/annurev.arplant.59.032607.092759
https://doi.org/10.3390/agriculture4010032
https://doi.org/10.3390/agriculture4010032
https://doi.org/10.1016/j.compag.2012.09.014
https://doi.org/10.1016/j.compag.2012.09.014
https://doi.org/10.1093/jxb/erl208
https://doi.org/10.1007/BF00402983
https://doi.org/10.1046/j.1364-3703.2002.00139.x
https://doi.org/10.1046/j.1364-3703.2002.00139.x
https://doi.org/10.3390/info11020125
https://doi.org/10.1109/TASE.2020.3041499
https://doi.org/10.1109/TASE.2020.3041499
https://keras.io
https://doi.org/10.1016/j.compag.2019.104967
https://doi.org/10.1016/j.compag.2019.104967
https://doi.org/10.3390/plants10122782
https://doi.org/10.3390/plants10122782
https://doi.org/10.3389/fpls.2022.969205
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sapoukhina et al. 10.3389/fpls.2022.969205
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of
the IEEE international conference on computer vision. 1026–1034. doi: 10.48550/
arXiv.1502.01852

Iqbal, Z., Khan, M. A., Sharif, M., Shah, J. H., Rehman, M. H. U., and Javed, K.
(2018). An automated detection and classification of citrus plant diseases using
image processing techniques: A review. Comput. Electron. Agric. 153, 12–32.
doi: 10.1016/j.compag.2018.07.032

Ivanov, D. A., and Bernards, M. A. (2016). Chlorophyll fluorescence imaging as
a tool to monitor the progress of a root pathogen in a perennial plant. Planta 243,
263–279. doi: 10.1007/s00425-015-2427-9

Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L.,
et al. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel.
Photosynthesis Res. 132, 13–66. doi: 10.1007/s11120-016-0318-y

Kim, J. H., Bhandari, S. R., Chae, S. Y., Cho, M. C., and Lee, J. G. (2019).
Application of maximum quantum yield, a parameter of chlorophyll
fluorescence, for early determination of bacterial wilt in tomato seedlings.
Horticulture Environment Biotechnol. 60, 821–829. doi: 10.1007/s13580-019-
00182-0

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980. doi: 10.48550/ARXIV.1412.6980
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