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Cloning of TaeRF1 gene
from Caucasian clover and its
functional analysis responding
to low-temperature stress

Xiaomeng Zhang, Jingwen Jiang, Zewang Ma, Yupeng Yang,
Lingdong Meng, Fuchun Xie, Guowen Cui* and Xiujie Yin*

College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
Low temperature (LT) is an important threat to the normal growth of plants. In

this study, based on the full-length transcriptome sequencing results, the cold

resistance genes were cloned from Caucasian clover with strong cold

resistance. We cloned the CDS of TaeRF1, which is 1311 bp in length and

encodes 436 amino acids. The molecular weight of the protein is 48.97 kDa,

which had no transmembrane structure, and its isoelectric point (pI) was 5.42.

We predicted the structure of TaeRF1 and found 29 phosphorylation sites.

Subcellular localization showed that TaeRF1was localized and expressed in cell

membrane and chloroplasts. The TaeRF1 gene was induced by stress due to

cold, salt, alkali and drought and its expression level was higher in roots and it

was more sensitive to LT. Analysis of transgenic A. thaliana plants before and

after LT treatment showed that the TaeRF1 gene enhanced the removal of

excess H2O2, and increased the activity of antioxidant enzymes, thus improving

the plant’s ability to resist stress. Additionally, the OE lines showed increased

cold tolerance by upregulating the transcription level of cold-responsive genes

(CBF1, CBF2, COR15B, COR47, ICE1, and RD29A). This study demonstrates that

TaeRF1 is actively involved in the responses of plants to LT stress. We also

provide a theoretical basis for breeding and a potential mechanism underlying

the responses of Caucasian clover to abiotic stress.
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Introduction

The normal growth and development of plants are severely limited by various abiotic

stresses in nature (Julia and Claudia, 2012), among which low temperature (LT) is an

important threat to the normal growth of plants and adversely affects their survival and

reproduction (Min et al., 2020). LT stress causes dehydration of plant cells and tissues,
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changes in membrane lipids, production of reactive oxygen species

(ROS), and degradation of some necessary macromolecules, such

as polysaccharides, lipids, photosynthetic pigments, enzymes and

nucleic acids (Kazemi-Shahandashti and Maali-Amiri, 2018), LT

stress can decrease the rate of photosynthetic rate and the

performance of antioxidant defense systems and can also cause

imbalances in osmotic regulation and active oxygen metabolism

(Andreas Theocharis et al., 2012). Plants have evolved different

mechanisms to handle LT stress during the historical evolution

process (Zhang et al, 2016; Zhang et al., 2021). Among them, the

ICE1-CBF-COR signaling pathway related to cold acclimation in

A.thaliana is considered to be the main pathway that endows

plants with LT resistance. C-repeat/dehydration response element

binding factors (CBF/DREB) are critical transcription factors that

actively regulate the expression of downstream cold-responsive

(COR) genes during cold stress (Stockinger et al., 1997). Cold-

induced CBF genes specificity identification combined with the

existed in the promoter of conservative C-repeat/dehydration

response motif (CRT/DRE, CCGAC), thereby rapidly inducing

the expression of CBF and stimulating the expression of cold

response (COR) gene (Jaglo et al., 1998; Thomashow, 2010). COR

encodes hydrophilic peptides that stabilize the plasma membrane

and enhance cold resistance in plants (Gilmour et al., 1998). ICE1

(CBF expression inducer 1) is a major regulator of the expression

of C-repeat binding factors (CBFs) and CORs, and plays a role in

inducing CBFs expression through specific binding CBF promoters

(CANNTG) at LT (Chinnusamy et al., 2003; Wang et al., 2022).

Numerous genes are involved in plant cold resistance, but the

identification of gene function to date is limited. More genes that

affect cold resistance are still needed to guide the molecular

breeding of cold-resistant crops, and using conventional breeding

strategies to improve cold resistance is a challenging task.

Eukaryotic releasing factor 1 (eRF1) is a kind of translation

terminator protein that combines termination codons and

ribosomes, and protein synthesis is terminated when the

translating ribosome encounters one of UAA, UAG or UGA

(Brown et al., 2015; Kurilla et al., 2020). In eukaryotes, termination

of mRNA translation is the final step in protein biosynthesis, and

this process is controlled by three factors: polypeptide chain

releasing factor eRF1 and eukaryotic releasing factor 3 (eRF3),

and ribosomal cycling factor ABCE1 (Urakov et al., 2017). In

previous studies, A. thaliana eRF1 proteins encoding genes

(EeRF1-1, eRF1-2 and eRF1-3) have been functionally validated

in mutant S. cerevisiae strains (Chapman and Brown, 2004). eRF1

is involved in the translation termination of specific cysteine

glutamolysins in the endosperm of rice and plays a role in the

conversion of glutamolysin mRNA into nascent polypeptides

(Elakhdar et al., 2019), a process that leads to decreased

glutaminolysis protein levels in rice (Ushijima et al., 2011). The

expression of eRF1 is tightly controlled because its concentration

determines the termination efficiency and frequency of translation

read-through, and the protein recognizes termination signals and
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promotes the hydrolysis of peptidyl-tRNA ester bonds (Polina

et al., 2013, Denis et al., 2018; Lashkevich et al., 2020). Histological

analysis revealed a reduced cell height, ectopic lignification of

some bast sieve cells and bundle-forming layer regions, enhanced

lignification of interbundle fibers, and altered cell division in

bundle-forming tufts, most of which were disorganized with

enlarged laminae, demonstrating that eRF1 affects cell

elongation and radial division in Arabidopsis (Anne Petsch

et al., 2005). The role of eRF1 in other plants has yet to

be investigated.

Caucasian clover (Trifolium ambiguum M. Bieb.) is a

perennial leguminous plant with a long crown, relatively low

growth and multiple branches with deep roots (Zhang et al.,

2019). It is also the only perennial leguminous clover species

with underground root tillers and strong clonal growth via

rhizomes (Taylar and Smith, 1997). This species originates in

the cold climates of the Russian Caucasus Mountains, eastern

Turkey and northern Iran (Barneby et al., 1965) and has strong

cold resistance, flooding resistance, drought resistance and

grazing tolerance (Brummer and Moore, 2000). Our research

group previously used RNA-Seq and PacBio high-throughput

sequencing technology to sequence the Caucasian clover

transcriptome (Yin et al., 2020). In this study, we analyzed the

expression pattern of the TaeRF1 gene in Caucasian clover for

the first time, and speculated that it unctions under some abiotic

stresses. The TaeRF1 gene in Caucasian clover was herein cloned

and bioinformatically analyzed. The trans-TaeRF1 gene was

then inserted into A. thaliana via an Agrobacterium-mediated

method, and physiological indicators under LT stress were

measured to assess gene function. This study revealed the

genes that confer the LT tolerance of Caucasian clover,

thereby providing a theoretical basis and technical support for

the further selection and breeding of excellent forage grasses and

laying the foundation for the molecular breeding of

Caucasian clover.
Materials and methods

Plant materials and treatments

Caucasian clover (Trifolium ambiguum Bieb.) was provided

by the College of Animal Science and Technology at Northeastern

Agricultural University, while Ben’s tobacco (Nicotiana

benthamiana) and Colombian wild-type (WT) Arabidopsis were

obtained from Wuhan Boyuan Biotechnology Co. Caucasian

clover was cultured at 26°C under a 12 h photoperiod, and

seedlings aged 28 days (d) were subjected to 4°C, 150 mmol/L

NaCl, 150 mmol/L NaHCO3 and 15% PEG-6000. The roots,

stems and leaves of each stressed Caucasian clover plant were

harvested after 0 (CK), 3, 6, 12, 24 and 48 h of treatment. Three

biological replicates were performed per treatment.
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Cloning and expression analysis of the
TaeRF1 gene

The total RNA was extracted from Caucasian clover leaves

using an Ultrapure RNA Kit (ComWin Biotech Corporation,

Beijing, China). The cDNA template for reverse transcription

PCR was synthesized using HiScript II Reverse Transcriptase

(Vazyme, Nanjing, China). The primers used for cloning were

designed by Primer 5 for cloning TaeRF1 based on the results of

transcriptome sequencing (Table S1). PCR amplification was

performed using 2×Phanta® Max Master Mix (Vazyme Biotech

Co.) from Caucasian clover cDNA as a template. The amplified

PCR products were detected by 1% agarose gel electrophoresis,

and the target gene fragment was recovered by a Vazyme

FastPure Gel DNA Extraction Mini Kit. The obtained 1311 bp

full-length fragment was cloned into a 5minTM TA/Blunt-Zero

Cloning vector (Vazyme Biotech Co.) and then subjected to

DNA sequencing. Real-time fluorescence quantification was

performed with cDNA as the template (Table S1). The qRT-

PCR analysis was performed using ChanQ Universal SYBR

qPCR Master Mix Kit, and relative gene expression levels were

calculated by the 2−DDCt method. Using AtActin as the internal

reference, specific primers (Table S1) were used for qPCR

analysis of key genes responding to LT stress (AtCBF1,

AtCBF2, AtCOR15B, AtICE1, AtRD29A and AtCOR47).
Bioinformatic analysis of the
TaeRF1 sequence

BLAST was used to search for homologous sequences of

TaeRF1. DNAMAN was used for multiple alignment of amino

acid sequences. To investigate the evolutionary relationships

between TaeRF1 in Caucasian clover and other species,

phylogenetic analysis was performed with MEGA 5 based on

the maximum likelihood method. The physicochemical

properties (including molecular weight, pI) and instability

coefficient) of the TaeRF1 amino acid sequence were analyzed

using ProtParam software. The transmembrane structural

domain of TaeRF1 was predicted using the transmembrane

prediction server TMHM, and its secondary structure was

analyzed using Predict Protein online software. Protein tertiary

structures were predicted using the SWISS-MODEL online site.

Protein structural domain analysis of the TaeRF1 gene of

Caucasian clover was performed using the MEME online

website. TaeRF1 protein phosphorylation sites were predicted

using the NetPhos 3.1 website. The Protscale online website was

used to analyze the hydrophilicity of the TaeRF1 protein,

and TaeRF1 signaling peptides were predicted using

Signal P 4.1. Subcellular localization analysis of the TaeRF1

amino acid sequence was performed using the Predict Protein

online website.
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Construction of vectors

The plasmid of DH5a bacterial solution with correct

sequencing was used as the template, and the overexpression

and transient expression primers (Table S1) containing

protective bases and enzyme cutting sites were used for PCR

amplification, and the inserted fragment was obtained after gel

recovery. pBWA(V)BS-ccdB plasmids were linearized by double

digestion with Bsa I and Eco31 I. Overexpression expression

vector were obtained by recombination of the inserted fragments

and vectors. pCAMBIA1300-35S-sGFP plasmids were linearized

by double digestion with BamHI and SacI. And instantaneous

expression vectors were obtained by recombination of the

respective inserted fragments and vector. The vectors were

transferred into Escherichia coli DH5a for culture, and the

single colony was selected for PCR detection and sequence

alignment to determine the correct. The plasmid with correct

sequencing results was transformed into Agrobacterium

EHA105 by freeze-thaw method, and then screened on the

double-resistant YEB medium containing kanamycin and

rifampicin. After 60 h culture, the single colony was selected

and verified by PCR to determine the correct.
Subcellular localization analysis
of TaeRF1

The tobacco seeds were seeded in a mixture of vermiculite and

nutrient soil. After the seeds germinated, each seedling was

transplanted to a separate pot and watered daily for 1 month.

The agrobacterium solution containing the transient expression

vector was taken out of the -80°C, and the YEB liquid medium

containing Kan and Lif was shaken to turbidity. The bacterial

solution was centrifuged, discarded the supernatant and cleaned

twice with a working solution (0.5 mol/L MES, 100 mmol/L

acetyleugenone, 1 mol/L MgCl). The concentration was measured

and diluted to OD600 = 0.2, then injected into the back of

Nicotiana benthamiana tobacco leaves (avoiding the main vein)

with a 1 mL syringe. The infected leaf tissue was obtained under

dark conditions for 48 h, and the cellular localization of TaeRF1:

GFP fusion protein was determined by laser microscope.
Generation of transgenic Arabidopsis
plants overexpressing TaeRF1

The floral dip method was employed to transfer the TaeRF1

gene into Colombia-0. After harvesting the seeds, all seeds were

grown onMSmedium containing glyphosate. The surviving plants

were transplanted into the soil for further cultivation. Glyphosate

was sprayed again for screening and PCR detection of transgenic

plants, and T0 Arabidopsis plants were obtained. Three transgenic
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lines were selected from the successfully identified eleven

transgenic lines for planting and seed harvesting. T1-transformed

TaeRF1 overexpressed Arabidopsis plants were obtained after seed

germination screening and PCR detection.
Phenotypic identification

WT and transgenic Arabidopsis seeds were soaked in 75%

ethanol for 1min, sterilized with 10%NaClO for 10min, and rinsed

with sterile water 6 times. They were then germinated on 1/2 MS

media at 23°C and 4°C. Changes in germination were measured.

The 1/2 solid MS medium is composed of MS powder (2.22 g/L),

sucrose (15 g/L), and agar powder (4.25 g/L) and the pH is 5.8. The

protrusion of the radicle was considered the standard for the

germination of seeds. After germination, the plants were moved

to the incubator, and the root lengths of the 14d seedlings were

measured. The petri dishes were stored vertically. To investigate the

cold tolerance of transgenic lines, the seedlings were transplanted

into soil and vermiculite, and the 30d plants were subjected to LT

stress at 4°C. After treatment, the expression analysis of the cold-

responsive genes was analyzed in leaf samples. The experiments

were repeated three times.
Physiological measurements

WT and transgenic Arabidopsis thaliana were cultured for

different times (0, 24 and 72 h) under normal conditions and LT

conditions, and the physiological indexes of plant leaves were

measured. For the enzyme activity assays, SOD, POD and CAT

kit (Keming, Suzhou, China) were used to measure the activity of

superoxide dismutase (SOD), catalase (CAT) and peroxidase

(POD). The index measurement method and calculation method

refer to the manual. Malondialdehyde (MDA) content was

determined by the thiobarbituric acid method, and proline

(Pro) content was determined by the acid ninhydrin method.
Statistical analyses

Data statistics and chart making are through Excel and

Origin. SPSS software and Duncan multiple comparisons were

used to analyze the differences.
Results

Cloning and phylogenetic analysis of
the TaeRF1

Total RNA of Caucasian clover was extracted, the quality of

RNA was detected by Agarose gel electrophoresis (1% Agarose),
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and it showed bright and clear 18S and 28S bands (Figure S1A).

The RNA was reversely transcribed into cDNA, and the quality

was verified by PCR using reference primers (Table S1, Figure

S1B). Specific primers were designed to clone TaeRF1 CDS based

on transcriptome data (Table S1). RT-PCR was used to amplify

CDS of TaeRF1 (Figure S1C), the amplified product was cloned

into pCE2 TA/Blunt Zero vector and transferred to DH5a.
Sequencing results showed that the CDS length of TaeRF1 was

1311 bp, encoding 436 amino acids, and the nucleotide sequence

and amino acid series were obtained (Table S2). The amino acid

sequence of TaeRF1 was uploaded to SMART website for

domain prediction, and the results showed that TaeRF1

contained an eRF1 domain between residues 4 and

140 (Figure 1A).

The TaeRF1 protein sequence was subjected to a BLAST

search using the NCBI protein website, and the results revealed

high similarity to other eRF proteins. The amino acid sequence

of the protein from Caucasian clover was aligned to those of its

homologs in other organisms, and the phylogenetic tree was

constructed by MEGA 5 (Figure 1B). (Medicago truncatula

RHN52517.1, XP 013452837.1), peanut (Arachis Hypogaea

RYR56863.1), soybean (Glycine Max XP 006587430.1), wild

soybean (Glycine Soja RZB62078.1, KRH38906.1), Arachis

ipaensis (XP 016203317.1, XP 016203315.1), pinto bean

(Spatholobus suberectus TKY44911.1), kidney bean (Phaseolus

vulgaris XP 007152574.1), cowpea (Vigna angularis XP

017440033.1) , Mucuna pruriens (Mucuna pruriens

RDX60945.1), lupin (Lupinus angustifolius XP 019436781.1),

and chickpea (Cicer arietinum XP 012567217.1), with

similarities of 97.94%, 95.41%, 96.09%, 96.55%, 95.64%,

95.63%, 95.17%, 94.95%, 94.94%, 94.02% and 98.62%,

respectively. The amino acid sequences were compared by

DNAMAN and we label the eRF domain in the graph

(Figure 1C). The TaeRF1 gene was highly homologous to

those from chickpea and Medicago truncatula, suggesting that

the three genes are closely evolutionarily related and have

similar functions.
Physicochemical properties of the
TaeRF1 protein

The amino acid sequence of TaeRF1 was analyzed by

ProtParam. TaeRF1 was shown to have a molecular formula of

C2172 H3411 N593 O672 S12, a molecular weight of 48.97 kDa, and

a theoretical pI of 5.42. The TaeRF1 protein was mostly

comprised of Leu residues (9.2%), and Trp and Cys residues

accounted for the lowest percentage (both 0.7%). The protein

contained 62 negatively charged residues and 53 positively

charged residues. The protein was considered stable (stability

coefficient 29.55), and the lipid index was 81.40.

To further analyze the TaeRF1 protein, PredictProtein was

used to predict its structure. The secondary structure of the
frontiersin.org
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TaeRF1 protein was shown to comprise a-helices, b-extended
strands and an irregular coil (Figure S2A). Among these features,

irregular coil accounted for 46.56% of the protein, while a-
helices and b-extended strands accounted for 35.55% and

17.89%, respectively. Swiss model predicted the tertiary

structure of TaeRF1 protein (Figure S2B).

The phosphorylation sites of the TaeRF1 protein were

predicted by NetPhos 3.1 website, revealing a total of 29

phosphorylation sites (Figure S3A), including 6 tyrosine

phosphorylation sites, 7 threonine phosphorylation sites and

16 serine phosphorylation sites. The Protscale website was used

to analyze the hydrophilicity and hydrophobicity of the TaeRF1

protein (Figure S3B). The results revealed that most of the amino

acids had negative values, and many negative amino acids have

strong hydrophilic properties. Therefore, it can be inferred that

TaeRF1 is a hydrophilic protein. The trans-membrane domain

of TaeRF1 protein was predicted (S3C) by TMHMM online

website, and the results showed that TaeRF1 protein did not

contain transmembrane domain (Figure S3C).
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Signal P 4.1 was used to predict the signaling peptides of

TaeRF1, yielding Max. Y and mean S values of 0.061 and 0.170,

respectively. The fact that both of these values were less than 0.5

indicated that the TaeRF1 protein had no signaling peptide

cleavage sites and thus contained no signaling peptide sequences

(Figure S3D).
Subcellular localization analysis

The localization of the protein encoded by the TaeRF1 gene

was therefore analyzed using the Predict Protein online website.

The results suggested localization in the cytoplasm. To further

assess the subcellular localization of TaeRF1, pCAMBIA1300-35S-

sGFP plasmids were digested with BamHI and SacI, and the

vectors were linearized. The target fragment was amplified with

transient-expression primers, and the tobacco transient expression

vector pCAMBIA1300-35S-sGFP-TaeRF1 was obtained after

recombination. The resulting tobacco transient expression vector
B

C

A

FIGURE 1

Cloning and multiple sequence alignment of TaeRF1 homologous proteins. (A) SMART domain analysis of the TaeRF1 gene. (B) Phylogenetic
analysis of the TaeRF1 gene in Caucasian clover. (C) Multiple sequence alignment of the eRF proteins. The color-coding indicates sequence
similarity, with blue indicating the highest sequence similarity, pink indicating lower similarity, and cyan indicating the lowest similarity. The
predicted conserved motifs of the eRF proteins are labeled as red square.
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construct was transformed into Agrobacterium EHA105, and the

transformed cells were injected into tobacco. The transient

expression of TaeRF1 in Nicotiana benthamiana was observed

by confocal laser microscopy, revealing expression in the cell

membrane and chloroplasts (Figure 2).
Analysis of the TaeRF1 gene
expression pattern

QRT-PCR was used to detect the relative expression of the

TaeRF1 in roots, stems and leaves of Caucasian clover at different

time points under LT, salt, alkaline and drought stress (Figure 3).

The results revealed altered expression levels of TaeRF1 changed in

response to different stress treatments and at different time points.

The variation in gene expression under the four stresses, salt

(NaCl), alkalinity (NaHCO3), LT (4°C) and drought (15% PEG-

6000), indicated that the gene responded to these four stresses.

Under LT stress, the expression level of TaeRF1 gene was

significantly increased, and the expression level was the lowest at

3 h and the highest at 48 h (p< 0.05). Stem expression of the

TaeRF1 gene was not obvious; the expression level was the

highest at 6 h and the lowest at 12 h under stress, and the

expression levels were significantly higher at these time points

than at 0 h (p< 0.05). The expression level of the TaeRF1 gene in

leaves fluctuated, with the lowest expression observed at 3 h and

the highest expression at 24 h (p< 0.05).
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The expression level of TaeRF1 gene in roots under 150

mmol/L NaCl stress increased firstly and then decreased, and

reached the highest at 24 h (p< 0.05). The expression level of

TaeRF1 in the stems of the treated plants was significantly lower

than that in the stems of CK plants (p< 0.05). The expression

level of the TaeRF1 gene in leaves was affected by salt stress: the

highest value was observed at 6 h under stress and the lowest at

48 h, and the expression levels at 12 and 48 h were lower than

that at 0 h (p< 0.05).

The expression of the TaeRF1 gene in roots was affected

under alkaline stress, initially exhibiting a decreasing trend,

followed by an increase and then another decrease. The

highest expression levels were observed at 3 h, while the lowest

levels were observed at 48 h, and the levels were lower at 24 and

48 h than at 0 h. The expression levels at all other time points

were higher than at 0 h (p< 0.05). The expression of TaeRF1 in

leaves was more obviously altered, initially showing an

increasing trend, followed by a decrease. The highest

expression level was observed at 6 h under stress, while the

lowest levels were observed at 48 h under stress. The expression

levels at 24 h and 48 h points were lower than that at 0 h. The

expression levels at 24 h did not significantly differ from that at 0

h, while the levels at all other time points did significantly differ

from that at 0 h (p< 0.05).

The expression of TaeRF1 gene in the root under 15% PEG-

6000 simulated drought stress was significantly higher than that

in CK group at 6 h, and the lowest expression level was at 12 h
FIGURE 2

Subcellular localization of TaeRF1. Bright: bright-field; GFP: GFP Green fluorescent signal; Merged: merged images. Scale bar, 50 mm.
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and 24 h (p< 0.05). The expression of the TaeRF1 gene in stems

and leaves was not clear and showed a fluctuating trend.
Generation and selection of TaeRF1-
overexpressing transgenic A. thaliana
plant lines

pBWA(V)BS-ccdB plasmids were linearized by double

digestion with Bsa I and Eco31 I. The target gene was linked to

the vector and introduced into agrobacterium tumefaciens

receptive state. The transformed recombinant plasmid was

identified by bacterial liquid PCR. A fragment of approximately

1300 bp was obtained, which was basically the same size as the

TaeRF1 gene (Figure S4A). Arabidopsis flowers were infected

three times by Agrobacterium tumefaciens containing the target

gene (Figure S4B). The mature seeds were collected and placed on

petri dishes containing herbicides for culture. The surviving plants

were transplanted into the soil for further culture, and herbicide

was sprayed again for screening (Figure S4C). Eleven transgenic

lines overexpressing TaeRF1 were obtained, among which OE-1,

OE-2 and OE-3 were significantly expressed (Figure S4D).

Positive Arabidopsis plants were transplanted into soil for

further culture until seeds were harvested (Figure S4E).
Overexpression of TaeRF1 in Arabidopsis
improves tolerance to LT stress

The germination experiment can explore the adaptation of

TaeRF1 to LT stress. WT and transgenic Arabidopsis seeds were
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planted onMSmedium, and the germination rates was recorded at

23°C and 4°C. Under normal temperature (23°C), the germination

rates of the transgenic seeds were similar to that of WT seeds.

However, after moving to normal temperature (23°C) after LT

(4°C) stress, seed germination of both the WT and the transgenic

lines was inhibited (Figure 4A). The germination rates of

transgenic seeds at 24 and 72 h were significantly higher than

that of the WT (Figures 4B, C), and the root length and fresh

weight after LT treatment were measured. At 23°C, the root length

of transgenic seedlings was not much different from WT. Root

length increased slowly at 4°C, but the difference was not

significant, indicating that TaeRF1 overexpression had a less

obvious effect on root growth under low-temperature stress

(Figures 4D, E). We measured the fresh weight and found that

under LT treatment, the fresh weight of TaeRF1-overexpressing

plants was significantly higher than that of WT, indicating that

LT seriously affected the biomass of the plants (Figure 4F).

Therefore, TaeRF1 overexpression enhanced LT tolerance in

transgenic seedlings.

Functional verification of TaeRF1-
overexpressing A. thaliana in response
to LT stress

We performed a LT stress (4°C) assay on 30 d plants of WT

and transgenic plants to further characterize the phenotype of the

transgenic lines. After 1 day of cold treatment at 4°C, the leaves of

the plants turned dark green. After 3 d of being exposed to 4°C,

transgenic plants showed mild wilting but grew well, while the

WT plants showed obvious wilting and slow growth (Figure 5A).

The effects of LT on plants can be further understood by
FIGURE 3

Expression of TaeRF1 at various stress levels. Different characters on the error line represent a difference at a level of P<0.05 between the
treatments. Different letters means significant difference at the 0.05 level.
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measuring plant physiological indexes, the SOD, POD, CAT,

MDA and Pro contents in plants were measured. There was no

significant difference between transgenic and WT lines under

normal conditions, but almost all plants were affected to some

extent under LT stress condition.

Under LT stress, the SOD content in WT and transgenic

plants overexpressing TaeRF1 tended to be upregulated

(Figure 5B). After 3 d of stress, the SOD content in transgenic

plants was higher than that in the WT plants, and the difference

was significant (p< 0.05). After 3 d of stress, the POD content in

transgenic plants overexpressing TaeRF1 was higher than that in

WT plants (Figure 5C). The CAT content in transgenic and WT

plants first increased and then decreased (Figure 5D), but changes

in the CAT content in transgenic plants were not significant (p<

0.05). Under LT stress, the MDA content of WT increased

compared with CK group (P< 0.05). The content of MDA in

OE-2 increased continuously, the content of MDA in CK group

was the lowest, and the content of MDA in OE-2 group was the

highest after 3 d of stress treatment (P< 0.05). MDA content of

OE-1 and OE-3 decreased firstly and then increased (p< 0.05).

Under the same stress time, the content of MDA in CK group was

the highest (Figure 5E). Under LT stress, Pro content of

Arabidopsis and WT showed a trend of first increasing and

then decreasing (Figure 5F). After LT stress for 3 d, the Pro

content of transgenic plants was significantly higher (p< 0.05).
TaeRF1 activates the expression of LT
stress-responsive genes

We further analyzed the expression of LT responsive genes

in Arabidopsis by qRT-PCR, such as AtCBF1 and AtCBF2 and
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their associated genes, including AtCOR15B, AtICE1, AtCOR47

and AtRD29A (Table S1). The results showed that under normal

conditions, there was no significant difference in the expression

levels of 6 LT response genes between WT and overexpressed

plants. After LT treatment, the expression level of six genes in

overexpressed lines was significantly higher than that of WT,

indicating that TaeRF1 positively regulates the expression of

corresponding genes in LT and can improve the cold tolerance of

transgenic Arabidopsis (Figures 6A–F).
Discussion

As a naturally stress-resistant species, the Caucasian clover

represents an important resource for studying the resistance

mechanisms and forage breeding. In this study, eRF1 gene was

successfully cloned from the third-generation full-length

transcriptome data of Caucasian clover. After cloning CDS,

the sequencing results were consistent with the predicted

results, and the gene was named TaeRF1. The full-length CDS

of TaeRF1 was determined to be 1311 bp, encoding 436 amino

acids. SMART domain analysis showed that the TaeRF1 gene

has an eRF1 domain, which showed that the TaeRF1gene

belongs to the eRF1 family. Phylogenetic tree analysis and

multiple sequence alignment between the gene in Caucasian

clover and homologs in other organisms showed that TaeRF1 is

highly homologous to eRF1 in M. truncatula and chickpea,

which are also in the legume family. Analysis of the TaeRF1 gene

expression pattern showed that TaeRF1 participates in the

responses to several stresses such as cold, salinity, alkalinity,

and drought. The roots of plants subjected to LT stress exhibited
B C

D E F

A

FIGURE 4

Overexpression of TaeRF1 in Arabidopsis improved cold tolerance. Seed germination phenotype (A) and germination rate (B-C) of transgenic
Arabidopsis lines overexpressing TaeRF1 under LT stress. After 3 d of vernalization, one group was incubated at 22°C for 3 d (D left), and the
other group was incubated at 4°C for 7 d (D right) and then moved to 22°C for 3 d. After that, the petri dishes were placed vertically. The root
lengths and fresh weights of the 14-d-old seedlings were measured (E–F). Different lowercase letters indicate that different plants showed a
significant difference under the same stress (p< 0.05).
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significantly increased TaeRF1 gene expression, indicating that

this gene may be involved in the response of plants to LT stress

and that TaeRF1 may perform functions in the root.

LT can prohibit plant growth, development, survival and

productivity and is the most severe stress that limits normal
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plant growth (Mishra et al., 2018). In response to complex

environmental changes, plants have evolved different signaling

mechanisms to cope with stress. LT causes the accumulation of

ROS, such as singlet oxygen, hydrogen peroxide and superoxide

radicals, which can lead to cellular oxidative stress, a major factor
A B

D E F

C

FIGURE 5

Functional verification of TaeRF1-overexpressing Arabidopsis under LT stress. Comparisons of phenotypes (A) and SOD, POD, CAT, MDA and
Pro activities (B-F) between WT and transgenic A. thaliana under LT stress. The data are shown as the mean ± SD of three biological replicates.
Different capital letters indicate that the same plant showed a significant difference on different stress days (p< 0.05); different lowercase letters
indicate that different plants showed a significant difference under the same stress (p< 0.05).
FIGURE 6

Expression patterns of cold-responsive genes in WT and TaeRF1-overexpressing Arabidopsis lines under cold stress treatment. Expression
profiles of cold-responsive genes, including AtCBF1, AtCBF2, AtCOR15B, AtICE1, AtRD29A and AtCOR47. Different letters means significant
difference at the 0.05 level.
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underlying the damage caused by LT (Gómez et al., 2019). To

scavenge ROS and reduce oxidative damage, plants have

developed an effective defense system consisting of several

antioxidant enzymes, such as catalase, ascorbate peroxidase,

superoxide dismutase and peroxidase (Bai, 2019). Usually, upon

the exposure of plants to abiotic stress, tolerant cells activate

enzymatic antioxidant systems to remove ROS and protect the

cells (Yu, 2020). At 48 h of LT stress, the relative expression of the

TaeRF1 gene significantly peaked in the roots and was 14.38-fold

higher than that in the control plants, and its expression tended to

increase. At 24 h of stress, the relative expression was more

pronounced in the leaves, indicating that this gene can respond

to LT stress. Caucasian clover grows in the extremely cold

Caucasus Mountain region and therefore has a certain degree of

cold tolerance and can overwinter. The high TaeRF1 gene

expression in the roots indicates that the roots play a positive

role in resisting damage caused by LT. Moreover, ROS may be

produced in leaf cells over periods of prolonged stress, resulting in

increases in the levels of various peroxidases to eliminate ROS,

thus increasing the cold tolerance of Caucasian clover.

Under adverse stress conditions, most plants accumulate

large amounts of ROS, which damage the plant membrane

system (Hu et al., 2010; Feng et al., 2014; Peng et al., 2019).

The balance of intracellular ROS production and clearance can

protect plants from stress damage. In plant cells, the SOD

enzyme can eliminate ROS, functioning to eliminate and

convert O−
2 into H2O2 to limit plant cell damage (Wang, S. Q.

et al., 2019; Lin et al., 2019). WhenWT plants were stressed for 1

day, SOD was used to eliminate O−
2 and thereby prevent the

excess accumulation of ROS. However, the SOD content was

reduced after 3 d of stress in the WT plants, and the SOD activity

decreased, while the SOD content in the transgenic plants

overexpressing TaeRF1 continued to increase, indicating that

ROS was eliminated continuously under stress conditions and

that plant cell damage was mitigated (Wang, Y. et al., 2019). At 3

d of LT stress, the SOD content was the highest in the OE-1

plants, and the SOD contents in the OE-1, OE-2 and OE-3 plants

were significantly different from that in the WT plants (p< 0.05).

In conclusion, the overexpression of TaeRF1may affect the SOD

content under stress, thereby reducing plant damage; the

TaeRF1 gene can increase the SOD content under conditions

of LT stress. These results also support the hypothesis that

TaeRF1 enhances stress tolerance by promoting the

production of plant protective enzymes (Li et al., 2008).

Because excessive H2O2 is harmful to plant cells, POD is also

indispensable for the protective enzyme system in plants, as it

can degrade the generated H2O2 to limit damage to the

membrane system (Sun et al., 2019, Surisa Phornvillay et al.,

2019; Wang, M. et al., 2019). The result demonstrates that LT

stress increased the POD content in the transgenic plants

overexpressing TaeRF1 to a certain extent. Compared with the
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WT plants, the transgenic plants had some certain resistance to

LT stress. The TaeRF1 gene may have a certain impact on the

POD content under LT stress (Hao et al., 2018). Nearly all

aerobic cells contain CAT, which functions similarly to POD, as

it can degrade excessive H2O2 in plant tissues into oxygen and

water, thereby reducing ROS accumulation in plant tissues (Han

et al., 2020; Sun et al., 2020) and maintaining the integrity of the

plant cell structure. To protect the plant cell membrane system,

the browning of plant tissues and the aging of cells are delayed

(Zhang et al., 2017). Under LT stress, the CAT contents in the

WT and transgenic plants first increased and then decreased.

After 1 day of stress, the contents in the OE-1 and OE-2 plants

were comparable to that in the OE-3 plants, while the contents in

the WT, OE-1, OE-2 and OE-3 plants were significantly different

after 3 d of stress (P<0.05). Therefore, the enhanced antioxidant

capacity of overexpressing TaeRF1 in Arabidopsis can alleviate

the damage of plants under LT stress.

LT can damage plants in many ways. The MDA content can

reflect the degree of damage to the cell membrane, which is the

first structure that is destroyed upon exposure to LT. MDA is a

product of lipid peroxidation caused by ROS, which can inhibit

the activity of protective enzymes and thus aggravate membrane

lipid peroxidation (Liu et al., 2014; Sha et al., 2011; Wu et al.,

2012). Studies have shown that the MDA content reflects the

degree of damage to plant tissues under stress (Ning et al., 2021).

The lower MDA content in transgenic plants under LT stress

indicated less membrane damage than WT. The overexpression

of TaeRF1 has a protective membrane integrity under LT stress.

The amino acid Pro exists in a free state in plants. Under stress

conditions such as drought, LT and salinity, Pro accumulates in

large quantities in most plants. In addition to being an osmotic

regulatory substance in the plant cytoplasm, Pro can stabilize the

structures of biological macromolecules, reduce the acidity of

plant cells and remove toxic ammonia (Polturak et al., 2018; Yan

et al., 2019). In addition, Pro can regulate the ROS balance in

plants and ensure balance in the cytoplasm. The membrane

integrity and cold tolerance of plants are important, and Pro is a

key factor underlying cold tolerance because it regulates osmotic

pressure (Savoi et al., 2016; Zhao et al., 2019). Therefore, changes

in Pro metabolism play an important role in improving the LT

adaptability of plants. The Pro content in plants reflects their

stress tolerance to a certain extent, and stronger LT tolerance is

correlated with higher Pro accumulation (Wang, 2019). Under

LT stress, the Pro content in WT plants was increased more than

that of TaeRF1-overexpressing plants after 1 day of stress and

decreased after 3 d of stress, while the Pro content in the

transgenic plants continued to increase under stress, and the

Pro contents of OE-1, OE-2 and OE-3 plants were significantly

different from those in the WT plants after 3 d of stress (P<

0.05). These results indicate that the TaeRF1 gene may resist the

adverse effects of LT stress by increasing the Pro content.
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The most classical plant response to cold stress is the ICE-

CBF-COR regulatory pathway (Chinnusamy et al., 2007;

Hwarari et al., 2022). This study quantitatively analyzed the

expression levels of the CBF-dependent pathway, and their

downstream cold stress responsive genes AtCOR15B and

AtCOR47. We found that TaeRF1 upregulates overexpressed

Arabidopsis cold response genes. These experimental results

were consistent with current expectations and similar to those

of other studies (Dong et al., 2021; Yin et al., 2021). Therefore,

we predicted that TaeRF1 likely enhances cold tolerance via the

CBF-dependent pathway in Arabidopsis.

In this study, we cloned the TaeRF1 gene from Caucasian

clover, performed bioinformatics analyses to understand the

genetic information, and analyzed the evolutionary

relationships among multiple species. TaeRF1 was transferred

into Colombian Arabidopsis, and transgenic Arabidopsis plants

overexpressing TaeRF1 were successfully obtained. Physiological

indicators were measured to assess the possible functions of the

TaeRF1 gene, and we speculated that TaeRF1 was highly

responsive to cold stress. The overexpression of TaeRF1 in

response to abiotic stress could regulate antioxidant enzyme

activity in plants. In subsequent experiments, the gene can be

transformed into Caucasian clover to obtain overexpression

plants, and measurements can be performed to better

understand its functions.
Conclusions

In this study, the TaeRF1 gene was screened and cloned

based on the full-length transcriptome sequencing results of

third-generation Caucasian clover plants. The expression of

TaeRF1 was significantly induced in response to LT stress.

Overexpression of TaeRF1 significantly enhanced LT

resistance, and could better reduce the accumulation of ROS

under cold stress in Arabidopsis thaliana. TaeRF1 mediates cold

signal transduction by increasing the transcription level of

stress-responsive genes, thereby improving transgenic plant

tolerance to cold stress. These results indicate that TaeRF1

plays an active regulatory role in the responses of plants to LT

stress. At the same time, TaMYC2 in Caucasian clover can also

increase the activity of antioxidant enzymes in plants, and

increase the expression of ROS scavenging related genes and

stress response genes under LT and drought stress, thereby

enhancing the response ability of transgenic plants to stress

(Zhao et al., 2022). Taken together, these findings provide

further insights into the properties of TaeRF1 protein and how

it protects plants at low temperatures, and provide references for

clover breeding.
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